1
|
Souther SK, Sandor ME, Sample M, Gabrielson S, Aslan CE. Bee and butterfly records indicate diversity losses in western and southern North America, but extensive knowledge gaps remain. PLoS One 2024; 19:e0289742. [PMID: 38748698 PMCID: PMC11095745 DOI: 10.1371/journal.pone.0289742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2024] [Indexed: 05/19/2024] Open
Abstract
Pollinator losses threaten ecosystems and food security, diminishing gene flow and reproductive output for ecological communities and impacting ecosystem services broadly. For four focal families of bees and butterflies, we constructed over 1400 ensemble species distribution models over two time periods for North America. Models indicated disproportionally increased richness in eastern North America over time, with decreases in richness over time in the western US and southern Mexico. To further pinpoint geographic areas of vulnerability, we mapped records of potential pollinator species of conservation concern and found high concentrations of detections in the Great Lakes region, US East Coast, and southern Canada. Finally, we estimated asymptotic diversity indices for genera known to include species that visit flowers and may carry pollen for ecoregions across two time periods. Patterns of generic diversity through time mirrored those of species-level analyses, again indicating a decline in pollinators in the western U.S. Increases in generic diversity were observed in cooler and wetter ecoregions. Overall, changes in pollinator diversity appear to reflect changes in climate, though other factors such as land use change may also explain regional shifts. While statistical methods were employed to account for unequal sampling effort across regions and time, improved monitoring efforts with rigorous sampling designs would provide a deeper understanding of pollinator communities and their responses to ongoing environmental change.
Collapse
Affiliation(s)
- Sara K. Souther
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Manette E. Sandor
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States of America
- Center for Conservation and Biodiversity, American Museum of Natural History, New York, NY, United States of America
| | - Martha Sample
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Sara Gabrielson
- Department of Biology, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Clare E. Aslan
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, AZ, United States of America
| |
Collapse
|
2
|
Pejhanmehr M, Kantar MB, Yorkston M, Morden CW. Population genetics of Sida fallax Walp. (Malvaceae) in the Hawaiian Islands. FRONTIERS IN PLANT SCIENCE 2024; 15:1304078. [PMID: 38495376 PMCID: PMC10941843 DOI: 10.3389/fpls.2024.1304078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Introduction Sida fallax (Malvaceae) is the most widespread and variable taxon of Malvaceae in the Hawaiian Islands, growing with a diversity of morphological forms in different habitats including Midway Atoll, Nihoa, and all the main islands. Morphological variation exists within and among populations. The study aimed to investigate the genetic variation within and among populations from various habitats and geographic locations throughout the Hawaiian range of S. fallax. Methods A total of 124 samples, with up to five samples per population where possible, were collected from 26 populations across six of the main Hawaiian Islands (Kaua'i, O'ahu, Maui, Moloka'i, Lāna'i, and Hawai'i) and Nihoa in the Northwestern Hawaiian Islands. The sampling strategy encompassed collecting populations from different habitats and geographic locations, including coastal and mountain ecotypes, with many intermediate morphological forms. Multiplexed ISSR genotyping by sequencing (MIG-seq) was used to detect single nucleotide polymorphisms (SNP) and genetic differences among individuals and populations were evaluated using PCO analyses. Results The relationship of FST with the geographical distance between the populations was assessed using the Mantel test. The results showed that populations on a single island were more closely related to each other and to populations on islands within their respective groups than they were to populations on other islands. Discussion The overall genetic relationships among islands were, to a large extent, predictive based on island position within the chain and, to a lesser extent, within island topography.
