1
|
Cecala JM, Landucci L, Vannette RL. Seasonal Assembly of Nectar Microbial Communities Across Angiosperm Plant Species: Assessing Contributions of Climate and Plant Traits. Ecol Lett 2025; 28:e70045. [PMID: 39737670 DOI: 10.1111/ele.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025]
Abstract
Plant-microbe associations are ubiquitous, but parsing contributions of dispersal, host filtering, competition and temperature on microbial community composition is challenging. Floral nectar-inhabiting microbes, which can influence flowering plant health and pollination, offer a tractable system to disentangle community assembly processes. We inoculated a synthetic community of yeasts and bacteria into nectars of 31 plant species while excluding pollinators. We monitored weather and, after 24 h, collected and cultured communities. We found a strong signature of plant species on resulting microbial abundance and community composition, in part explained by plant phylogeny and nectar peroxide content, but not floral morphology. Increasing temperature reduced microbial diversity, while higher minimum temperatures increased growth, suggesting complex ecological effects of temperature. Consistent nectar microbial communities within plant species could enable plant or pollinator adaptation. Our work supports the roles of host identity, traits and temperature in microbial community assembly, and indicates diversity-productivity relationships within host-associated microbiomes.
Collapse
Affiliation(s)
- Jacob M Cecala
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| | - Leta Landucci
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Souza C, Valadão-Mendes LB, Schulze-Albuquerque I, Bergamo PJ, Souza DD, Nogueira A. Nitrogen-fixing bacteria boost floral attractiveness in a tropical legume species during nutrient limitation. AMERICAN JOURNAL OF BOTANY 2024; 111:e16363. [PMID: 38956859 DOI: 10.1002/ajb2.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/04/2024]
Abstract
PREMISE Legumes establish mutualistic interactions with pollinators and nitrogen (N)-fixing bacteria that are critical for plant reproduction and ecosystem functioning. However, we know little about how N-fixing bacteria and soil nutrient availability affect plant attractiveness to pollinators. METHODS In a two-factorial greenhouse experiment to assess the impact of N-fixing bacteria and soil types on floral traits and attractiveness to pollinators in Chamaecrista latistipula (Fabaceae), plants were inoculated with N-fixing bacteria (NF+) or not (NF-) and grown in N-rich organic soil (+N organic soil) or N-poor sand soil (-N sand soil). We counted buds and flowers and measured plant size during the experiment. We also measured leaf, petal, and anther reflectance with a spectrophotometer and analyzed reflectance curves. Using the bee hexagon model, we estimated chromatic contrasts, a crucial visual cues for attracting bees that are nearby and more distant. RESULTS NF+ plants in -N sand soil had a high floral display and color contrasts. On the other hand, NF- plants and/or plants in +N organic soil had severely reduced floral display and color contrasts, decreasing floral attractiveness to bee pollinators. CONCLUSIONS Our findings indicate that the N-fixing bacteria positively impact pollination, particularly when nutrients are limited. This study provides insights into the dynamics of plant-pollinator interactions and underscores the significant influence of root symbionts on key floral traits within tropical ecosystems. These results contribute to understanding the mechanisms governing mutualisms and their consequences for plant fitness and ecological dynamics.
