1
|
Urio F, Nkya S, Rooks H, Mgaya JA, Masamu U, Zozimus Sangeda R, Mmbando BP, Brumat M, Mselle T, Menzel S, Luzzatto L, Makani J. F cell numbers are associated with an X-linked genetic polymorphism and correlate with haematological parameters in patients with sickle cell disease. Br J Haematol 2020; 191:888-896. [PMID: 33073380 DOI: 10.1111/bjh.17102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/11/2020] [Indexed: 01/18/2023]
Abstract
Patients with sickle cell disease (SCD) with high fetal haemoglobin (HbF) tend to have a lower incidence of complications and longer survival due to inhibition of deoxyhaemoglobin S (HbS) polymerisation by HbF. HbF-containing cells, namely F cells, are strongly influenced by genetic factors. We measured the percentage of F cells (Fcells%) in 222 patients with SCD to evaluate the association of (i) Fcells% with genetic HbF-modifier variants and (ii) Fcells% with haematological parameters. There was a different distribution of Fcells% in females compared to males. The association of the B-cell lymphoma/leukaemia 11A (BCL11A) locus with Fcells% (β = 8·238; P < 0·001) and with HbF% (β = 2·490; P < 0·001) was significant. All red cell parameters except for Hb and mean corpuscular Hb concentration levels in males and females were significantly different. The Fcells% was positively associated with mean cell Hb, mean cell volume and reticulocytes. To explain the significant gender difference in Fcells%, we tested for associations with single nucleotide polymorphisms on the X chromosomal region Xp22.2, where a genetic determinant of HbF had been previously hypothesised. We found in males a significant association with a SNP in FERM and PDZ domain-containing protein 4 (FRMPD4) and adjacent to male-specific lethal complex subunit 3 (MSL3). Thus, we have identified an X-linked locus that could account for a significant fraction of the Fcells% variation in patients with SCD.
Collapse
Affiliation(s)
- Florence Urio
- Muhimbili Sickle Cell Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Siana Nkya
- Muhimbili Sickle Cell Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biological Sciences, Dar es salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Helen Rooks
- Comprehensive Cancer Centre, Kings College London, London, UK
| | - Josephine A Mgaya
- Muhimbili Sickle Cell Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Upendo Masamu
- Muhimbili Sickle Cell Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Raphael Zozimus Sangeda
- Muhimbili Sickle Cell Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Bruno P Mmbando
- Muhimbili Sickle Cell Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- National Institute for Medical Research, Tanga, Tanzania
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Ted Mselle
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Stephan Menzel
- Comprehensive Cancer Centre, Kings College London, London, UK
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Julie Makani
- Muhimbili Sickle Cell Programme, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
da Guarda CC, Yahouédéhou SCMA, Santiago RP, Neres JSDS, Fernandes CFDL, Aleluia MM, Figueiredo CVB, Fiuza LM, Carvalho SP, de Oliveira RM, Fonseca CA, Ndidi US, Nascimento VML, Rocha LC, Goncalves MS. Sickle cell disease: A distinction of two most frequent genotypes (HbSS and HbSC). PLoS One 2020; 15:e0228399. [PMID: 31995624 PMCID: PMC6988974 DOI: 10.1371/journal.pone.0228399] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
Sickle cell disease (SCD) consists of a group of hemoglobinopathies in which individuals present highly variable clinical manifestations. Sickle cell anemia (SCA) is the most severe form, while SC hemoglobinopathy (HbSC) is thought to be milder. Thus, we investigated the clinical manifestations and laboratory parameters by comparing each SCD genotype. We designed a cross-sectional study including 126 SCA individuals and 55 HbSC individuals in steady-state. Hematological, biochemical and inflammatory characterization was performed as well as investigation of previous history of clinical events. SCA patients exhibited most prominent anemia, hemolysis, leukocytosis and inflammation, whereas HbSC patients had increased lipid determinations. The main cause of hospitalization was pain crises on both genotypes. Vaso-occlusive events and pain crises were associated with hematological, inflammatory and anemia biomarkers on both groups. Cluster analysis reveals hematological, inflammatory, hemolytic, endothelial dysfunction and anemia biomarkers in HbSC disease as well as SCA. The results found herein corroborate with previous studies suggesting that SCA and HbSC, although may be similar from the genetic point of view, exhibit different clinical manifestations and laboratory alterations which are useful to monitor the clinical course of each genotype.
