1
|
Rego JO, Monzón VH, Mesquita-Neto JN. The invasive bumblebee Bombus terrestris (Linnaeus, 1758) disrupts the adaptive function of heteranthery by indiscriminately visiting the pollinating and feeding anthers of Senna arnottiana flowers. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:821-831. [PMID: 38861656 DOI: 10.1111/plb.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/02/2024] [Indexed: 06/13/2024]
Abstract
Heteranthery, the presence of different types of anthers on the same flower, is a floral adaptation that aims to balance the need for pollinators to collect pollen as a food resource while ensuring sufficient pollen for pollination. We investigate the role of heteranthery in the pollination of Senna arnottiana flowers and how it is affected by the behaviour of visiting bee species, with a particular focus on the impact of the invasive bumblebee Bombus terrestris. In three populations of S. arnottiana we measured the size of three sets of anthers and style, stigma-anther separation, pollen quantity and fruit set, and contrasted it with the body size, behaviour, and pollination effectiveness of all floral visitors. Different bee species visited S. arnottiana flowers, and their foraging behaviour varied. Large-bodied native bees, including Centris cineraria, Caupolicana sp. and Cadeguala occidentalis, preferentially visited short anthers, whereas B. terrestris, an exotic bumblebee, foraged from both short and long anthers without distinction. In addition, B. terrestris contacted the stigma at a lower rate than large-bodied native bees. Instead of concentrating its pollen-gathering efforts on the feeding anthers, as predicted by the "division of labor" hypothesis, B. terrestris indiscriminately visited both types of anthers similarly. This behaviour of B. terrestris may disrupt the adaptive significance of heteranthery by mixing the roles of pollination and feeding anthers of S. arnottiana. Therefore, our results highlight the potential disruption of this relationship by exotic pollinators and the need to consider it in conservation efforts.
Collapse
Affiliation(s)
- J O Rego
- Jardim Botânico da Fundação de Parques Municipais e Zoobotânica de Belo Horizonte, Avenida Otacílio Negrão de Lima, Belo Horizonte, Brazil
- Laboratorio de Ecología de Abejas, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Maule, Chile
| | - V H Monzón
- Laboratorio de Ecología de Abejas, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Maule, Chile
| | - J N Mesquita-Neto
- Laboratorio de Ecología de Abejas, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Maule, Chile
| |
Collapse
|
2
|
Vallejo-Marin M, Russell AL. Harvesting pollen with vibrations: towards an integrative understanding of the proximate and ultimate reasons for buzz pollination. ANNALS OF BOTANY 2024; 133:379-398. [PMID: 38071461 PMCID: PMC11006549 DOI: 10.1093/aob/mcad189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 04/12/2024]
Abstract
Buzz pollination, a type of interaction in which bees use vibrations to extract pollen from certain kinds of flowers, captures a close relationship between thousands of bee and plant species. In the last 120 years, studies of buzz pollination have contributed to our understanding of the natural history of buzz pollination, and basic properties of the vibrations produced by bees and applied to flowers in model systems. Yet, much remains to be done to establish its adaptive significance and the ecological and evolutionary dynamics of buzz pollination across diverse plant and bee systems. Here, we review for bees and plants the proximate (mechanism and ontogeny) and ultimate (adaptive significance and evolution) explanations for buzz pollination, focusing especially on integrating across these levels to synthesize and identify prominent gaps in our knowledge. Throughout, we highlight new technical and modelling approaches and the importance of considering morphology, biomechanics and behaviour in shaping our understanding of the adaptive significance of buzz pollination. We end by discussing the ecological context of buzz pollination and how a multilevel perspective can contribute to explain the proximate and evolutionary reasons for this ancient bee-plant interaction.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| |
Collapse
|
3
|
Barbosa BC, Delgado de Lima TD, Mota GV, Nogueira A. The role of intraspecific variation in bumblebee body size and behavior on buzz pollination of a tropical legume species. AMERICAN JOURNAL OF BOTANY 2023; 110:e16236. [PMID: 37661849 DOI: 10.1002/ajb2.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
PREMISE The outcomes of generalized mutualisms rely on partner trait variation. In pollination mutualisms, although less explored, intraspecific variation in pollinator traits can be pivotal for successful pollination. We investigated the role of intraspecific body size and behavioral trait variations of bumblebee Bombus morio on the pollination of a buzz-pollinated legume species, Chamaecrista latistipula. METHODS To explore the impact of body size and behavior of B. morio on the pollination of C. latistipula, we observed visits to virgin flowers and quantified the pollen removal and deposition (pollination performance) and fruit and seed production (reproductive fitness). By analyzing video and sound recordings, we measured B. morio body size and behavior on each flower, including bee vibration descriptors. RESULTS We observed intraspecific behavioral differences among B. morio bumblebees associated with different body sizes. Larger bumblebees had half the handling time and vibrational pulses, less angular displacement within flowers, and larger relative peak amplitudes during vibrations than smaller bumblebees did. Regardless of their large variation in size and behavior, bumblebees were equally effective in removing pollen and pollinating flowers. The high female reproductive fitness was independent of bumblebee body size and behavior, likely due to the interaction between both. On the other hand, larger bumblebees visited flowers for shorter periods, probably promoting higher male reproductive fitness. CONCLUSIONS This study is the first to highlight the large intraspecific variation of bumblebee body size and behavior in buzz-pollinated flowers in the field. Together, body size and behavior effects unexpectedly cancel each other, generating a high buzz pollination efficiency.