Collapse
Affiliation(s)
- Caroline Souza
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Lorena B Valadão-Mendes
- Programa de Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Isadora Schulze-Albuquerque
- Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro J Bergamo
- Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Av 24 1515, São Paulo, Brasil
| | - Douglas D Souza
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
3
|
Acuña-Rodríguez IS, Ballesteros GI, Gundel PE, Castro-Nallar E, Barrera A, Carrasco-Urra F, Molina-Montenegro MA. Fungal endophyte symbionts enhance plant adaptation in Antarctic habitats. PHYSIOLOGIA PLANTARUM 2024; 176:e14589. [PMID: 39563063 DOI: 10.1111/ppl.14589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 11/21/2024]
Abstract
Despite their genetic adaptation to local conditions, plants often achieve ecological success through symbiotic associations with fungal endophytes. However, the habitat-specific functionality of these interactions and their potential to drive plant adaptation to new environments remain uncertain. In this study, we tested this using the vascular flora of the Antarctic tundra (Colobanthus quitensis and Deschampsia antarctica), an extreme environment where fungal endophytes are known for playing important ecological roles. After characterizing the root-associated fungal endophyte communities of both species in two distinct Antarctic terrestrial habitats-hill and coast-we experimentally assessed the contribution of fungal endophytes to plant adaptation in each habitat. The field reciprocal transplant experiment involved removing endophytes from a set of plants and crossing symbiotic status (with and without endophytes) with habitat for both species, aiming to assess plant performance and fitness. The diversity of root fungal endophytes was similar between habitats and mainly explained by plant species, although habitat-specific endophyte community structures were identified in D. antarctica. Endophytes significantly influenced C. quitensis homeostatic regulation, including oxidative stress and osmotic control, as well as plant fitness in both environments. By contrast, the effect of endophytes on D. antarctica was particularly evident in coastal sites, suggesting an endophyte-mediated improvement in local adaptation. Altogether, our results suggest that the two Antarctic vascular plant species follow different strategies in recruiting and developing functional symbiosis with root-associated fungal communities. While C. quitensis is more generalist, D. antarctica establishes specific interactions with habitat-specific microbial symbionts, predominantly in the most stressful environmental context.
Collapse
Affiliation(s)
- Ian S Acuña-Rodríguez
- Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, Campus Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca, Chile
| | - Gabriel I Ballesteros
- Dirección de Investigación, Vicerrectoría Académica, Universidad de Talca, Campus Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca, Chile
| | - Pedro E Gundel
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
| | - Eduardo Castro-Nallar
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca, Chile
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Talca, Chile
| | - Andrea Barrera
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Talca, Chile
| | | | - Marco A Molina-Montenegro
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Talca, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
4
|
Calvert MB, Hoque M, Wood CW. Genotypic variation in resource exchange, use, and production traits in the legume-rhizobia mutualism. Ecol Evol 2024; 14:e70245. [PMID: 39498196 PMCID: PMC11532390 DOI: 10.1002/ece3.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 11/07/2024] Open
Abstract
Mutualisms, reciprocally beneficial interactions between two or more species, are ubiquitous in nature. A common feature of mutualisms is extensive context-dependent variation in fitness outcomes. This context-dependency is hypothesized to stem from the environment's mediation of the relative costs and benefits associated with mutualisms. However, traits related to the exchange of goods and services in mutualisms have received little attention in comparison to net fitness outcomes. In this study, we quantified the contribution of host and symbiont genotypes to variation in resource exchange, use, and production traits measured in the host using the model mutualism between legumes and nitrogen-fixing rhizobia. We predicted that plant genotype × rhizobia genotype (G × G) effects would be common to resource exchange traits because resource exchange is hypothesized to be governed by both interacting partners through bargaining. On the other hand, we predicted that plant genotype effects would dominate host resource use and production traits because these traits are only indirectly related to the exchange of resources. Consistent with our prediction for resource exchange traits, but not our prediction for resource use and production traits, we found that rhizobia genotype and G × G effects were the most common sources of variation in the traits that we measured. The results of this study complement the commonly observed phenomenon of G × G effects for fitness by showing that numerous mutualism traits also exhibit G × G variation. Furthermore, our results highlight the possibility that the exchange of resources as well as how partners use and produce traded resources can influence the evolution of mutualistic interactions. Our study lays the groundwork for future work to explore the relationship between resource exchange, use and production traits and fitness (i.e., selection) to test the competing hypotheses proposed to explain the maintenance of fitness variation in mutualisms.