Collapse
Affiliation(s)
- Caroline Conceição da Guarda
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | | | - Rayra Pereira Santiago
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Joelma Santana dos Santos Neres
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Camila Felix de Lima Fernandes
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | | | - Camylla Vilas Boas Figueiredo
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Luciana Magalhães Fiuza
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Suellen Pinheiro Carvalho
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Rodrigo Mota de Oliveira
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | - Cleverson Alves Fonseca
- Laboratório de Pesquisa em Anemias, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | - Uche Samuel Ndidi
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
| | | | - Larissa Carneiro Rocha
- Fundação de Hematologia e Hemoterapia do Estado da Bahia, HEMOBA, Salvador, Bahia, Brasil
| | - Marilda Souza Goncalves
- Laboratório de Investigação em Genética e Hematologia Translacional, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brasil
- * E-mail:
| |
Collapse
|
3
|
Stratopoulos A, Kolliopoulou A, Karamperis K, John A, Kydonopoulou K, Esftathiou G, Sgourou A, Kourakli A, Vlachaki E, Chalkia P, Theodoridou S, Papadakis MN, Gerou S, Symeonidis A, Katsila T, Ali BR, Papachatzopoulou A, Patrinos GP. Genomic variants in members of the Krüppel-like factor gene family are associated with disease severity and hydroxyurea treatment efficacy in β-hemoglobinopathies patients. Pharmacogenomics 2019; 20:791-801. [PMID: 31393228 DOI: 10.2217/pgs-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: β-Type hemoglobinopathies are characterized by vast phenotypic diversity as far as disease severity is concerned, while differences have also been observed in hydroxyurea (HU) treatment efficacy. These differences are partly attributed to the residual expression of fetal hemoglobin (HbF) in adulthood. The Krüppel-like family of transcription factors (KLFs) are a set of zinc finger DNA-binding proteins which play a major role in HbF regulation. Here, we explored the possible association of variants in KLF gene family members with response to HU treatment efficacy and disease severity in β-hemoglobinopathies patients. Materials & methods: Six tag single nucleotide polymorphisms, located in four KLF genes, namely KLF3, KLF4, KLF9 and KLF10, were analyzed in 110 β-thalassemia major patients (TDT), 18 nontransfusion dependent β-thalassemia patients (NTDT), 82 sickle cell disease/β-thalassemia compound heterozygous patients and 85 healthy individuals as controls. Results: Our findings show that a KLF4 genomic variant (rs2236599) is associated with HU treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients and two KLF10 genomic variants (rs980112, rs3191333) are associated with persistent HbF levels in NTDT patients. Conclusion: Our findings provide evidence that genomic variants located in KLF10 gene may be considered as potential prognostic biomarkers of β-thalassemia clinical severity and an additional variant in KLF4 gene as a pharmacogenomic biomarker, predicting response to HU treatment.
Collapse
Affiliation(s)
- Apostolos Stratopoulos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Alexandra Kolliopoulou
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Kariofyllis Karamperis
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Anne John
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | | | - Argyro Sgourou
- School of Science & Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Alexandra Kourakli
- Thalassemia & Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine, General University Hospital of Patras, Patras, Greece
| | - Efthimia Vlachaki
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Chalkia
- Thalassemia & Sickle Cell Unit, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatia Theodoridou
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | | | - Argiris Symeonidis
- Medical Faculty, Hematology Division, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Bassam R Ali
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | - George P Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece.,United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates.,United Arab Emirates University, Zayed Center of Health Sciences, Al-Ain, United Arab Emirates
| |
Collapse
|
4
|
Barrera-Reyes PK, Tejero ME. Genetic variation influencing hemoglobin levels and risk for anemia across populations. Ann N Y Acad Sci 2019; 1450:32-46. [PMID: 31385320 DOI: 10.1111/nyas.14200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Hemoglobin (Hb) concentration is the outcome of the interaction between genetic variation and environmental factors, including nutritional status, sex, age, and altitude. Genetic diversity influencing this protein is complex and varies widely across populations. Variants related to abnormal Hb or altered characteristics of the erythrocytes increase the risk for anemia. The most prevalent are related to the inherited globin abnormalities affecting Hb production and structure. Malaria-endemic regions harbor the highest frequencies of variants associated with the most frequent monogenic diseases and the risk for nonnutritional anemia and are considered as public health problems. Variation in genes encoding for enzymes and membrane proteins in red blood cells also influence erythrocyte life span and risk for anemia. Most of these variants are rare. Interindividual variability of hematological parameters is also influenced by common genetic variation across the whole genome. Some of the identified variants are associated with Hb production, erythropoiesis, and iron metabolism. Specialized databases have been developed to organize and update the large body of available information on genetic variation related to Hb variation, their frequency, geographical distribution, and clinical significance. Our present review analyzed the underlying genetic factors that affect Hb concentrations, their clinical relevance, and geographical distribution across populations.