Collapse
Affiliation(s)
- Bruna C Barbosa
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Tamiris D Delgado de Lima
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Programa de Graduação em Ciências Biológicas (Botânica), Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Guilherme V Mota
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
4
|
Basso-Alves JP, da Silva RF, Coimbra G, Leitão SG, de Rezende CM, Bizzo HR, Freitas L, Paulino JV, Mansano VDF. Heteromorphic stamens are differentially attractive in Swartzia (Fabaceae). AOB PLANTS 2022; 14:plac041. [PMID: 36267642 PMCID: PMC9575666 DOI: 10.1093/aobpla/plac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The division of labour hypothesis between stamens has explained the evolution of divergent functions between dimorphic stamens in the same flower. However, little is known about whether the distinct type of stamens differs in attractiveness to pollinators. Therefore, we investigate whether the two types of stamens commonly found in Swartzia have different visual and olfactory attractants. We performed observations of anthesis dynamics, registration and collection of floral visitors, measurements of reflectance of floral parts and chemical analysis of the volatile organic compounds of the floral parts of two species, S. flaemingii and S. simplex. Both species have two distinct sets of stamens: one with smaller and abundant stamens in the centre of the flower and the other with fewer but larger abaxial stamens. The sets differ in UV reflectance (only S. simplex) and exhibit a distinct chromatic contrast. Concerning olfactory attractiveness, aliphatic compounds make up most of the odour of the two species, both whole flowers and most of their floral organs. On the other hand, only S. simplex presented apocarotenoids (as ionones) and benzenoids. Furthermore, there are differences in the proportion of volatiles emitted by the stamen in both cases, as the high proportion of sesquiterpenes among the smaller stamens compared to the larger ones. In conclusion, the two types of stamens found in S. flaemingii and S. simplex show a distinct attractiveness. In addition, our data have demonstrated diverse ways of differential attractiveness both between distinct stamens set per flower and between the two species from the same pollen flowers genus.
Collapse
Affiliation(s)
| | - Rafael Ferreira da Silva
- Departamento de Química Orgânica/GQO, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, RJ 24020141, Brazil
| | - Gabriel Coimbra
- Programa de Pós-Graduação em Botânica, Escola Nacional de Botânica Tropical, Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ 22460-036, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, DIPEQ-JBRJ, Rio de Janeiro, RJ 22460-030, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Claudia Moraes de Rezende
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 22945970, Brazil
| | | | - Leandro Freitas
- Programa de Pós-Graduação em Botânica, Escola Nacional de Botânica Tropical, Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ 22460-036, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, DIPEQ-JBRJ, Rio de Janeiro, RJ 22460-030, Brazil
| | - Juliana Villela Paulino
- Programa de Pós-Graduação em Botânica, Escola Nacional de Botânica Tropical, Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ 22460-036, Brazil
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | | |
Collapse
|
5
|
Hold tight or loosen up? Functional consequences of a shift in anther architecture depend substantially on bee body size. Oecologia 2022; 200:119-131. [DOI: 10.1007/s00442-022-05246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
|
6
|
Vallejo‐Marín M, Pereira Nunes CE, Russell AL. Anther cones increase pollen release in buzz-pollinated Solanum flowers. Evolution 2022; 76:931-945. [PMID: 35324004 PMCID: PMC9313847 DOI: 10.1111/evo.14485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/22/2023]
Abstract
The widespread evolution of tube-like anthers releasing pollen from apical pores is associated with buzz pollination, in which bees vibrate flowers to remove pollen. The mechanical connection among anthers in buzz-pollinated species varies from loosely held conformations, to anthers tightly held together with trichomes or bioadhesives forming a functionally joined conical structure (anther cone). Joined anther cones in buzz-pollinated species have evolved independently across plant families and via different genetic mechanisms, yet their functional significance remains mostly untested. We used experimental manipulations to compare vibrational and functional (pollen release) consequences of joined anther cones in three buzz-pollinated species of Solanum (Solanaceae). We applied bee-like vibrations to focal anthers in flowers with ("joined") and without ("free") experimentally created joined anther cones, and characterized vibrations transmitted to other anthers and the amount of pollen released. We found that joined anther architectures cause nonfocal anthers to vibrate at higher amplitudes than free architectures. Moreover, in the two species with naturally loosely held anthers, anther fusion increases pollen release, whereas in the species with a free but naturally compact architecture it does not. We discuss hypotheses for the adaptive significance of the convergent evolution of joined anther cones.