Collapse
Affiliation(s)
- McCall B. Calvert
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Maliha Hoque
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corlett W. Wood
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Petipas RH, Peru C, Parks JM, Friesen ML, Jack CN. Prairie soil improves wheat establishment and accelerates the developmental transition to flowering compared to agricultural soils. Can J Microbiol 2024; 70:482-491. [PMID: 39110997 DOI: 10.1139/cjm-2023-0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Less than 1% of native prairie lands remain in the United States. Located in eastern Washington, the rare habitat called Palouse prairie was largely converted to wheat monocropping. With this conversion came numerous physical, chemical, and biological changes to the soil that may ultimately contribute to reduced wheat yields. Here, we explored how wheat (Tritcum aestivum L.) seedling establishment, plant size, and heading, signifying the developmental transition to flowering, were affected by being planted in prairie soil versus agricultural soils. We then sought to understand whether the observed effects were the result of changes to the soil microbiota due to agricultural intensification. We found that prairie soil enhanced both the probability of wheat seedling survival and heading compared to agricultural soil; however, wheat growth was largely unaffected by soil source. We did not detect effects on wheat developmental transitions or phenotype when inoculated with prairie microbes compared with agricultural microbes, but we did observe general antagonistic effects of microbes on plant size, regardless of soil source. This work indicates that agricultural intensification has affected soils in a way that changes early seedling establishment and the timing of heading for wheat, but these effects may not be caused by microbes, and instead may be caused by soil nutrient conditions.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Cassidy Peru
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Janice M Parks
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Maren L Friesen
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA
| | - Chandra N Jack
- Department of Biology, Clark University, Worchester, MA 01610, USA
| |
Collapse
|
6
|
Pantinople DJ, Conner R, Sutton-Dauber S, Broussard K, Siniscalchi CM, Engle-Wrye NJ, Jordan HR, Folk RA. Continental sampling reveals core bacterial and environmentally driven fungal leaf endophytes in Heuchera. AMERICAN JOURNAL OF BOTANY 2024; 111:e16428. [PMID: 39449649 DOI: 10.1002/ajb2.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/26/2024]
Abstract
PREMISE Endophytic plant-microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi-parasitic relationships. In contrast to root-associated endophytes, the role of environmental and host-related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. METHODS We used a broad geographic coverage of North America in the genus Heuchera L. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. RESULTS Assembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root-associated microbial communities, in this system microbes show no relationship with pH or other soil factors. CONCLUSIONS Overall, this work improves our understanding of the large-scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host-related factors in driving different microbial communities within the leaf microbiome.
Collapse
Affiliation(s)
- Dexcem J Pantinople
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Reagan Conner
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Stephanie Sutton-Dauber
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Kelli Broussard
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Carolina M Siniscalchi
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
- General Libraries, 395 Hardy Road, Mississippi, 39762, Mississippi State, USA
| | - Nicholas J Engle-Wrye
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Heather R Jordan
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| | - Ryan A Folk
- Department of Biological Sciences, 295 Lee Boulevard, Mississippi, 39762, Mississippi State, USA
| |
Collapse
|
7
|
Cui Y, Pan D, Feng J, Zhao D, Liu M, Dong Z, Liu S, Wang S. Untargeted Metabolomics and Soil Community Metagenomics Analyses Combined with Machine Learning Evaluation Uncover Geographic Differences in Ginseng from Different Locations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21922-21934. [PMID: 39302083 DOI: 10.1021/acs.jafc.4c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Panax ginseng C.A. Meyer, known as the "King of Herbs," has been used as a nutritional supplement for both food and medicine with the functions of relieving fatigue and improving immunity for thousands of years in China. In agricultural planting, soil environments of different geographical origins lead to obvious differences in the quality of ginseng, but the potential mechanism of the differences remains unclear. In this study, 20 key differential metabolites, including ginsenoside Rb1, glucose 6-phosphate, etc., were found in ginseng from 10 locations in China using an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-untargeted metabolomics approach. The soil properties were analyzed and combined with metagenomics technology to explore the possible relationships among microbial elements in planting soil. Through Spearman correlation analysis, it was found that the top 10 microbial colonies with the highest abundance in the soil were significantly correlated with key metabolites. In addition, the relationship model established by the random forest algorithm and the quantitative relationship between soil microbial abundance and ginseng metabolites were successfully predicted. The XGboost model was used to determine 20(R)-ginseng Rg2 and 2'(R)-ginseng Rg3 as feature labeled metabolites, and the optimal ginseng production area was discovered. These results prove that the accumulation of metabolites in ginseng was influenced by microorganisms in the planting soil, which led to geographical differences in ginseng quality.