Collapse
Affiliation(s)
- Paloma K Barrera-Reyes
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Ciudad de, México, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de, México, Mexico
| | - M Elizabeth Tejero
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Ciudad de, México, Mexico
| |
Collapse
|
5
|
Kolliopoulou A, Siamoglou S, John A, Sgourou A, Kourakli A, Symeonidis A, Vlachaki E, Chalkia P, Theodoridou S, Ali BR, Katsila T, Patrinos GP, Papachatzopoulou A. Role of Genomic Biomarkers in Increasing Fetal Hemoglobin Levels Upon Hydroxyurea Therapy and in β-Thalassemia Intermedia: A Validation Cohort Study. Hemoglobin 2019; 43:27-33. [PMID: 31039620 DOI: 10.1080/03630269.2019.1597732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hemoglobinopathies exhibit a remarkable phenotypic diversity in terms of disease severity, while individual genetic background plays a key role in differential response to drug treatment. In the last decade, genomic variants in genes located within, as well as outside the human β-globin cluster have been shown to be significantly associated with Hb F increase, in relation to hydroxyurea (HU) therapy in patients with these diseases. Here, we aim to determine the effect of genomic variants located in genes, such as MAP3K5, ASS1, NOS2A, TOX, PDE7B, NOS1, FLT1 and ARG2, previously shown to modulate fetal hemoglobin (Hb F) levels in patients with β type hemoglobinopathies and reflecting disease severity and response to HU therapy in an independent cohort of Greek patients with these diseases. We recruited and genotyped 45 β-thalassemia patients (β-thal), either transfusion-dependent (TDT) or non transfusion-dependent (NTDT), 42 Hb S (HBB: c.20A>T)-β-thal compound heterozygotes, who were treated with HU, as well as 53 healthy individuals, all of Hellenic origin. Our study showed that genomic variants of the MAP3K5, NOS2A and ARG2 gene are associated with HU therapy efficacy in Hb S-β-thal compound heterozygotes. We have also shown that FLT1 and ARG2 genomic variants are associated with the mild phenotype of NTDT patients. Our findings provide evidence that MAP3K5, NOS2A, ARG2 and FLT1 genomic variants could be considered as genomic biomarkers to predict HU therapy efficacy in Hb S-β-thal compound heterozygotes and also to describe disease severity in patients with β type hemoglobinopathies.
Collapse
Affiliation(s)
- Alexandra Kolliopoulou
- a University of Patras , Medical Faculty, Laboratory of General Biology , Patras , Greece
| | - Stavroula Siamoglou
- b School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy , University of Patras , Greece
| | - Anne John
- c United Arab Emirates University , College of Medicine and Health Sciences, Department of Pathology , Al-Ain , United Arab Emirates
| | - Argyro Sgourou
- d School of Science and Technology, Biology Laboratory , Hellenic Open University , Patras , Greece
| | - Alexandra Kourakli
- e Thalassemia and Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine , University of Patras Medical School, University Hospital , Patras , Greece
| | - Argiris Symeonidis
- f Medical School, Hematology Division, Department of Internal Medicine , University of Patras, University of Patras , Greece
| | - Efthymia Vlachaki
- g Adults Thalassemia Unit , 'Hippokration' General Hospital of Thessaloniki , Greece
| | - Panagiota Chalkia
- h Thalassemia and Sickle Cell Unit , University General Hospital of Thessaloniki , Greece
| | - Stamatia Theodoridou
- g Adults Thalassemia Unit , 'Hippokration' General Hospital of Thessaloniki , Greece
| | - Bassam R Ali
- c United Arab Emirates University , College of Medicine and Health Sciences, Department of Pathology , Al-Ain , United Arab Emirates
| | - Theodora Katsila
- b School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy , University of Patras , Greece
| | - George P Patrinos
- b School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy , University of Patras , Greece.,c United Arab Emirates University , College of Medicine and Health Sciences, Department of Pathology , Al-Ain , United Arab Emirates.,i United Arab Emirates University , Zayed Center of Health Sciences , Al-Ain , United Arab Emirates
| | | |
Collapse
|
6
|
NickAria S, Haghpanah S, Ramzi M, Karimi M. Relationship of the Interaction Between Two Quantitative Trait Loci with γ-Globin Expression in β-Thalassemia Intermedia Patients. Hemoglobin 2018; 42:108-112. [PMID: 29745274 DOI: 10.1080/03630269.2018.1463915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Globin switching is a significant factor on blood hemoglobin (Hb) level but its molecular mechanisms have not yet been identified, however, several quantitative trait loci (QTL) and polymorphisms involved regions on chromosomes 2p, 6q, 8q and X account for variation in the γ-globin expression level. We studied the effect of interaction between a region on intron six of the TOX gene, chromosome 8q (chr8q) and XmnI locus on the γ-globin promoter, chr11p on γ-globin expression in 150 β-thalassemia intermedia (β-TI) patients, evaluated by statistical interaction analysis. Our results showed a significant interaction between one QTL on intron six of the TOX gene (rs9693712) and XmnI locus that effect γ-globin expression. Interchromosomal interaction mediates through transcriptional machanisms to preserve true genome architectural features, chromosomes localization and DNA bending. This interaction can be a part of the unknown molecular mechanism of globin switching and regulation of gene expression.
