1
|
Off-Gas-Based Soft Sensor for Real-Time Monitoring of Biomass and Metabolism in Chinese Hamster Ovary Cell Continuous Processes in Single-Use Bioreactors. Processes (Basel) 2021. [DOI: 10.3390/pr9112073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammalian cell culture, especially in pharmaceutical manufacturing and research, biomass and metabolic monitoring are mandatory for various cell culture process steps to develop and, finally, control bioprocesses. As a common measure for biomass, the viable cell density (VCD) or the viable cell volume (VCV) is widely used. This study highlights, for the first time, the advantages of using VCV instead of VCD as a biomass depiction in combination with an oxygen-uptake- rate (OUR)-based soft sensor for real-time biomass estimation and process control in single-use bioreactor (SUBs) continuous processes with Chinese hamster ovary (CHO) cell lines. We investigated a series of 14 technically similar continuous SUB processes, where the same process conditions but different expressing CHO cell lines were used, with respect to biomass growth and oxygen demand to calibrate our model. In addition, we analyzed the key metabolism of the CHO cells in SUB perfusion processes by exometabolomic approaches, highlighting the importance of cell-specific substrate and metabolite consumption and production rate qS analysis to identify distinct metabolic phases. Cell-specific rates for classical mammalian cell culture key substrates and metabolites in CHO perfusion processes showed a good correlation to qOUR, yet, unexpectedly, not for qGluc. Here, we present the soft-sensoring methodology we developed for qPyr to allow for the real-time approximation of cellular metabolism and usage for subsequent, in-depth process monitoring, characterization and optimization.
Collapse
|
2
|
Floris P, Dorival-García N, Lewis G, Josland G, Merriman D, Bones J. Real-time characterization of mammalian cell culture bioprocesses by magnetic sector MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5601-5612. [PMID: 33179638 DOI: 10.1039/d0ay01563f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mammalian cell culture processes were characterized upon the analysis of the exhaust-gas composition achieved through the on-line integration of a magnetic sector MS analyser with benchtop bioreactors. The non-invasive configuration of the magnetic sector MS provided continuous evaluation of the bioreactor's exhaust gas filter integrity and facilitated the accurate quantification of O2 and CO2 levels in the off-gas stream which ensured preserved bioreactor sterility prior to cell inoculation and provided evidence of the ongoing cellular respiratory activity throughout the cultures. Real-time determination of process parameters such as the Respiratory Quotient (RQ) allowed for precise pin-pointing of the occurrence of shifts in cellular metabolism which were correlated to depletion of key nutrients in the growth medium, demonstrating the suitability of this technology for tracking cell culture process performance.
Collapse
Affiliation(s)
- Patrick Floris
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland.
| | - Noemí Dorival-García
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland.
| | - Graham Lewis
- Thermo Fisher Scientific, Ion Path, Road Three, Winsford, CW7 3GA, UK
| | - Graham Josland
- Thermo Fisher Scientific, Ion Path, Road Three, Winsford, CW7 3GA, UK
| | - Daniel Merriman
- Thermo Fisher Scientific, Ion Path, Road Three, Winsford, CW7 3GA, UK
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters avenue, Mount Merrion, Blackrock, Co. Dublin A94 X099, Ireland. and School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Belfield, D04 V1W8, Ireland
| |
Collapse
|
3
|
Tanıl E, Nikerel E. Black-box kinetic modeling of growth and citric acid production and estimation of ATP maintenance parameters for Candida oleophila ATCC20177. Biotechnol Appl Biochem 2020; 68:148-156. [PMID: 32125024 DOI: 10.1002/bab.1905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022]
Abstract
Mathematical modeling represents and predicts biological systems, explains underlying mechanisms, constituting one of the key focus points for fundamental and applied research to improve our understanding and to decrease costs. Organic acids are used in several industries such as monomers for bioplastics, food preservatives and additives, pharmaceuticals, and agriculture. Nonpetrochemical, sustainable production of organic acids is therefore of great interest. An important step in production of organic acids is the determination of growth and acid production dynamics, as the product itself may have direct and indirect inhibitory effects on the host's metabolism. The aim of this study it twofold: (i) to determine the parameters related to energetics of growth and production as growth ( K x ) and nongrowth associated (mATP ) maintenance constants and (ii) to set up and analyze an unstructured, black-box kinetic model to describe the dynamics of the growth and production of citric acid by Candida oleophila ATCC20177 using published batch fermentation data. K x and mATP were found to be 2.3 ± 1.7 and 5.25 ± 2.75, respectively, for the published P/O ratio of 1.45. The parameter sensitivities and correlations are determined using the Monte Carlo approach, and the final model is tested using chemostat data.
