1
|
Petrova-Drus K, Syed M, Yu W, Hutt K, Zlotnicki AM, Huang Y, Kamalska-Cyganik M, Maciag L, Wang M, Ma YG, Ho C, Moung C, Yao J, Nafa K, Baik J, Vanderbilt CM, Benhamida JK, Liu Y, Zhu M, Durham B, Ewalt MD, Salazar P, Rijo I, Baldi T, Mato A, Roeker LE, Roshal M, Dogan A, Arcila ME. Clonal Characterization and Somatic Hypermutation Assessment by Next-Generation Sequencing in Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: A Detailed Description of the Technical Performance, Clinical Utility, and Platform Comparison. J Mol Diagn 2023; 25:352-366. [PMID: 36963483 PMCID: PMC10243287 DOI: 10.1016/j.jmoldx.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/26/2023] Open
Abstract
Somatic hypermutation status of the IGHV gene is essential for treating patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Unlike the conventional low-throughput method, assessment of somatic hypermutation by next-generation sequencing (NGS) has potential for uniformity and scalability. However, it lacks standardization or guidelines for routine clinical use. We critically assessed the performance of an amplicon-based NGS assay across 458 samples. Using a validation cohort (35 samples), the comparison of two platforms (Ion Torrent versus Illumina) and two primer sets [leader versus framework region 1 (FR1)] in their ability to identify clonotypic IGHV rearrangement(s) revealed 97% concordance. The mutation rates were identical by both platforms when using the same primer set (FR1), whereas a slight overestimation bias (+0.326%) was found when comparing FR1 with leader primers. However, for nearly all patients this did not affect the stratification into mutated or unmutated categories, suggesting that use of FR1 may provide comparable results if leader sequencing is not available and allowing for a simpler NGS laboratory workflow. In routine clinical practice (423 samples), the productive rearrangement was successfully detected by either primer set (leader, 97.7%; FR1, 94.7%), and a combination of both in problematic cases reduced the failure rate to 1.2%. Higher sensitivity of the NGS-based analysis also detected a higher frequency of double IGHV rearrangements (19.1%) compared with traditional approaches.
Collapse
Affiliation(s)
- Kseniya Petrova-Drus
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Mustafa Syed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wayne Yu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kasey Hutt
- Invivoscribe, Inc., San Diego, California
| | | | - Ying Huang
- Invivoscribe, Inc., San Diego, California
| | - Monika Kamalska-Cyganik
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lidia Maciag
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meiyi Wang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuanyuan G Ma
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Caleb Ho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine Moung
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinjuan Yao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Khedoudja Nafa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeeyeon Baik
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad M Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamal K Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Menglei Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin Durham
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark D Ewalt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paulo Salazar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ivelise Rijo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tessara Baldi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony Mato
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lindsey E Roeker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mikhail Roshal
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria E Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
2
|
Bourbon E, Chabane K, Mosnier I, Bouvard A, Thonier F, Ferrant E, Michallet AS, Poulain S, Hayette S, Sujobert P, Huet S. Next-CLL: A New Next-Generation Sequencing-Based Method for Assessment of IGHV Gene Mutational Status in Chronic Lymphoid Leukemia. J Mol Diagn 2023; 25:274-283. [PMID: 36773701 DOI: 10.1016/j.jmoldx.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Current guidelines for patients with chronic lymphocytic leukemia (CLL) recommend mutation status determination of the clonotypic IGHV gene before treatment initiation to guide the choice of first-line therapy. Currently, commercially available next-generation sequencing (NGS) solutions have technical constraints, as they necessitate at least a 2 × 300 bp sequencing, which restricts their use for routine practice. The cost of the commercial kits also represents an important drawback. We present a new method called Next-CLL, a ready-to-use strategy to evaluate IGHV gene mutation status using any NGS device (including 2 × 150 bp sequencers) in routine diagnostic laboratories. The performance of Next-CLL was validated on genomic DNA and cDNA obtained from 80 patients with CLL at diagnosis. Next-CLL identified a productive clone in 100% of cases, whereas PCR with Sanger sequencing led to a 12.5% failure rate. Next-CLL had 100% concordance with the reference technique for IGHV gene identification and allowed assessment of the IGHV mutation status from the leader sequence, following international guidelines. Comparing a large retrospective series of samples, analyzed by using Sanger sequencing (n = 773) or Next-CLL (n = 352), showed no bias in IGHV usage or mutational status, further validating our strategy in the real-life setting. Next-CLL represents a straightforward workflow for IGHV analysis in routine practice to assess clonal architecture and prognosis of patients with CLL.