Collapse
Affiliation(s)
- Shiva NickAria
- a Hematology Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Sezaneh Haghpanah
- a Hematology Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mani Ramzi
- a Hematology Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mehran Karimi
- a Hematology Research Center , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
7
|
Liu L, Pertsemlidis A, Ding LH, Story MD, Steinberg MH, Sebastiani P, Hoppe C, Ballas SK, Pace BS. Original Research: A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease. Exp Biol Med (Maywood) 2016; 241:706-18. [PMID: 27022141 DOI: 10.1177/1535370216642047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sickle cell disease (SCD) is a group of inherited blood disorders that have in common a mutation in the sixth codon of the β-globin (HBB) gene on chromosome 11. However, people with the same genetic mutation display a wide range of clinical phenotypes. Fetal hemoglobin (HbF) expression is an important genetic modifier of SCD complications leading to milder symptoms and improved long-term survival. Therefore, we performed a genome-wide association study (GWAS) using a case-control experimental design in 244 African Americans with SCD to discover genetic factors associated with HbF expression. The case group consisted of subjects with HbF≥8.6% (133 samples) and control group subjects with HbF≤£3.1% (111 samples). Our GWAS results replicated SNPs previously identified in an erythroid-specific enhancer region located in the second intron of the BCL11A gene associated with HbF expression. In addition, we identified SNPs in the SPARC, GJC1, EFTUD2 and JAZF1 genes as novel candidates associated with HbF levels. To gain insights into mechanisms of globin gene regulation in the HBB locus, linkage disequilibrium (LD) and haplotype analyses were conducted. We observed strong LD in the low HbF group in contrast to a loss of LD and greater number of haplotypes in the high HbF group. A search of known HBB locus regulatory elements identified SNPs 5' of δ-globin located in an HbF silencing region. In particular, SNP rs4910736 created a binding site for a known transcription repressor GFi1 which is a candidate protein for further investigation. Another HbF-associated SNP, rs2855122 in the cAMP response element upstream of Gγ-globin, was analyzed for functional relevance. Studies performed with siRNA-mediated CREB binding protein (CBP) knockdown in primary erythroid cells demonstrated γ-globin activation and HbF induction, supporting a repressor role for CBP. This study identifies possible molecular determinants of HbF production.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Dallas, TX 75083, USA
| | - Alexander Pertsemlidis
- Departments of Pediatrics and Cellular & Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Liang-Hao Ding
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin H Steinberg
- Center of Excellence in Sickle Cell Disease Boston Medical Center, Pediatrics, Pathology and Laboratory Medicine, Boston University, Boston, MA 02215, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02215, USA
| | - Carolyn Hoppe
- Department of Hematology/Oncology, UCSF Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Samir K Ballas
- Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Comment on "Molecular analysis and association with clinical and laboratory manifestations in children with sickle cell anemia". Rev Bras Hematol Hemoter 2014; 36:315-8. [PMID: 25305161 PMCID: PMC4318385 DOI: 10.1016/j.bjhh.2014.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 12/30/2022] Open
|
9
|
Kuypers FA. Hemoglobin S Polymerization and Red Cell Membrane Changes. Hematol Oncol Clin North Am 2014; 28:155-79. [DOI: 10.1016/j.hoc.2013.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Benkerrou M, Alberti C, Couque N, Haouari Z, Ba A, Missud F, Boizeau P, Holvoet L, Ithier G, Elion J, Baruchel A, Ducrocq R. Impact of glucose-6-phosphate dehydrogenase deficiency on sickle cell anaemia expression in infancy and early childhood: a prospective study. Br J Haematol 2013; 163:646-54. [PMID: 24117340 DOI: 10.1111/bjh.12590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/27/2013] [Indexed: 12/16/2022]
Abstract
In patients with sickle cell anaemia (SCA), concomitant glucose-6-phosphate dehydrogenase (G6PD) deficiency is usually described as having no effect and only occasionally as increasing severity. We analysed sequential clinical and biological data for the first 42 months of life in SCA patients diagnosed by neonatal screening, including 27 G6PD-deficient patients, who were matched on sex, age and parents' geographic origin to 81 randomly selected patients with normal G6PD activity. In the G6PD-deficient group, steady-state haemoglobin was lower (-6·2 g/l, 95% confidence interval (CI), [-10·1; -2·3]) and reticulocyte count higher (247 × 10(9) /l, 95%CI, [97; 397]). The acute anaemic event rate was 3 times higher in the G6PD-deficient group (P < 10(-3) ). A higher proportion of G6PD-deficient patients required blood transfusion (20/27 [74%] vs. 37/81 [46%], P < 10(-3) ), for acute anaemic events, and also vaso-occlusive and infectious events. No significant between-group differences were found regarding the rates of vaso-occlusive, infectious, or cerebrovascular events. G6PD deficiency in babies with SCA worsens anaemia and increases blood transfusion requirements in the first years of life. These effects decrease after 2 years of age, presumably as the decline in fetal haemoglobin levels leads to increased sickle cell haemolysis and younger red blood cells with higher G6PD activity.
Collapse
Affiliation(s)
- Malika Benkerrou
- AP-HP, Hôpital Robert Debré, Service d'Hématologie Pédiatrique, Paris, France; Centre de Référence de la Drépanocytose, Paris, France; Inserm, U763, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Green NS, Ender KL, Pashankar F, Driscoll C, Giardina PJ, Mullen CA, Clark LN, Manwani D, Crotty J, Kisselev S, Neville KA, Hoppe C, Barral S. Candidate sequence variants and fetal hemoglobin in children with sickle cell disease treated with hydroxyurea. PLoS One 2013; 8:e55709. [PMID: 23409025 PMCID: PMC3567082 DOI: 10.1371/journal.pone.0055709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/29/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely attributable to induction of fetal hemoglobin. METHODOLOGY/PRINCIPAL FINDINGS In a multi-site observational analysis of children with sickle cell disease, candidate single nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels. CONCLUSIONS/SIGNIFICANCE These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic induction of fetal hemoglobin in pediatric sickle cell disease.