Collapse
Affiliation(s)
- Yuan Cui
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daian Pan
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jiabao Feng
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhengqi Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Plant Development, Beijing 100193, China
| | - Shichao Liu
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Ginseng Efficacy Substance Base and Biological Mechanism Research, Ministry of Education, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
8
|
Sun PF, Lu MR, Liu YC, Shaw BJP, Lin CP, Chen HW, Lin YF, Hoh DZ, Ke HM, Wang IF, Lu MYJ, Young EB, Millett J, Kirschner R, Lin YCJ, Chen YL, Tsai IJ. An acidophilic fungus promotes prey digestion in a carnivorous plant. Nat Microbiol 2024; 9:2522-2537. [PMID: 39090391 PMCID: PMC11445062 DOI: 10.1038/s41564-024-01766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
Leaves of the carnivorous sundew plants (Drosera spp.) secrete mucilage that hosts microorganisms, but whether this microbiota contributes to prey digestion is unclear. We identified the acidophilic fungus Acrodontium crateriforme as the dominant species in the mucilage microbial communities, thriving in multiple sundew species across the global range. The fungus grows and sporulates on sundew glands as its preferred acidic environment, and its presence in traps increased the prey digestion process. A. crateriforme has a reduced genome similar to other symbiotic fungi. During A. crateriforme-Drosera spatulata coexistence and digestion of prey insects, transcriptomes revealed significant gene co-option in both partners. Holobiont expression patterns during prey digestion further revealed synergistic effects in several gene families including fungal aspartic and sedolisin peptidases, facilitating prey digestion in leaves, as well as nutrient assimilation and jasmonate signalling pathway expression. This study establishes that botanical carnivory is defined by adaptations involving microbial partners and interspecies interactions.
Collapse
Affiliation(s)
- Pei-Feng Sun
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Brandon J P Shaw
- Geography and Environment, Loughborough University, Loughborough, UK
- NERC Environmental Omics Facility (NEOF), NEOF Visitor Facility, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Chieh-Ping Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung-Wei Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Fei Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Daphne Z Hoh
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - I-Fan Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Erica B Young
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jonathan Millett
- Geography and Environment, Loughborough University, Loughborough, UK
| | - Roland Kirschner
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Ying-Chung Jimmy Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
9
|
Qu Z, Lin C, Zhao H, Chen T, Yao X, Wang X, Yang Y, Chen G. Above- and belowground phenology responses of subtropical Chinese fir (Cunninghamia lanceolata) to soil warming, precipitation exclusion and their interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173147. [PMID: 38740199 DOI: 10.1016/j.scitotenv.2024.173147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Plant phenology plays an important role in nutrient cycling and carbon balance in forest ecosystems, but its response to the interaction of global warming and precipitation reduction remains unclear. In this study, an experiment with factorial soil warming (ambient, ambient +5 °C) and precipitation exclusion (ambient, ambient -50 %) was conducted in a subtropical Chinese fir (Cunninghamia lanceolata) plantation. We investigated the effects of soil warming, precipitation exclusion, and their interactions on Chinese fir phenology involving tree height and fine root growth. In the meantime, the impact of tree height growth and related climatic factors on fine root production was also assessed. The results showed that: (1) more variable phenology responses were observed in fine root growth than in tree height growth to the climatic treatments; the duration of fine root growth and tree height growth was significantly reduced by the precipitation exclusion and warming treatment, respectively; phenology differences of fine root and tree height growth caused by the solo warming and precipitation exclusion treatment were further enhanced by the combined treatment; and despite the greater inter-annual phenology stability of tree height growth than that of fine root growth, both of them showed insignificant response to all the climate treatments; (2) asynchrony of phenology between tree height and fine root growth was significantly enlarged by solo warming and precipitation exclusion treatments, and further enlarged by the combined treatment; (3) fine root production was significantly and positively correlated with air, and soil temperature, and tree height growth as well, which was altered by warming and precipitation exclusion treatments. Our results demonstrated that climatic changes significantly and differently alter phenology of, and extend the phenology asynchrony between, above and below ground plant components, and also highlight the climate-sensitive and variable nature of root phenology. Overall, these phenology responses to climatic change may weaken the close link between fine root production and tree height growth, which may result in temporal mismatch between nutrient demand and supply in Chinese fir plantation.