Collapse
Affiliation(s)
- Ezgi Tanıl
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
4
|
Sudarsan S, Blank LM, Dietrich A, Vielhauer O, Takors R, Schmid A, Reuss M. Dynamics of benzoate metabolism in Pseudomonas putida KT2440. Metab Eng Commun 2016; 3:97-110. [PMID: 29468117 PMCID: PMC5779716 DOI: 10.1016/j.meteno.2016.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 02/29/2016] [Accepted: 03/14/2016] [Indexed: 12/26/2022] Open
Abstract
Soil microorganisms mineralize lignin-derived aromatic carbon sources using oxidative catabolic pathways, such as the β-ketoadipate pathway. Although this aromatic pathway is one of the best-studied pathways in biochemistry, the complete pathway, including its regulation by aromatic carbon sources, has not been integrated into the metabolic network. In particular, information about the in vivo operation (e.g., kinetics and flux capacity) of the pathway is lacking. In this contribution, we use kinetic modeling and thermodynamic analysis to evaluate the in vivo operation of this key aromatic multi-step pathway. The resulting ab initio deterministic model of benzoate degradation via the β-ketoadipate (ortho-cleavage) pathway in Pseudomonas putida KT2440 is presented. The kinetic model includes mechanistic rate expressions for the enzymes and transport processes. The design and experimental validation of the model are driven by data generated from short-term perturbation experiments in a benzoate-limited continuous culture. The results of rigorous modeling of the in vivo dynamics provide strong support for flux regulation by the benzoate transporter and the enzymes forming and cleaving catechol. Revisiting the β-ketoadipate pathway might be valuable for applications in different fields, such as biochemistry and metabolic engineering, that use lignin monomers as a carbon source. We describe a kinetic model for the β-ketoadipate pathway. Short term metabolic responses were tracked on metabolite level by rapid sampling. The model captures steady state and dynamic conditions of the β-ketoadipate pathway. Thermodynamic analysis revealed regulation points of the pathway. The results are discussed in the context of metabolic network operation.
Collapse
Affiliation(s)
- Suresh Sudarsan
- Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology Department, RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology Department, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Dietrich
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Oliver Vielhauer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research GmbH – UFZ, 04318 Leipzig, Germany
| | - Matthias Reuss
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 Stuttgart, Germany
- Corresponding author.
| |
Collapse
|
5
|
|
6
|
Suarez-Mendez CA, Sousa A, Heijnen JJ, Wahl A. Fast "Feast/Famine" Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae. Metabolites 2014; 4:347-72. [PMID: 24957030 PMCID: PMC4101510 DOI: 10.3390/metabo4020347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 01/24/2023] Open
Abstract
Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism's physiology under dynamic conditions. We found that the biomass yield was slightly reduced (-5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments).