Collapse
Affiliation(s)
- Nancy S Green
- Department of Pediatrics, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bhagat S, Patra PK, Thakur AS. Fetal Haemoglobin and β-globin Gene Cluster Haplotypes among Sickle Cell Patients in Chhattisgarh. J Clin Diagn Res 2013; 7:269-72. [PMID: 23542314 PMCID: PMC3592290 DOI: 10.7860/jcdr/2013/4381.2744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 11/10/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND Foetal Haemoglobin (HbF) is the best-known genetic modulator of sickle cell anaemia, which varies dramatically in concentration in the blood of these patients. The patients with SCA display a remarkable variability in the disease severity. High HbF levels and the β-globin gene cluster haplotypes influence the clinical presentation of sickle cell disease. To identify the genetic modifiers which influence the disease severity, we conducted a β-globin haplotype analysis in the sickle cell disease patients of Chhattisgarh. AIM The foetal haemoglobin and the β-globin gene haplotypes of the sickle cell trait and the sickle cell disease patients from Chhattisgarh were investigated. MATERIALS AND METHOD A total of 100 sickle cell patients (SS), 50 sickle cell trait patients (AS) and 50 healthy control individuals were included in the present study. The distribution of the β-globin gene haplotype was done by the PCR-RFLP method. RESULT PCR-RFLP showed that the homozygous Arab-Indian haplotype (65%) was the most frequent one, followed by the heterozygous Arab-Indian haplotype (11%) in the sickle cell patients (SS), while the AS patients had a higher frequency of the heterozygous Arab-Indian haplotype (38%) in comparison to homozygous one (32%). Four atypical haplotypes, 3 Benin and 1 Cameroon were also observed, although they were in lower frequencies. In the present study, the HbF levels were higher in the AS and the SS patients, with one or two Arab-Indian haplotypes as compared to the other haplotypes. CONCLUSION The presence of the Arab-Indian haplotype as the predominant haplotype might be suggestive of a gene flow to/from Saudi-Arabia or India and it was associated with higher HbF levels and a milder disease severity.
Collapse
Affiliation(s)
- Sanjana Bhagat
- Assistant Professor, Departtment of Biochemistry and Biotechnology, Pt. J. N. M. Medical CollegeRaipur (C.G.), Chhattisgarh, India
| | - Pradeep Kumar Patra
- Professor and Head, Department of Biochemistry and Biotechnology, Pt. J. N. M. Medical CollegeRaipur (C.G.), Chhattisgarh, India
| | - Amar Singh Thakur
- Professor and Head, Department of Biochemistry, Govt Medical College, Jagdalpur (C.G.), India
| |
Collapse
|
13
|
Bhagat S, Patra PK, Thakur AS. Association of Inflammatory Biomarker C-Reactive Protein, Lipid Peroxidation and Antioxidant Capacity Marker with HbF Level in Sickle Cell Disease Patients from Chattisgarh. Indian J Clin Biochem 2012; 27:394-9. [PMID: 24082467 PMCID: PMC3477464 DOI: 10.1007/s12291-012-0231-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/27/2012] [Indexed: 01/09/2023]
Abstract
This study was undertaken to determine the association of inflammatory biomarker, oxidative stress and antioxidant capacity marker with fetal haemoglobin (HbF) level among sickle cell trait and sickle cell disease (SCD) patients in Chattisgarh. The study group consisted of 51 SCD (SS) patients with painful episode, 49 SCD (SS) patients with steady state, 50 sickle cell trait (AS) and 50 controls. Malondialdehyde (MDA), CRP, total antioxidant power (FARP), total thiol and HbF levels were quantified. We found a significant positive (p < 0.0001) association between CRP and MDA levels and its inverse association with HbF level in SS patients. We also observed that antioxidant capacity had significantly positively (p < 0.0001) associated with HbF level. The protective effect of HbF was found, because the increase in HbF levels resulted in decrease in lipid peroxidation and inflammation in SCD patients. A decrease in the HbF level and its antioxidant capacity has been associated with the pathogenesis of SCD. These finding may explain the high level of HbF is ameliorating oxidative stress and inflammation in SCD patients.