Collapse
Affiliation(s)
- Mario Vallejo‐Marín
- Biological and Environmental SciencesUniversity of StirlingStirlingFK9 4LAUnited Kingdom
- Department of BiologyMissouri State UniversitySpringfieldMissouri65897
| | | | | |
Collapse
|
7
|
Ribeiro AP, da Silva NFF, Mesquita FN, Araújo PDCS, Rosa TC, Mesquita-Neto JN. Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds. PLoS Comput Biol 2021; 17:e1009426. [PMID: 34529654 PMCID: PMC8478199 DOI: 10.1371/journal.pcbi.1009426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/28/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Bee-mediated pollination greatly increases the size and weight of tomato fruits. Therefore, distinguishing between the local set of bees–those that are efficient pollinators–is essential to improve the economic returns for farmers. To achieve this, it is important to know the identity of the visiting bees. Nevertheless, the traditional taxonomic identification of bees is not an easy task, requiring the participation of experts and the use of specialized equipment. Due to these limitations, the development and implementation of new technologies for the automatic recognition of bees become relevant. Hence, we aim to verify the capacity of Machine Learning (ML) algorithms in recognizing the taxonomic identity of visiting bees to tomato flowers based on the characteristics of their buzzing sounds. We compared the performance of the ML algorithms combined with the Mel Frequency Cepstral Coefficients (MFCC) and with classifications based solely on the fundamental frequency, leading to a direct comparison between the two approaches. In fact, some classifiers powered by the MFCC–especially the SVM–achieved better performance compared to the randomized and sound frequency-based trials. Moreover, the buzzing sounds produced during sonication were more relevant for the taxonomic recognition of bee species than analysis based on flight sounds alone. On the other hand, the ML classifiers performed better in recognizing bees genera based on flight sounds. Despite that, the maximum accuracy obtained here (73.39% by SVM) is still low compared to ML standards. Further studies analyzing larger recording samples, and applying unsupervised learning systems may yield better classification performance. Therefore, ML techniques could be used to automate the taxonomic recognition of flower-visiting bees of the cultivated tomato and other buzz-pollinated crops. This would be an interesting option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields by increasing pollination. Bees are the most important pollinators of cultivated tomatoes. We also know that the distinct species of bees have different performances as pollinators, and these performances are directly related to the size and weight of the fruits. Moreover, the characteristics of the buzzing sounds tend to vary between the bee species. However, the buzzing sounds are complex and can widely vary over time, making the analysis of this data difficult using the usual statistical methods in Ecology. In the face of this problem, we proposed to automatically recognize pollinating bees of tomato flowers based on their buzzing sounds using Machine Learning (ML) tools. In fact, we found that the ML algorithms are capable of recognizing bees just based on their buzzing sounds. This could lead to automating the recognition of flower-visiting bees of the cultivated tomato, which would be a nice option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields. On the other hand, this encourages the farmer to adopt sustainable agricultural practices for the conservation of native tomato pollinators. To achieve this goal, the next step is to develop applications compatible with smartphones capable of recognizing bees by their buzzing sounds.
Collapse
Affiliation(s)
| | | | | | | | - Thierson Couto Rosa
- Instituto de Informática, Universidade Federal de Goiás, Goiánia, Goiás, Brazil
| | - José Neiva Mesquita-Neto
- Centro de Investigación en Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- * E-mail:
| |
Collapse
|