Collapse
Affiliation(s)
- Estelle Bourbon
- Hematology Laboratory, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Kaddour Chabane
- Hematology Laboratory, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Isabelle Mosnier
- Hematology Laboratory, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Anne Bouvard
- Hematology Laboratory, Hospices Civils de Lyon, Pierre-Bénite, France
| | | | - Emmanuelle Ferrant
- Department of Clinical Hematology, Hospices Civils de Lyon, Pierre-Bénite, France
| | | | - Stéphanie Poulain
- Hematology Laboratory, Biology and Pathology Center, University Clinical Center of Lille, Lille, France; Team "Factors of persistence of leukemic cells," CANTHER Laboratory, UMR 9020 CNRS-U1277 INSERM, ONCOLILLE Cancer Institute, University of Lille, Lille, France
| | - Sandrine Hayette
- Hematology Laboratory, Hospices Civils de Lyon, Pierre-Bénite, France; Team Lymphoma Immuno-Biology, Centre International de Recherche en Infectiologie U111 INSERM, Lyon, France
| | - Pierre Sujobert
- Hematology Laboratory, Hospices Civils de Lyon, Pierre-Bénite, France; Team Lymphoma Immuno-Biology, Centre International de Recherche en Infectiologie U111 INSERM, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - Sarah Huet
- Hematology Laboratory, Hospices Civils de Lyon, Pierre-Bénite, France; Team Lymphoma Immuno-Biology, Centre International de Recherche en Infectiologie U111 INSERM, Lyon, France; University Claude Bernard Lyon I, Lyon, France.
| |
Collapse
|
3
|
Allegra A, Tonacci A, Musolino C, Pioggia G, Gangemi S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front Immunol 2021; 12:738915. [PMID: 34759921 PMCID: PMC8573331 DOI: 10.3389/fimmu.2021.738915] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Secondary immunodeficiency is reported in most patients with hematological malignancies such as chronic lymphocytic leukemia and multiple myeloma. The aim of our review was to evaluate the existing literature data on patients with hematological malignancies, with regard to the effect of immunodeficiency on the outcome, the clinical and therapeutic approach, and on the onset of noninfectious complications, including thrombosis, pleural effusion, and orofacial complications. Immunodeficiency in these patients has an intense impact on their risk of infection, in turn increasing morbidity and mortality even years after treatment completion. However, these patients with increased risk of severe infectious diseases could be treated with adequate vaccination coverage, but the vaccines' administration can be associated with a decreased immune response and an augmented risk of adverse reactions. Probably, immunogenicity of the inactivated is analogous to that of healthy subjects at the moment of vaccination, but it undertakes a gradual weakening over time. However, the dispensation of live attenuated viral vaccines is controversial because of the risk of the activation of vaccine viruses. A particular immunization schedule should be employed according to the clinical and immunological condition of each of these patients to guarantee a constant immune response without any risks to the patients' health.