Collapse
Affiliation(s)
- Sanjana Bhagat
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Jail Road, Raipur, 492001 Chattisgarh India
| | - Pradeep Kumar Patra
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Jail Road, Raipur, 492001 Chattisgarh India
| | - Amar Singh Thakur
- Department of Biochemistry, Govt. Medical College, Jagdalpur, Chattisgarh India
| |
Collapse
|
14
|
Association of xmn I polymorphism and hemoglobin e haplotypes on postnatal gamma globin gene expression in homozygous hemoglobin e. Adv Hematol 2012; 2012:528075. [PMID: 23049556 PMCID: PMC3459260 DOI: 10.1155/2012/528075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/14/2012] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives. To explore the role of cis-regulatory sequences within the β globin gene cluster at chromosome 11 on human γ globin gene expression related to Hb E allele, we analyze baseline hematological data and Hb F values together with β globin haplotypes in homozygous Hb E. Patients and Methods. 80 individuals with molecularly confirmed homozygous Hb E were analyzed for the β globin haplotypes and Xmn I polymorphism using PCR-RFLPs. 74 individuals with complete laboratory data were further studied for association analyses. Results. Eight different β globin haplotypes were found linked to Hb E alleles; three major haplotypes were (a) (III), (b) (V), and (c) (IV) accounting for 94% of Hb E chromosomes. A new haplotype (Th-1) was identified and most likely converted from the major ones. The majority of individuals had Hb F < 5%; only 10.8% of homozygous Hb E had high Hb F (average 10.5%, range 5.8–14.3%). No association was found on a specific haplotype or Xmn I in these individuals with high Hb F, measured by alkaline denaturation. Conclusion. The cis-regulation of γ globin gene expression might not be apparent under a milder condition with lesser globin imbalance such as homozygous Hb E.
Collapse
|
15
|
Hartley SW, Monti S, Liu CT, Steinberg MH, Sebastiani P. Bayesian methods for multivariate modeling of pleiotropic SNP associations and genetic risk prediction. Front Genet 2012; 3:176. [PMID: 22973300 PMCID: PMC3438684 DOI: 10.3389/fgene.2012.00176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous associations between genetic loci and individual phenotypes; however, relatively few GWAS have attempted to detect pleiotropic associations, in which loci are simultaneously associated with multiple distinct phenotypes. We show that pleiotropic associations can be directly modeled via the construction of simple Bayesian networks, and that these models can be applied to produce single or ensembles of Bayesian classifiers that leverage pleiotropy to improve genetic risk prediction. The proposed method includes two phases: (1) Bayesian model comparison, to identify Single-Nucleotide Polymorphisms (SNPs) associated with one or more traits; and (2) cross-validation feature selection, in which a final set of SNPs is selected to optimize prediction. To demonstrate the capabilities and limitations of the method, a total of 1600 case-control GWAS datasets with two dichotomous phenotypes were simulated under 16 scenarios, varying the association strengths of causal SNPs, the size of the discovery sets, the balance between cases and controls, and the number of pleiotropic causal SNPs. Across the 16 scenarios, prediction accuracy varied from 90 to 50%. In the 14 scenarios that included pleiotropically associated SNPs, the pleiotropic model search and prediction methods consistently outperformed the naive model search and prediction. In the two scenarios in which there were no true pleiotropic SNPs, the differences between the pleiotropic and naive model searches were minimal. To further evaluate the method on real data, a discovery set of 1071 sickle cell disease (SCD) patients was used to search for pleiotropic associations between cerebral vascular accidents and fetal hemoglobin level. Classification was performed on a smaller validation set of 352 SCD patients, and showed that the inclusion of pleiotropic SNPs may slightly improve prediction, although the difference was not statistically significant. The proposed method is robust, computationally efficient, and provides a powerful new approach for detecting and modeling pleiotropic disease loci.
Collapse
Affiliation(s)
- Stephen W Hartley
- Department of Biostatistics, Boston University School of Public Health Boston, MA, USA
| | | | | | | | | |
Collapse
|
16
|
Fertrin KY, Costa FF. Genomic polymorphisms in sickle cell disease: implications for clinical diversity and treatment. Expert Rev Hematol 2011; 3:443-58. [PMID: 21083035 DOI: 10.1586/ehm.10.44] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sickle cell disease (SCD) is one of the best characterized human monogenic disorders. The development of molecular biology allowed the identification of several genomic polymorphisms responsible for its clinical diversity. Research on the first genetic modulators of SCD, such as coinheritance of α-thalassemia and haplotypes in the β-globin gene cluster, have been followed by studies associating single nucleotide polymorphisms (SNPs) with variable risks for stroke, leg ulceration, pulmonary hypertension, priapism and osteonecrosis, with differences in the response to hydroxyurea, and with variability in the management of pain. Furthermore, multigenic analyses based on genome-wide association studies have shed light on the importance of the TGF-β superfamily and oxidative stress to the pathogenesis of complex traits in SCD, and may guide future therapeutic interventions on a genetically oriented basis.
Collapse
Affiliation(s)
- Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center, University of Campinas, Rua Carlos Chagas, 480, Cidade Universitária, Distrito de Barão Geraldo, Campinas, SP 13083-878, Brazil
| | | |
Collapse
|
17
|
Abstract
Fetal hemoglobin (HbF) is the major genetic modulator of the hematologic and clinical features of sickle cell disease, an effect mediated by its exclusion from the sickle hemoglobin polymer. Fetal hemoglobin genes are genetically regulated, and the level of HbF and its distribution among sickle erythrocytes is highly variable. Some patients with sickle cell disease have exceptionally high levels of HbF that are associated with the Senegal and Saudi-Indian haplotype of the HBB-like gene cluster; some patients with different haplotypes can have similarly high HbF. In these patients, high HbF is associated with generally milder but not asymptomatic disease. Studying these persons might provide additional insights into HbF gene regulation. HbF appears to benefit some complications of disease more than others. This might be related to the premature destruction of erythrocytes that do not contain HbF, even though the total HbF concentration is high. Recent insights into HbF regulation have spurred new efforts to induce high HbF levels in sickle cell disease beyond those achievable with the current limited repertory of HbF inducers.