Collapse
Affiliation(s)
- Camilo A Suarez-Mendez
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - Andre Sousa
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - Joseph J Heijnen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| |
Collapse
|
7
|
de Jonge L, Heijnen J, van Gulik W. Reconstruction of the oxygen uptake and carbon dioxide evolution rates of microbial cultures at near-neutral pH during highly dynamic conditions. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Winckler S, Krueger R, Schnitzler T, Zang W, Fischer R, Biselli M. A sensitive monitoring system for mammalian cell cultivation processes: a PAT approach. Bioprocess Biosyst Eng 2013; 37:901-12. [DOI: 10.1007/s00449-013-1062-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
|
9
|
Spadiut O, Rittmann S, Dietzsch C, Herwig C. Dynamic process conditions in bioprocess development. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Oliver Spadiut
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Simon Rittmann
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Christian Dietzsch
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| | - Christoph Herwig
- Vienna University of Technology; Institute of Chemical Engineering; Research Area Biochemical Engineering; Vienna; Austria
| |
Collapse
|
10
|
Sunya S, Delvigne F, Uribelarrea JL, Molina-Jouve C, Gorret N. Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities. Appl Microbiol Biotechnol 2012; 95:1021-34. [PMID: 22370947 DOI: 10.1007/s00253-012-3938-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/01/2012] [Accepted: 02/01/2012] [Indexed: 11/24/2022]
Abstract
Dynamic stimulus-responses of Escherichia coli DPD2085, yciG::LuxCDABE reporter strain, to glucose pulses of different intensities (0.08, 0.4 and 1 g L(-1)) were compared using glucose-limited chemostat cultures at dilution rate close to 0.15 h(-1). After at least five residence times, the steady-state cultures were disturbed by a pulse of glucose, engendering conditions of glucose excess with concomitant oxygen limitation. In all conditions, glucose consumption, acetate and formate accumulations followed a linear relationship with time. The resulting specific uptake and production rates as well as respiratory rates were rapidly increased within the first seconds, which revealed a high ability of E. coli strain to modulate its metabolism to a new environment. For transition from glucose-excess to glucose-limited conditions, the cells rapidly re-established its pseudo-steady state. The dynamics of transient responses at the macroscopic viewpoint were shown to be independent on the glucose pulse intensity in the tested range. On the contrary, the E. coli biosensor yciG::luxCDABE revealed a transcriptional induction of yciG gene promoter depending on the quantities of the glucose added, through in situ and online monitoring of the bioluminescence emitted by the cells. Despite many studies describing the dynamics of the transient response of E. coli to glucose perturbations, it is the first time that a direct comparison is reported, using the same experimental design (strain, medium and experimental set up), to study the impact of the glucose pulse intensity on the dynamics of microbial behaviour regarding growth, respiration and metabolite productions.
Collapse
Affiliation(s)
- Sirichai Sunya
- Université de Toulouse, 135 Avenue de Rangueil, Toulouse, France
| | | | | | | | | |
Collapse
|
11
|
Taymaz-Nikerel H, van Gulik WM, Heijnen JJ. Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions. Metab Eng 2011; 13:307-18. [PMID: 21439400 DOI: 10.1016/j.ymben.2011.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/24/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
Glucose pulse experiments at seconds time scale resolution were performed in aerobic glucose-limited Escherichia coli chemostat cultures. The dynamic responses of oxygen-uptake and growth rate at seconds time scale were determined using a new method based on the dynamic liquid-phase mass balance for oxygen and the pseudo-steady-state ATP balance. Significant fold changes in metabolites (10-1/10) and fluxes (4-1/4) were observed during the short (200 s) period of glucose excess. During glucose excess there was no secretion of by-products and the increased glucose uptake rate led within 40s to a 3.7 fold increase in growth rate. Also within 40-60s a new pseudo-steady-state was reached for both metabolite levels and fluxes. Flux changes of reactions were strongly correlated to the concentrations of involved compounds. Surprisingly the 3.7 fold increase in growth rate and hence protein synthesis rate was not matched by a significant increase in amino acid concentrations. This poses interesting questions for the kinetic factors, which drive protein synthesis by ribosomes.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands.