Collapse
MESH Headings
- Animals
- Humans
- Immunocompromised Host
- Immunogenicity, Vaccine
- Immunologic Deficiency Syndromes/epidemiology
- Immunologic Deficiency Syndromes/immunology
- Immunologic Deficiency Syndromes/therapy
- Incidence
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Multiple Myeloma/epidemiology
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Opportunistic Infections/epidemiology
- Opportunistic Infections/immunology
- Opportunistic Infections/prevention & control
- Risk Factors
- Vaccination
- Vaccine Efficacy
- Vaccines/administration & dosage
- Vaccines/adverse effects
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Reading the B-cell receptor immunome in chronic lymphocytic leukemia: revelations and applications. Exp Hematol 2020; 93:14-24. [PMID: 32976948 DOI: 10.1016/j.exphem.2020.09.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 12/19/2022]
Abstract
B-Cell receptor (BCR) sequencing has been the force driving many recent advances in chronic lymphocytic leukemia (CLL) research. Here, we discuss the general principles, revelations, and applications of reading the BCR immunome in the context of CLL. First, IGHV mutational status, obtained by measuring the mutational imprint on the IGHV gene of the CLL clonotype, is the cornerstone of CLL risk stratification. Furthermore, the discovery of "BCR-stereotyped" groups of unrelated patients that share not only a highly similar BCR on their leukemic clone, but also certain clinical characteristics has provided insights key to understanding disease ontogeny. Additionally, whereas the BCR repertoire of most CLL patients is characterized by a single dominant rearrangement, next-generation sequencing (NGS) has revealed a rich subclonal landscape in a larger than previously expected proportion of CLL patients. We review the mechanisms underlying these "multiple dominant" cases, including V(D)J-recombination errors, failure of allelic exclusion, intraclonal diversification, and "true" bi- or oligoclonality, and their implications, in detail. Finally, BCR repertoire sequencing can be used for sensitive quantification of minimal residual disease to potentially unprecedented depth. To surmount pitfalls inherent to this approach and develop internationally harmonized protocols, the EuroClonality-NGS Working Group has been established.
Collapse
|
5
|
Stranska K, Plevova K, Skuhrova Francova H, Skabrahova H, von Jagwitz-Biegnitz M, Radova L, Panovska A, Hrobkova S, Brychtova Y, Urbanova R, Smolej L, Simkovic M, Zuchnicka J, Mohammadova L, Spacek M, Mayer J, Pospisilova S, Doubek M. Profiling of biological and environmental risk factors in immunogenetic subgroups of chronic lymphocytic leukemia - Czech national study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 164:425-434. [PMID: 31558845 DOI: 10.5507/bp.2019.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/04/2019] [Indexed: 11/23/2022] Open
Abstract
AIMS This is a nation-wide survey of chronic lymphocytic leukemia (CLL) patients at six large hematology centers in the Czech Republic. The aim was to identify specific populations, social, and health characteristics of CLL subgroups divided according to the immunogenetic features of their B cell receptors (BCRs) and clonality. PATIENTS AND METHODS Questionnaires directed to specific health, social, and environmental conditions were collected in a cohort of 573 CLL patients. For these patients, immunoglobulin heavy chain gene rearrangements were also analyzed in order to gain information about their clonality, IGHV mutational status, and the presence of stereotyped BCRs. Data extracted from the questionnaires were analyzed statistically in the context of immunogenetic features of the cohort. RESULTS There were no statistically significant differences in the data collected in the survey between patients with mutated and patients with unmutated IGHV. However, patients with oligoclonal CLL reported health conditions such as hypercholesterolemia, hypertension, herpes simplex, tumors, and also, separately, CLL in 1st degree relatives, more often than their monoclonal counterparts. In patients with stereotyped BCRs, we found more frequent alcohol consumption and gastric infections in subset #1 cases and frequent cholecystectomies and familial CLL in subset #2 cases. CONCLUSION To the best of our knowledge, this study is the first to investigate CLL immunogenetic features and clonality in the context of epidemiological data. We reported statistically significant associations suggesting the influence of certain health and social conditions on a number of clonal populations expanding in CLL and also on characteristic BCR features, especially stereotypy.