Collapse
|
18
|
Basak AN, Tuzmen S. Genetic predisposition to β-thalassemia and sickle cell anemia in Turkey: a molecular diagnostic approach. Methods Mol Biol 2011; 700:291-307. [PMID: 21204041 DOI: 10.1007/978-1-61737-954-3_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thalassemia syndromes are a diverse group of inherited disorders that can be characterized according to their insufficient synthesis or absent production of one or more of the globin chains. They are classified in to α, β, γ, δβ, δ, and εγδβ thalassemias depending on the globin chain(s) affected. The β-thalassemias refer to that group of inherited hemoglobin disorders, which are characterized by a reduced synthesis (β(+)-thalassemia) or absence (β(0)-thalassemia) of beta globin (β-globin) chain production (1). Though known as single-gene disorders, hemoglobinopathies such as β-thalassemia and sickle cell anemia are far from being fully resolved in terms of cure, considering the less complex nature of the beta globin (β-globin) gene family compared to more complex multifactorial genetic disorders such as cancer. Currently, there are no definitive therapeutic options for patients with β-thalassemia and sickle cell anemia, and new insights into the pathogenesis of these devastating diseases are urgently needed. Here we address in detail the overall picture utilizing molecular diagnostic approaches that contribute to unraveling the population-specific mutational analysis of β-globin gene. We also present approaches for molecular diagnostic strategies that are applicable to β-thalassemia, sickle cell anemia, and other genetic disorders.
Collapse
Affiliation(s)
- A Nazli Basak
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | |
Collapse
|
19
|
Guo XQ. [Progress on genes related to fetal hemoglobin quantitative trait]. YI CHUAN = HEREDITAS 2010; 32:295-300. [PMID: 20423883 DOI: 10.3724/sp.j.1005.2010.00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fetal hemoglobin (HbF) is the main type of hemoglobin in the fetus and few in adult, but retains high levels in some people and patients with beta-thalassemia major or sickle cell disease. High HbF levels are beneficial to ameliorating the disease severity of the anemia. Previous researches had established that quantitative trait loci were associated with 6q23 and 2p15. Recent researches indicated that HBS1L-MYB in 6q23 and BCL11A in 2p15 are highly correlated to HbF levels. These discoveries not only help to understanding of mechanism in HbF expression, but also provide potential drug targets for therapy of sickle cell disease. The progress on genes related to fetal hemoglobin quantitative trait and potential applications was summarized in this review.
Collapse
Affiliation(s)
- Xiao-Qiang Guo
- Department of Biochemistry, Bethune Military Medical College, Shijiazhuang 050081, China.
| |
Collapse
|
20
|
Solovieff N, Milton JN, Hartley SW, Sherva R, Sebastiani P, Dworkis DA, Klings ES, Farrer LA, Garrett ME, Ashley-Koch A, Telen MJ, Fucharoen S, Ha SY, Li CK, Chui DHK, Baldwin CT, Steinberg MH. Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5' olfactory receptor gene cluster. Blood 2010; 115:1815-22. [PMID: 20018918 PMCID: PMC2832816 DOI: 10.1182/blood-2009-08-239517] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/18/2009] [Indexed: 11/20/2022] Open
Abstract
In a genome-wide association study of 848 blacks with sickle cell anemia, we identified single nucleotide polymorphisms (SNPs) associated with fetal hemoglobin concentration. The most significant SNPs in a discovery sample were tested in a replication set of 305 blacks with sickle cell anemia and in subjects with hemoglobin E or beta thalassemia trait from Thailand and Hong Kong. A novel region on chromosome 11 containing olfactory receptor genes OR51B5 and OR51B6 was identified by 6 SNPs (lowest P = 4.7E-08) and validated in the replication set. An additional olfactory receptor gene, OR51B2, was identified by a novel SNP set enrichment analysis. Genome-wide association studies also validated a previously identified SNP (rs766432) in BCL11A, a gene known to affect fetal hemoglobin levels (P = 2.6E-21) and in Thailand and Hong Kong subjects. Elements within the olfactory receptor gene cluster might play a regulatory role in gamma-globin gene expression.
