2
|
Modelling Deaggregation Due to Normal Carrier–Wall Collision in Dry Powder Inhalers. Processes (Basel) 2022. [DOI: 10.3390/pr10081661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Powder deaggregation in Dry Powder Inhalers (DPI) with carrier-based formulations is a key process for the effectiveness of drug administration. Carrier-wall collisions are one of the recognised mechanisms responsible for active pharmaceutical ingredient (API) aerosolisation, and DPI geometries are designed to maximise their efficacy. The detachment of fine and cohesive API particles is investigated at a fundamental level by simulating with DEM the normal collision of a carrier sphere with an API particle attached. The impact velocity at which detachment occurs (escape velocity) is determined as a function of key parameters, such as cohesiveness, coefficient of restitution, static and rolling friction. An analytical model for the escape velocity is then derived, examining the role of the initial position of the particle, cohesion model and particle size. Finally, the results are framed in the context of DPI inhalers, comparing the results obtained with impact velocities typically recorded in commercial devices.
Collapse
|
5
|
Zhou Y, Zhang M, Wang C, Ren X, Guo T, Cao Z, Zhang J, Sun L, Wu L. Solidification of volatile D-Limonene by cyclodextrin metal-organic framework for pulmonary delivery via dry powder inhalers: In vitro and in vivo evaluation. Int J Pharm 2021; 606:120825. [PMID: 34171430 DOI: 10.1016/j.ijpharm.2021.120825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
D-Limonene (D-Lim), a volatile oil extracted from citrus fruits, has therapeutic effects on lung inflammation and cancer, whilst the deep delivery of D-Lim was challenging due to its physical instability for a long period of time. To prevent the volatilization of D-Lim and achieve efficient pulmonary delivery, herein, D-Lim was loaded into biodegradable γ-cyclodextrin metal-organic framework (γ-CD-MOF) with optimal loading efficiency achieving 13.79 ± 0.01% (molar ratio of D-Lim and γ-CD-MOF was 1.6:1), which possessed cubic shape with controllable particle size (1-5 μm). The experimental results indicated that γ-CD-MOF could improve the stability of D-Lim. A series of characterizations and molecular docking were used to reveal the interaction between D-Lim and γ-CD-MOF. The solidification of D-Lim by γ-CD-MOF played a crucial role in the exploitation of its inhalable dosage form, dry powder inhaler (DPI). Specifically, the aerosolization of D-Lim@γ-CD-MOF for inhalation was satisfactory with a fine particle fraction (FPF) of 33.12 ± 1.50% at 65 L/min of flow rate. Furthermore, in vivo study had shown a 2.23-fold increase in bioavailability of D-Lim solidified by γ-CD-MOF for inhalation compared to D-Lim for oral administration. Therefore, it is considered that γ-CD-MOF could be an excellent carrier for pulmonary drug delivery to realize solidification and lung therapeutic effects of volatile oils.
Collapse
Affiliation(s)
- Yong Zhou
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China
| | - Meijuan Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaohong Ren
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China
| | - Tao Guo
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China
| | - Zeying Cao
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwen Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China
| | - Lixin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 501, Haike Road, Shanghai 201203, China.
| |
Collapse
|
7
|
Zheng Z, Leung SSY, Gupta R. Flow and Particle Modelling of Dry Powder Inhalers: Methodologies, Recent Development and Emerging Applications. Pharmaceutics 2021; 13:189. [PMID: 33535512 PMCID: PMC7912775 DOI: 10.3390/pharmaceutics13020189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients' inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.
Collapse
Affiliation(s)
- Zhanying Zheng
- Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong;
| | - Raghvendra Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India;
| |
Collapse
|
8
|
Tamadondar MR, Salehi K, Abrahamsson P, Rasmuson A. The role of fine excipient particles in adhesive mixtures for inhalation. AIChE J 2021. [DOI: 10.1002/aic.17150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammad R. Tamadondar
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | - Kian Salehi
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| | | | - Anders Rasmuson
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
9
|
Zhang X, Yue X, Cui Y, Zhao Z, Huang Y, Cai S, Wang G, Wang W, Hugh S, Pan X, Wu C, Tan W. A Systematic Safety Evaluation of Nanoporous Mannitol Material as a Dry-Powder Inhalation Carrier System. J Pharm Sci 2020; 109:1692-1702. [PMID: 31987851 DOI: 10.1016/j.xphs.2020.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
For carrier-based dry-powder inhaler (DPI) formulations, the adhesion between carrier particles and active pharmaceutical ingredients (API) particles have a significant influence on the aerosolization performance of the API-carrier complexes and the desired detachment of the API for efficient pulmonary delivery. In our previous study, nanoporous mannitol material was successfully fabricated as carriers by a one-step nonorganic solvent spray drying method with the thermal degradation of ammonium carbonate. These carriers were shown to achieve excellent aerosolization performance. In addition, no residue of ammonium carbonate was detected on the powder surface. However, the safety of nanoporous mannitol carriers (Nano-PMCs) during pulmonary administration/delivery was still unknown because the lung is vulnerable to the inhaled particles. To address this question, the present study was conducted to construct a systematic safety evaluation for DPIs carriers to investigate the safety of Nano-PMCs in the whole inhalation, which would make up for the lack of detailed and standardized method in this field. In vitro safety evaluation was carried out using respiratory and pulmonary cytotoxicity tests, hemolysis assay, and ciliotoxicity test. In vivo safety evaluation was studied by measuring inflammatory indicators in the bronchoalveolar lavage fluid, assessing the pulmonary function and observing pulmonary pathological changes. Nano-PMCs showed satisfactory biocompatibility on respiratory tracts and lungs in vitro and in vivo. It was suggested that Nano-PMCs were safe for intrapulmonary delivery and potential as DPI carriers.
Collapse
Affiliation(s)
- Xuejuan Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, P. R. China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Xiao Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China; College of Pharmacy, Jinan University, Guangzhou, 511443 Guangdong, P. R. China.
| | - Shihao Cai
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China
| | - Smyth Hugh
- College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 Guangdong, P. R. China; College of Pharmacy, Jinan University, Guangzhou, 511443 Guangdong, P. R. China
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, P. R. China
| |
Collapse
|