Collapse
Affiliation(s)
- Zekun Qu
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Chengfang Lin
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China.
| | - Haiying Zhao
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Tingting Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Xiaodong Yao
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Xiaohong Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China
| | - Guangshui Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
10
|
Wang J, Li Y, Rahman MM, Li B, Yan Z, Song G, Zhao Y, Wu J, Chu C. Unraveling the drivers and impacts of leaf phenological diversity in a subtropical forest: A fine-scale analysis using PlanetScope CubeSats. THE NEW PHYTOLOGIST 2024; 243:607-619. [PMID: 38764134 DOI: 10.1111/nph.19850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Leaf phenology variations within plant communities shape community assemblages and influence ecosystem properties and services. However, questions remain regarding quantification, drivers, and productivity impacts of intra-site leaf phenological diversity. With a 50-ha subtropical forest plot in China's Heishiding Provincial Nature Reserve (part of the global ForestGEO network) as a testbed, we gathered a unique dataset combining ground-derived abiotic (topography, soil) and biotic (taxonomic diversity, functional diversity, functional traits) factors. We investigated drivers underlying leaf phenological diversity extracted from high-resolution PlanetScope data, and its influence on aboveground biomass (AGB) using structural equation modeling (SEM). Our results reveal considerable fine-scale leaf phenological diversity across the subtropical forest landscape. This diversity is directly and indirectly influenced by abiotic and biotic factors (e.g. slope, soil, traits, taxonomic diversity; r2 = 0.43). While a notable bivariate relationship between AGB and leaf phenological diversity was identified (r = -0.24, P < 0.05), this relationship did not hold in SEM analysis after considering interactions with other biotic and abiotic factors (P > 0.05). These findings unveil the underlying mechanism regulating intra-site leaf phenological diversity. While leaf phenology is known to be associated with ecosystem properties, our findings confirm that AGB is primarily influenced by functional trait composition and taxonomic diversity rather than leaf phenological diversity.
Collapse
Affiliation(s)
- Jing Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuanzhi Li
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Md Mizanur Rahman
- Jiangmen Laboratory of Carbon Science and Technology, The Hong Kong University of Science and Technology, Shenzhen, Guangdong, 529100, China
- Research Area of Ecology and Biodiversity, School for Biological Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- JC STEM Lab of Earth Observations, Research Centre for Artificial Intelligence in Geomatics, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Buhang Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Guangqin Song
- Research Area of Ecology and Biodiversity, School for Biological Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yingyi Zhao
- Research Area of Ecology and Biodiversity, School for Biological Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jin Wu
- Research Area of Ecology and Biodiversity, School for Biological Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chengjin Chu
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
11
|
Lau JA, Bolin LG. The tiny drivers behind plant ecology and evolution. AMERICAN JOURNAL OF BOTANY 2024; 111:e16324. [PMID: 38666516 DOI: 10.1002/ajb2.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Jennifer A Lau
- Biology Department, Indiana University, 1001 E 3rd St., Bloomington, 47405, IN, USA
| | - Lana G Bolin
- Biology Department, Indiana University, 1001 E 3rd St., Bloomington, 47405, IN, USA
| |
Collapse
|
12
|
Raza W, Jiang G, Eisenhauer N, Huang Y, Wei Z, Shen Q, Kowalchuk GA, Jousset A. Microbe-induced phenotypic variation leads to overyielding in clonal plant populations. Nat Ecol Evol 2024; 8:392-399. [PMID: 38195997 DOI: 10.1038/s41559-023-02297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Overyielding, the high productivity of multispecies plant communities, is commonly seen as the result of plant genetic diversity. Here we demonstrate that biodiversity-ecosystem functioning relationships can emerge in clonal plant populations through interaction with microorganisms. Using a model clonal plant species, we found that exposure to volatiles of certain microorganisms led to divergent plant phenotypes. Assembling communities out of plants associated with different microorganisms led to transgressive overyielding in both biomass and seed yield. Our results highlight the importance of belowground microbial diversity in plant biodiversity research and open new avenues for precision ecosystem management.