Collapse
MESH Headings
- Adolescent
- Adult
- Black or African American/genetics
- Anemia, Sickle Cell/blood
- Anemia, Sickle Cell/genetics
- Carrier Proteins/genetics
- Child
- Child, Preschool
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, X/genetics
- Female
- Fetal Hemoglobin/genetics
- Fetal Hemoglobin/metabolism
- Genome-Wide Association Study
- Hemoglobin E/genetics
- Hong Kong
- Humans
- Male
- Multigene Family
- Nuclear Proteins/genetics
- Polymorphism, Single Nucleotide
- Receptors, Odorant/genetics
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins
- Thailand
- Young Adult
- beta-Thalassemia/genetics
Collapse
Affiliation(s)
- Nadia Solovieff
- Department of Biostatistics, Boston University School of Public Health, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Flori L, Fritz S, Jaffrézic F, Boussaha M, Gut I, Heath S, Foulley JL, Gautier M. The genome response to artificial selection: a case study in dairy cattle. PLoS One 2009; 4:e6595. [PMID: 19672461 PMCID: PMC2722727 DOI: 10.1371/journal.pone.0006595] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/09/2009] [Indexed: 02/07/2023] Open
Abstract
Dairy cattle breeds have been subjected over the last fifty years to intense artificial selection towards improvement of milk production traits. In this study, we performed a whole genome scan for differentiation using 42,486 SNPs in the three major French dairy cattle breeds (Holstein, Normande and Montbéliarde) to identify the main physiological pathways and regions which were affected by this selection. After analyzing the population structure, we estimated F(ST) within and across the three breeds for each SNP under a pure drift model. We further considered two different strategies to evaluate the effect of selection at the genome level. First, smoothing F(ST) values over each chromosome with a local variable bandwidth kernel estimator allowed identifying 13 highly significant regions subjected to strong and/or recent positive selection. Some of them contained genes within which causal variants with strong effect on milk production traits (GHR) or coloration (MC1R) have already been reported. To go further in the interpretation of the observed signatures of selection we subsequently concentrated on the annotation of differentiated genes defined according to the F(ST) value of SNPs localized close or within them. To that end we performed a comprehensive network analysis which suggested a central role of somatotropic and gonadotropic axes in the response to selection. Altogether, these observations shed light on the antagonism, at the genome level, between milk production and reproduction traits in highly producing dairy cows.
Collapse
Affiliation(s)
- Laurence Flori
- INRA, UMR de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Sébastien Fritz
- Union Nationale des Coopératives agricoles d'Elevage et d'Insémination Animale, Paris, France
| | - Florence Jaffrézic
- INRA, UMR de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Mekki Boussaha
- INRA, UMR de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Ivo Gut
- Centre National de Genotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Simon Heath
- Centre National de Genotypage, Institut de Génomique, Commissariat à l'Energie Atomique, Evry, France
| | - Jean-Louis Foulley
- INRA, UMR de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Mathieu Gautier
- INRA, UMR de Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| |
Collapse
|
22
|
Driss A, Asare K, Hibbert J, Gee B, Adamkiewicz T, Stiles J. Sickle Cell Disease in the Post Genomic Era: A Monogenic Disease with a Polygenic Phenotype. GENOMICS INSIGHTS 2009. [DOI: 10.4137/gei.s2626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
More than half a century after the discovery of the molecular basis of Sickle Cell Disease (SCD), the causes of the phenotypic heterogeneity of the disease remain unclear. This heterogeneity manifests with different clinical outcomes such as stroke, vaso-occlusive episodes, acute chest syndrome, avascular necrosis, leg ulcers, priapism and retinopathy. These outcomes cannot be explained by the single mutation in the beta-globin gene alone but may be attributed to genetic modifiers and environmental effects. Recent advances in the post human genome sequence era have opened the door for the identification of novel genetic modifiers in SCD. Studies are showing that phenotypes of SCD seem to be modulated by polymorphisms in genes that are involved in inflammation, cell–cell interaction and modulators of oxidant injury and nitric oxide biology. The discovery of genes implicated in different phenotypes will help understanding of the physiopathology of the disease and aid in establishing targeted cures. However, caution is needed in asserting that genetic modifiers are the cause of all SCD phenotypes, because there are other factors such as genetic background of the population, environmental components, socio-economics and psychology that can play significant roles in the clinical heterogeneity.
Collapse
Affiliation(s)
- A. Driss
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - K.O. Asare
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - J.M. Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - B.E. Gee
- Department of Clinical Pediatrics, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - T.V. Adamkiewicz
- Department of Family Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - J.K. Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. ACTA ACUST UNITED AC 2009; 4:111-27. [PMID: 19497142 DOI: 10.1017/s1740925x0900009x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.
Collapse
|
24
|
Liu L, Muralidhar S, Singh M, Sylvan C, Kalra IS, Quinn CT, Onyekwere OC, Pace BS. High-density SNP genotyping to define beta-globin locus haplotypes. Blood Cells Mol Dis 2008; 42:16-24. [PMID: 18829352 DOI: 10.1016/j.bcmd.2008.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
Five major beta-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, beta-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the beta-locus, which consists of five functional beta-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the beta-locus using DNA samples from healthy African Americans with either normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the beta-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Ggamma-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high-density SNP mapping may be required to accurately define beta-haplotypes that correlate with the different clinical phenotypes observed in SCD.
Collapse
Affiliation(s)
- Li Liu
- Department of Molecular and Cell Biology, Sickle Cell Disease Research Center, University of Texas at Dallas, Richardson, TX 75083, USA
| | | | | | | | | | | | | | | |
Collapse
|