Collapse
Affiliation(s)
| | - Michael Benjamin Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaiʻi, Honolulu, HI, United States
| | - Mitsuko Yorkston
- School of Life Sciences, University of Hawaiʻi, Honolulu, HI, United States
| | - Clifford W. Morden
- School of Life Sciences, University of Hawaiʻi, Honolulu, HI, United States
| |
Collapse
|
3
|
Balmaki B, Rostami MA, Christensen T, Leger EA, Allen JM, Feldman CR, Forister ML, Dyer LA. Modern approaches for leveraging biodiversity collections to understand change in plant-insect interactions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.924941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research on plant-pollinator interactions requires a diversity of perspectives and approaches, and documenting changing pollinator-plant interactions due to declining insect diversity and climate change is especially challenging. Natural history collections are increasingly important for such research and can provide ecological information across broad spatial and temporal scales. Here, we describe novel approaches that integrate museum specimens from insect and plant collections with field observations to quantify pollen networks over large spatial and temporal gradients. We present methodological strategies for evaluating insect-pollen network parameters based on pollen collected from museum insect specimens. These methods provide insight into spatial and temporal variation in pollen-insect interactions and complement other approaches to studying pollination, such as pollinator observation networks and flower enclosure experiments. We present example data from butterfly pollen networks over the past century in the Great Basin Desert and Sierra Nevada Mountains, United States. Complementary to these approaches, we describe rapid pollen identification methods that can increase speed and accuracy of taxonomic determinations, using pollen grains collected from herbarium specimens. As an example, we describe a convolutional neural network (CNN) to automate identification of pollen. We extracted images of pollen grains from 21 common species from herbarium specimens at the University of Nevada Reno (RENO). The CNN model achieved exceptional accuracy of identification, with a correct classification rate of 98.8%. These and similar approaches can transform the way we estimate pollination network parameters and greatly change inferences from existing networks, which have exploded over the past few decades. These techniques also allow us to address critical ecological questions related to mutualistic networks, community ecology, and conservation biology. Museum collections remain a bountiful source of data for biodiversity science and understanding global change.
Collapse
|
4
|
Liang CT, Shiels AB, Haines WP, Sandor ME, Aslan CE. Invasive predators affect community-wide pollinator visitation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2522. [PMID: 34918411 DOI: 10.1002/eap.2522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 06/14/2023]
Abstract
Disruption of plant-pollinator interactions by invasive predators is poorly understood but may pose a critical threat for native ecosystems. In a multiyear field experiment in Hawai'i, we suppressed abundances of globally invasive predators and then observed insect visitation to flowers of six native plant species. Three plant species are federally endangered (Haplostachys haplostachya, Silene lanceolata, Tetramolopium arenarium) and three are common throughout their range (Bidens menziesii, Dubautia linearis, Sida fallax). Insect visitors were primarily generalist pollinators, including taxa that occur worldwide such as solitary bees (e.g., Lasioglossum impavidum), social bees (e.g., Apis mellifera), and syrphid flies (e.g., Allograpta exotica). We found that suppressing invasive rats (Rattus rattus), mice (Mus musculus), ants (Linepithema humile, Tapinoma melanocephalum), and yellowjacket wasps (Vespula pensylvanica) had positive effects on pollinator visitation to plants in 16 of 19 significant predator-pollinator-plant interactions. We found only positive effects of suppressing rats and ants, and both positive and negative effects of suppressing mice and yellowjacket wasps, on the frequency of interactions between pollinators and plants. Model results predicted that predator eradication could increase the frequency of insect visitation to flowering species, in some cases by more than 90%. Previous results from the system showed that these flowering species produced significantly more seed when flowers were allowed to outcross than when flowers were bagged to exclude pollinators, indicating limited autogamy. Our findings highlight the potential benefits of suppression or eradication of invasive rodents, ants, and yellowjackets to reverse pollination disruption, particularly in locations with high numbers of at-risk plant species or already imperiled pollinator populations.
Collapse
Affiliation(s)
- Christina T Liang
- Pacific Southwest Research Station, USDA Forest Service, Hilo, Hawai'i, USA
- USDA Forest Service Tahoe National Forest Supervisors Office, Nevada City, California, USA
| | - Aaron B Shiels
- National Wildlife Research Center, USDA APHIS, Fort Collins, Colorado, USA
| | - William P Haines
- Center for Conservation Research and Training, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Manette E Sandor
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, Arizona, USA
| | - Clare E Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, Arizona, USA
- Conservation Science Partners, Flagstaff, Arizona, USA
| |
Collapse
|
5
|
Koch JBU, Tabor JA, Montoya-Aiona K, Eiben JA. The Invasion of Megachile policaris (Hymenoptera: Megachilidae) to Hawai'i. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6369965. [PMID: 34519348 PMCID: PMC8438643 DOI: 10.1093/jisesa/ieab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Islands are insular environments that are negatively impacted by invasive species. In Hawai'i, at least 21 non-native bees have been documented to date, joining the diversity of >9,000 non-native and invasive species to the archipelago. The goal of this study is to describe the persistence, genetic diversity, and natural history of the most recently established bee to Hawai'i, Megachile policaris Say, 1831 (Hymenoptera: Megachilidae). Contemporary surveys identify that M. policaris is present on at least O'ahu, Maui, and Hawai'i Island, with the earliest detection of the species in 2017. Furthermore, repeated surveys and observations by community members support the hypothesis that M. policaris has been established on Hawai'i Island from 2017 to 2020. DNA sequenced fragments of the cytochrome oxidase I locus identify two distinct haplotypes on Hawai'i Island, suggesting that at least two founders have colonized the island. In their native range, M. policaris is documented to forage on at least 21 different plant families, which are represented in Hawai'i. Finally, ensemble species distribution models (SDMs) constructed with four bioclimatic variables and occurrence data from the native range of M. policaris predicts high habitat suitability on the leeward side of islands throughout the archipelago and at high elevation habitats. While many of the observations presented in our study fall within the predicted habitat suitability on Hawai'i, we also detected the M. policaris on the windward side of Hawai'i Island suggesting that the SDMs we constructed likely do not capture the bioclimatic niche flexibility of the species.