| | | | | |
Collapse
|
12
|
Metabolic differentiation in biofilms as indicated by carbon dioxide production rates. Appl Environ Microbiol 2009; 76:1189-97. [PMID: 20023078 DOI: 10.1128/aem.01719-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The measurement of carbon dioxide production rates as an indication of metabolic activity was applied to study biofilm development and response of Pseudomonas sp. biofilms to an environmental disturbance in the form of a moving air-liquid interface (i.e., shear). A differential response in biofilm cohesiveness was observed after bubble perturbation, and the biofilm layers were operationally defined as either shear-susceptible or non-shear-susceptible. Confocal laser scanning microscopy and image analysis showed a significant reduction in biofilm thickness and biomass after the removal of the shear-susceptible biofilm layer, as well as notable changes in the roughness coefficient and surface-to-biovolume ratio. These changes were accompanied by a 72% reduction of whole-biofilm CO2 production; however, the non-shear-susceptible region of the biofilm responded rapidly after the removal of the overlying cells and extracellular polymeric substances (EPS) along with the associated changes in nutrient and O2 flux, with CO2 production rates returning to preperturbation levels within 24 h. The adaptable nature and the ability of bacteria to respond to environmental conditions were further demonstrated by the outer shear-susceptible region of the biofilm; the average CO2 production rate of cells from this region increased within 0.25 h from 9.45 +/- 5.40 fmol of CO2 x cell(-1) x h(-1) to 22.6 +/- 7.58 fmol of CO2 x cell(-1) x h(-1) when cells were removed from the biofilm and maintained in suspension without an additional nutrient supply. These results also demonstrate the need for sufficient monitoring of biofilm recovery at the solid substratum if mechanical methods are used for biofouling control.
Collapse
|
13
|
Kresnowati MTAP, van Winden WA, van Gulik WM, Heijnen JJ. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid. FEBS J 2008; 275:5527-41. [PMID: 18959741 DOI: 10.1111/j.1742-4658.2008.06667.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.
Collapse
Affiliation(s)
- M T A P Kresnowati
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | |
Collapse
|
14
|
Kresnowati MTAP, van Winden WA, van Gulik WM, Heijnen JJ. Dynamic in vivo metabolome response of Saccharomyces cerevisiae to a stepwise perturbation of the ATP requirement for benzoate export. Biotechnol Bioeng 2008; 99:421-41. [PMID: 17614335 DOI: 10.1002/bit.21557] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although much information is available on in vitro role of ATP in regulation, the in vivo kinetics of reactions in which ATP plays a role are only partly known. In order to study such reactions, it is therefore necessary to study the role of ATP in vivo. This study presents an in vivo, targeted perturbation of the ATP flux in aerobic glucose-limited chemostat cultures of Saccharomyces cerevisiae, which was accomplished by transiently (20 min) changing the extracellular undissociated benzoic acid concentration via the pH of the culture. The performed pH shifts resulted in, within about 20 s, a 40% decrease (pH upshift) or a 23% increase (pH downshift) of the calculated ATP consumption rate while the specific glucose uptake rate did not change because of the glucose-limited condition. The pH upshift resulted in a strong decrease in the glycolytic and TCA cycle fluxes; carbon and energy balances indicated an increased flux toward storage carbohydrates. As expected, the pH downshift leads to the opposite effects. Overall, consistent responses were observed in the metabolic fluxes, the off gas concentrations of O(2) and CO(2) and intracellular metabolite concentrations, except for the concentrations of adenosine nucleotides which unexpectedly only showed minor dynamics. This demonstrates that our knowledge of the regulation of the ATP level, the storage metabolism, and central carbon metabolism of yeast is still incomplete. The new dynamic metabolite datasets obtained in this study will prove of great value in developing kinetic models.