Collapse
Affiliation(s)
- Waseem Raza
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, the Netherlands
| | - Gaofei Jiang
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Yishuo Huang
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhong Wei
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| | - Qirong Shen
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - George A Kowalchuk
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, the Netherlands
| | - Alexandre Jousset
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
13
|
Wang B, McCormack ML, Ricciuto DM, Yang X, Iversen CM. Embracing fine-root system complexity in terrestrial ecosystem modeling. GLOBAL CHANGE BIOLOGY 2023; 29:2871-2885. [PMID: 36861355 DOI: 10.1111/gcb.16659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Projecting the dynamics and functioning of the biosphere requires a holistic consideration of whole-ecosystem processes. However, biases toward leaf, canopy, and soil modeling since the 1970s have constantly left fine-root systems being rudimentarily treated. As accelerated empirical advances in the last two decades establish clearly functional differentiation conferred by the hierarchical structure of fine-root orders and associations with mycorrhizal fungi, a need emerges to embrace this complexity to bridge the data-model gap in still extremely uncertain models. Here, we propose a three-pool structure comprising transport and absorptive fine roots with mycorrhizal fungi (TAM) to model vertically resolved fine-root systems across organizational and spatial-temporal scales. Emerging from a conceptual shift away from arbitrary homogenization, TAM builds upon theoretical and empirical foundations as an effective and efficient approximation that balances realism and simplicity. A proof-of-concept demonstration of TAM in a big-leaf model both conservatively and radically shows robust impacts of differentiation within fine-root systems on simulating carbon cycling in temperate forests. Theoretical and quantitative support warrants exploiting its rich potentials across ecosystems and models to confront uncertainties and challenges for a predictive understanding of the biosphere. Echoing a broad trend of embracing ecological complexity in integrative ecosystem modeling, TAM may offer a consistent framework where modelers and empiricists can work together toward this grand goal.
Collapse
Affiliation(s)
- Bin Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Daniel M Ricciuto
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Xiaojuan Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Colleen M Iversen
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
14
|
Choi B, Kim TM, Jeong S, Kim Y, Kim E. Effects of Seed Endophytic Bacteria on Life History and Reproductive Traits in a Cosmopolitan Weed, Capsella bursa-pastoris. PLANTS (BASEL, SWITZERLAND) 2022; 11:2642. [PMID: 36235508 PMCID: PMC9570735 DOI: 10.3390/plants11192642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Diverse bacteria inhabit plant seeds, and at least some of them can enhance plant performance at the early developmental stage. However, it is still inconclusive whether seed bacteria can influence post-germination traits and their contribution to plant fitness. To explore the evolutionary and ecological consequences of seed endophytic bacteria, we isolated four bacterial strains from the seeds of an annual weedy plant species, Capsella bursa-pastoris, and conducted a common garden experiment using seeds inoculated by isolated bacteria. Seeds infected by bacteria tended to germinate in spring rather than in autumn. Bacterial treatment also altered the expression of plant life history and reproductive traits, including flowering dates, rosette diameter at bolting, number of inflorescences, and fruit production. The results of the path analyses suggested that such effects of bacterial treatments were due to bacterial inoculation as well as germination delayed until spring. Spring germinants with bacterial infection showed a weaker association between post-germination traits and relative fitness than those without bacterial infection. These results suggest that seed bacteria likely affect the expression of post-germination traits directly or indirectly by delaying the germination season. An altered contribution of plant traits to relative fitness implies the influence of seed bacteria on the strength of natural selection.