Collapse
Affiliation(s)
- Jonathan Berenguer Uhuad Koch
- USDA-ARS Pollinating Insect – Biology, Management, and Systematics Research Unit, Utah State University, Logan, UT 84322, USA
| | - Jesse Anjin Tabor
- Department of Biology and Ecology Center, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Kristina Montoya-Aiona
- U.S. Geological Survey-Pacific Island Ecosystems Research Center, P.O. Box 44, Hawai‘i National Park, HI 96718, USA
| | - Jesse A Eiben
- Department of Biology, Geology and Environmental Science, California University of Pennsylvania, 250 University Avenue, California, PA 15419, USA
| |
Collapse
|
6
|
Barton KE, Shiels AB. Additive and non‐additive responses of seedlings to simulated herbivory and drought. Biotropica 2020. [DOI: 10.1111/btp.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kasey E. Barton
- School of Life Sciences University of Hawai'i at Mānoa Honolulu Hawaii USA
| | - Aaron B. Shiels
- USDA National Wildlife Research Center Fort Collins Colorado USA
| |
Collapse
|
7
|
Aslan CE, Shiels AB, Haines W, Liang CT. Non-native insects dominate daytime pollination in a high-elevation Hawaiian dryland ecosystem. AMERICAN JOURNAL OF BOTANY 2019; 106:313-324. [PMID: 30768870 DOI: 10.1002/ajb2.1233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Over one-third of the native flowering plant species in the Hawaiian Islands are listed as federally threatened or endangered. Lack of sufficient pollination could contribute to reductions in populations, reproduction, and genetic diversity among these species but has been little studied. METHODS We used systematic observations and manual flower treatments to quantify flower visitation and outcrossing dependency of eight native (including four endangered) plant species in a dryland ecosystem in Hawaii: Argemone glauca, Bidens menziesii, Dubautia linearis, Haplostachys haplostachya, Sida fallax, Silene lanceolata, Stenogyne angustifolia, and Tetramolopium arenarium. KEY RESULTS During 576.36 h of flower observations, only insects visited the flowers. Out of all recorded flower visits, 85% were performed by non-native species, particularly the honeybee (Apis mellifera) and flies in the family Syrphidae. Some plant species received little visitation (e.g., S. angustifolia received one visit in 120 h of observation), whereas others were visited by a wide diversity of insects. The endangered plant species were visited by fewer visitor taxa than were the common native plant species. For six of the focal plant species, bagging of flowers to exclude pollinators resulted in significant reductions in seed set. CONCLUSIONS The flower visitor community in this system, although heavily dominated by non-native insects, appears to be facilitating pollination for multiple plant species. Non-native insects may thus be sustaining biotic interactions otherwise threatened with disruption in this island ecosystem. This may be particularly important for the studied endangered plant species, which exhibit fewer partners than the more common plant species.
Collapse
Affiliation(s)
- Clare E Aslan
- Landscape Conservation Initiative, Northern Arizona University, and Conservation Science Partners, Flagstaff, Arizona, 86011, USA
| | - Aaron B Shiels
- National Wildlife Research Center, USDA, Fort Collins, Colorado, 80521, USA
| | - William Haines
- Center for Conservation Research and Training, University of Hawaii, Honolulu, Hawaii, 96822, USA
| | - Christina T Liang
- Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, Hawaii, 96720, USA
| |
Collapse
|