Collapse
Affiliation(s)
- M T A P Kresnowati
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Kresnowati MTAP, Suarez-Mendez CM, van Winden WA, van Gulik WM, Heijnen JJ. Quantitative physiological study of the fast dynamics in the intracellular pH of Saccharomyces cerevisiae in response to glucose and ethanol pulses. Metab Eng 2007; 10:39-54. [PMID: 18054509 DOI: 10.1016/j.ymben.2007.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 10/02/2007] [Accepted: 10/02/2007] [Indexed: 11/29/2022]
Abstract
Considering the effects of pH on many aspects of cell metabolism, such as its role in signaling processes and enzyme kinetics, it is indispensable to include the measurement of the dynamics of the intracellular pH, when studying the fast dynamic response of cells to perturbations. It has been shown previously that the intracellular pH rapidly drops following an increase in external glucose concentration [Kresnowati, M.T.A.P., Suarez-Mendez, C., Groothuizen, M.K., Van Winden, W.A., Heijnen, J.J., 2007. Measurement of fast dynamic intracellular pH in Saccharomyces cerevisiae using benzoic acid pulse. Biotechnol. Bioeng. 97, 86-98; Ramos, S., Balbin, M., Raposo, M., Valle, E., Pardo, L.A., 1989. The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae. J. Gen. Microbiol. 135, 2413-2422; Van Urk, H., Schipper, D., Breedveld, G.J., Mak, P.R., Scheffers, W.A., Van Dijken, J.P., 1989. Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochim. Biophys. Acta 992(1), 78-86]. The mechanism for this fast intracellular acidification, however, has not been elucidated yet. This paper presents a metabolome-based analysis to reveal the physiological phenomena that cause the fast intracellular acidification following either a glucose pulse or an ethanol pulse to carbon-limited chemostat cultures of Saccharomyces cerevisiae. This quantitative study, which includes the determination of intracellular buffering capacity, the calculation of electric charge balance and the quantification of weak organic acid transport shows that none of the previously suggested mechanisms, i.e. increase in glucose phosphorylation and accumulation of CO(2), is sufficient to explain the measured decrease in intracellular pH following a glucose pulse.
Collapse
Affiliation(s)
- M T A P Kresnowati
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Mashego MR, van Gulik WM, Heijnen JJ. Metabolome dynamic responses of Saccharomyces cerevisiae to simultaneous rapid perturbations in external electron acceptor and electron donor. FEMS Yeast Res 2007; 7:48-66. [PMID: 17311584 DOI: 10.1111/j.1567-1364.2006.00144.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rapid perturbation experiments are highly relevant to elaborate the in vivo kinetics for mathematical models of metabolism, which are needed for selecting gene targets for metabolic engineering. Perturbations were applied to chemostat-cultivated biomass (D=0.05 h(-1), aerobic glucose/ethanol-limited) using the BioScope of Saccharomyces cerevisiae CEN. PK 113-7D over time span of 90 and 180 s. The availability of the external electron acceptor oxygen was decreased from fully aerobic to anaerobic conditions. It was observed that the changes in metabolome response under these conditions were limited to the pyruvate node. Acetaldehyde supply was used as an extra external electron acceptor during glucose perturbation under fully aerobic conditions. This had a strong effect on the metabolome dynamics and resulted in a significantly higher initial glycolytic flux. Dynamic response of the adenine nucleotides indicated that their behavior is not dictated by the glycolytic flux but is much more coupled to the cytosolic NADH/NAD(+) ratio through the equilibrium pool of fructose 1,6-bisphosphate and 2/3-phosphoglycerate. Also, the electron donor availability (glucose) was decreased. This did not result in significant changes in the concentrations of the glycolytic and tricarboxylic acid cycle metabolites, whereas the adenine nucleotides, especially ADP and AMP, showed the opposite response to that observed in a glucose pulse experiment. Surprisingly, trehalose was not mobilized in the time frame of 180 s.
Collapse
Affiliation(s)
- Mlawule R Mashego
- Department of Biotechnology, Faculty of Applied Sciences, Technical University of Delft, Julianalaan, Delft, The Netherlands.