Collapse
Affiliation(s)
| | | | | | | | - Eunsuk Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
15
|
The Microbially Extended Phenotype of Plants, a Keystone against Abiotic Stress. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
Background: Climate change affects every region across the globe with heterogeneous effects on local temperatures and precipitation patterns. In plants, sessile organisms, climate change imposes more drastic effects leading to loss of yield or even death. However, plants establish mutualistic interactions with microorganisms that boost plant tolerance against abiotic stresses or strengthen the plant immune system against pathogens, thus, enhancing their survival and fitness. Moreover, in the wild, microbial endophytes provide important ecosystem services.
Purpose and scope: Little we know about the mechanisms of response against the adverse effects of climate change on natural populations of wild plants and even less about the potential role played by microbial biostimulants. In this article, we review the effects of biostimulants on plant responses against abiotic stresses, with a particular focus on the role of mycorrhizas and leaf endophytes.
Results: We have reviewed the effects of the main abiotic stresses in plants, the mechanisms that plants use to face these abiotic challenges, and the interaction plant-biostimulant-abiotic stress, highlighting the primary responses and parameters to evaluate different plant responses.
Conclusion: Abiotic stresses can check the phenotypic plasticity of plants and also trigger a complex and heterogeneous array of responses to face different abiotic stresses, and beneficial microorganisms do play an essential role in enhancing such responses. Our laboratory has initiated a project to characterise microbial populations associated with plants from wild areas and analyse their potential role in aiding the plants to cope with abiotic stresses.
Collapse
|
16
|
Singh SK, Sun Y, Yang Y, Zuo Z, Wu X, Shao C, Peng L, Paré PW, Zhang H. Bacterial diacetyl suppresses abiotic stress-induced senescence in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1135-1139. [PMID: 35377511 DOI: 10.1111/jipb.13260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Premature plant senescence induced by abiotic stresses is a major cause of agricultural losses worldwide. Tools for suppressing stress-induced plant senescence are limited. Here, we report that diacetyl, a natural compound emitted by the plant-beneficial bacterium Bacillus amyloliquefaciens, suppresses abscisic acid -mediated foliar senescence in Arabidopsis thaliana under various abiotic stress conditions. Our results establish diacetyl as an effective protector against stress-induced plant senescence and reveal a molecular mechanism for bacteria-enhanced plant stress resistance.
Collapse
Affiliation(s)
- Sunil K Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yazhou Sun
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Yang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Ziwei Zuo
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxuan Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuyang Shao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| | - Paul W Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
17
|
Bonthond G, Barilo A, Allen RJ, Cunliffe M, Krueger-Hadfield SA. Fungal endophytes vary by species, tissue type, and life cycle stage in intertidal macroalgae. JOURNAL OF PHYCOLOGY 2022; 58:330-342. [PMID: 35090190 DOI: 10.1111/jpy.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Fungal symbionts of terrestrial plants are among the most widespread and well-studied symbioses, relatively little is known about fungi that are associated with macroalgae. To fill the gap in marine fungal taxonomy, we combined simple culture methods with amplicon sequencing to characterize the fungal communities associated with three brown (Sargassum muticum, Pelvetia canaliculata, and Himanthalia elongata) and two red (Mastocarpus stellatus and Chondrus crispus) macroalgae from one intertidal zone. In addition to characterizing novel fungal diversity, we tested three hypotheses: fungal diversity and community composition vary (i) among species distributed at different tidal heights, (ii) among tissue types (apices, mid-thallus, and stipe), and (iii) among "isomorphic" C. crispus life cycle stages. Almost 70% of our reads were classified as Ascomycota, 29% as Basidiomycota, and 1% that could not be classified to a phylum. Thirty fungal isolates were obtained, 18 of which were also detected with amplicon sequencing. Fungal communities differed by host and tissue type. Interestingly, P. canaliculata, a fucoid at the extreme high intertidal, did not show differences in fungal diversity across the thallus. As found in filamentous algal endophytes, fungal diversity varied among the three life cycle stages in C. crispus. Female gametophytes were also compositionally more dispersed as compared to the fewer variable tetrasporophytes and male gametophytes. We demonstrate the utility of combining relatively simple cultivation and sequencing approaches to characterize and study macroalgal-fungal associations and highlight the need to understand the role of fungi in near-shore marine ecosystems.