| | | | | |
Collapse
|
17
|
Wu L, van Dam J, Schipper D, Kresnowati MTAP, Proell AM, Ras C, van Winden WA, van Gulik WM, Heijnen JJ. Short-term metabolome dynamics and carbon, electron, and ATP balances in chemostat-grown Saccharomyces cerevisiae CEN.PK 113-7D following a glucose pulse. Appl Environ Microbiol 2006; 72:3566-77. [PMID: 16672504 PMCID: PMC1472385 DOI: 10.1128/aem.72.5.3566-3577.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vivo kinetics in Saccharomyces cerevisiae CEN.PK 113-7D was evaluated during a 300-second transient period after applying a glucose pulse to an aerobic, carbon-limited chemostat culture. We quantified the responses of extracellular metabolites, intracellular intermediates in primary metabolism, intracellular free amino acids, and in vivo rates of O(2) uptake and CO(2) evolution. With these measurements, dynamic carbon, electron, and ATP balances were set up to identify major carbon, electron, and energy sinks during the postpulse period. There were three distinct metabolic phases during this time. In phase I (0 to 50 seconds after the pulse), the carbon/electron balances closed up to 85%. The accumulation of glycolytic and storage compounds accounted for 60% of the consumed glucose, caused an energy depletion, and may have led to a temporary decrease in the anabolic flux. In phase II (50 to 150 seconds), the fermentative metabolism gradually became the most important carbon/electron sink. In phase III (150 to 300 seconds), 29% of the carbon uptake was not identified in the measurements, and the ATP balance had a large surplus. These results indicate an increase in the anabolic flux, which is consistent with macroscopic balances of extracellular fluxes and the observed increase in CO(2) evolution associated with nonfermentative metabolism. The identified metabolic processes involving major carbon, electron, and energy sinks must be taken into account in in vivo kinetic models based on short-term dynamic metabolome responses.
Collapse
Affiliation(s)
- Liang Wu
- DSM Anti-Infectives, P.O. Box 525, 2613 AX Delft, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aboka FO, Yang H, de Jonge LP, Kerste R, van Winden WA, van Gulik WM, Hoogendijk R, Oudshoorn A, Heijnen JJ. Characterization of an experimental miniature bioreactor for cellular perturbation studies. Biotechnol Bioeng 2006; 95:1032-42. [PMID: 16977621 DOI: 10.1002/bit.21003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A mini bioreactor (3.0 mL volume) has been developed and shown to be a versatile tool for rapidly screening and quantifying the response of organisms on environmental perturbations. The mini bioreactor is essentially a plug flow device transformed into a well-mixed reactor by a recycle flow of the broth. The gas and liquid phases are separated by a silicone membrane. Dynamic mass transfer experiments were performed to determine the mass transfer capacities for oxygen and carbon dioxide. The mass transfer coefficients for oxygen and carbon dioxide were found to be 1.55 +/- 0.17 x 10(-5) m/s and 4.52 +/- 0.60 x 10(-6) m/s, respectively. Cultivation experiments with the 3.0 mL bioreactor show that (i) it can maintain biomass in the same physiological state as the 4.0 L lab scale bioreactor, (ii) reproducible perturbation experiments such as changing substrate uptake rate can be readily performed and the physiological response monitored quantitatively in terms of the O2 and CO2 uptake and production rates.
Collapse
Affiliation(s)
- Fredrick O Aboka
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jajuee B, Margaritis A, Karamanev D, Bergougnou MA. Kinetics of biodegradation ofp-xylene and naphthalene and oxygen transfer in a novel airlift immobilized bioreactor. Biotechnol Bioeng 2006; 96:232-43. [PMID: 16900524 DOI: 10.1002/bit.21106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The scope of this study included the biodegradation performance and the rate of oxygen transfer in a pilot-scale immobilized soil bioreactor system (ISBR) of 10-L working volume. The ISBR was inoculated with an acclimatized population of contaminant degrading microorganisms. Immobilization of microorganisms on a non-woven polyester textile developed the active biofilm, thereby obtaining biodegradation rates of 81 mg/L x h and 40 mg/L x h for p-xylene and naphthalene, respectively. Monod kinetic model was found to be suitable to correlate the experimental data obtained during the course of batch and continuous operations. Oxygen uptake and transfer rates were determined during the batch biodegradation process. The dynamic gassing-out method was used to determine the oxygen uptake rate (OUR) and volumetric oxygen mass transfer, K(L) a. The maximum volumetric OUR of 255 mg O(2)/L x h occurred approximately at 720-722 h after inoculation, when the dry weight of biomass concentration was 0.67 g/L.
Collapse
Affiliation(s)
- Babak Jajuee
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada N6A 5B8
| | | | | | | |
Collapse
|