Collapse
Affiliation(s)
- Guido Bonthond
- Institute for Chemistry and Biology of the Marine environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, Wilhelmshaven, 26382, Germany
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel, 24105, Germany
| | - Anastasiia Barilo
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Ro J Allen
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35294, USA
| |
Collapse
|
18
|
Abstract
The increasing importance of forest ecosystems for human society and planetary health is widely recognized, and the advancement of data collection technologies enables new and integrated ways for forest ecosystems monitoring. Therefore, the target of this paper is to propose a framework to design a forest digital twin (FDT) that, by integrating different state variables at both tree and forest levels, creates a virtual copy of the forest. The integration of these data sets could be used for scientific purposes, for reporting the health status of forests, and ultimately for implementing sustainable forest management practices on the basis of the use cases that a specific implementation of the framework would underpin. Achieving such outcomes requires the twinning of single trees as a core element of the FDT by recording the physical and biotic state variables of the tree and of the near environment via real–virtual digital sockets. Following a nested approach, the twinned trees and the related physical and physiological processes are then part of a broader twinning of the entire forest realized by capturing data at forest scale from sources such as remote sensing technologies and flux towers. Ultimately, to unlock the economic value of forest ecosystem services, the FDT should implement a distributed ledger-based on blockchain and smart contracts to ensure the highest transparency, reliability, and thoroughness of the data and the related transactions and to sharpen forest risk management with the final goal to improve the capital flow towards sustainable practices of forest management.
Collapse
|
19
|
Werbin ZR, Hackos B, Lopez-Nava J, Dietze MC, Bhatnagar JM. The National Ecological Observatory Network's soil metagenomes: assembly and basic analysis. F1000Res 2021; 10:299. [PMID: 35707452 PMCID: PMC9178279 DOI: 10.12688/f1000research.51494.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
The largest dataset of soil metagenomes has recently been released by the National Ecological Observatory Network (NEON), which performs annual shotgun sequencing of soils at 47 sites across the United States. NEON serves as a valuable educational resource, thanks to its open data and programming tutorials, but there is currently no introductory tutorial for accessing and analyzing the soil shotgun metagenomic dataset. Here, we describe methods for processing raw soil metagenome sequencing reads using a bioinformatics pipeline tailored to the high complexity and diversity of the soil microbiome. We describe the rationale, necessary resources, and implementation of steps such as cleaning raw reads, taxonomic classification, assembly into contigs or genomes, annotation of predicted genes using custom protein databases, and exporting data for downstream analysis. The workflow presented here aims to increase the accessibility of NEON's shotgun metagenome data, which can provide important clues about soil microbial communities and their ecological roles.
Collapse
Affiliation(s)
- Zoey R. Werbin
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Briana Hackos
- Department of Mathematics, University of Colorado, Boulder, Boulder, CO, 80309, USA
| | - Jorge Lopez-Nava
- Department of Mathematics, Swarthmore College, Swarthmore, PA 19081, USA
| | - Michael C. Dietze
- Department of Earth & Environment, Boston University, Boston, MA, 02215, USA
| | | |
Collapse
|