Collapse
Affiliation(s)
- Kamila Stranska
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hana Skuhrova Francova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Skabrahova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Magdalena von Jagwitz-Biegnitz
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anna Panovska
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stanislava Hrobkova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yvona Brychtova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Renata Urbanova
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| | | | | | - Jana Zuchnicka
- Department of Hematooncology, University Hospital Ostrava, Czech Republic
| | - Lekaa Mohammadova
- Department of Hematology and Oncology, University Hospital Pilsen, Czech Republic
| | | | - Jiri Mayer
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Brazdilova K, Plevova K, Skuhrova Francova H, Kockova H, Borsky M, Bikos V, Malcikova J, Oltova A, Kotaskova J, Tichy B, Brychtova Y, Mayer J, Doubek M, Pospisilova S. Multiple productive IGH rearrangements denote oligoclonality even in immunophenotypically monoclonal CLL. Leukemia 2017; 32:234-236. [PMID: 28937682 PMCID: PMC5770588 DOI: 10.1038/leu.2017.274] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- K Brazdilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - K Plevova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - H Skuhrova Francova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - H Kockova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Borsky
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - V Bikos
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - J Malcikova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - A Oltova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - J Kotaskova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - B Tichy
- Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Y Brychtova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - J Mayer
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Doubek
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - S Pospisilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Center of Molecular Medicine, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
7
|
Targeted deep sequencing reveals clinically relevant subclonal IgHV rearrangements in chronic lymphocytic leukemia. Leukemia 2016; 31:837-845. [PMID: 27795555 DOI: 10.1038/leu.2016.307] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
The immunoglobulin heavy-chain variable region gene (IgHV) mutational status is considered the gold standard of prognostication in chronic lymphocytic leukemia (CLL) and is currently determined by Sanger sequencing that allows the analysis of the major clone. Using next-generation sequencing (NGS), we sequenced the IgHV gene from two independent cohorts: (A) 270 consecutive patient samples obtained at diagnosis and (B) 227 patients from the UK ARCTIC-AdMIRe clinical trials. Using complementary DNA from purified CD19+CD5+ cells, we demonstrate the presence of multiple rearrangements in independent experiments and showed that 24.4% of CLL patients express multiple productive clonally unrelated IgHV rearrangements. On the basis of IgHV-NGS subclonal profiles, we defined five different categories: patients with (a) multiple hypermutated (M) clones, (b) 1 M clone, (c) a mix of M-unmutated (UM) clones, (d) 1 UM clone and (e) multiple UM clones. In population A, IgHV-NGS classification stratified patients into five different subgroups with median treatment-free survival (TFS) of >280(a), 131(b), 94(c), 29(d), 15(e) months (P<0.0001) and a median OS of >397(a), 292(b), 196(c), 137(d) and 100(e) months (P<0.0001). In population B, the poor prognosis of multiple UM patients was confirmed with a median TFS of 2 months (P=0.0038). In conclusion, IgHV-NGS highlighted one quarter of CLL patients with multiple productive IgHV subclones and improves disease stratification and raises important questions concerning the pre-leukemic cellular origin of CLL.
Collapse
|
8
|
Sánchez-Ramón S, Dhalla F, Chapel H. Challenges in the Role of Gammaglobulin Replacement Therapy and Vaccination Strategies for Hematological Malignancy. Front Immunol 2016; 7:317. [PMID: 27597852 PMCID: PMC4993076 DOI: 10.3389/fimmu.2016.00317] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are prone to present with antibody production deficits associated with recurrent or severe bacterial infections that might benefit from human immunoglobulin (Ig) (IVIg/SCIg) replacement therapy. However, the original IVIg trial data were done before modern therapies were available, and the current indications do not take into account the shift in the immune situation of current treatment combinations and changes in the spectrum of infections. Besides, patients affected by other B cell malignancies present with similar immunodeficiency and manifestations while they are not covered by the current IVIg indications. A potential beneficial strategy could be to vaccinate patients at monoclonal B lymphocytosis and monoclonal gammopathy of undetermined significance stages (for CLL and MM, respectively) or at B-cell malignancy diagnosis, when better antibody responses are attained. We have to re-emphasize the need for assessing and monitoring specific antibody responses; these are warranted to select adequately those patients for whom early intervention with prophylactic anti-infective therapy and/or IVIg is preferred. This review provides an overview of the current scenario, with a focus on prevention of infection in patients with hematological malignancies and the role of Ig replacement therapy.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain; Department of Microbiology I, Complutense University School of Medicine, Madrid, Spain
| | - Fatima Dhalla
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Immunology, John Radcliffe Hospital, Headington, Oxford, UK
| | - Helen Chapel
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Clinical Immunology, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
9
|
Cavallini C, Lovato O, Bertolaso A, Zoratti E, Malpeli G, Mimiola E, Tinelli M, Aprili F, Tecchio C, Perbellini O, Scarpa A, Zamò A, Cassatella MA, Pizzolo G, Scupoli MT. Expression and function of the TL1A/DR3 axis in chronic lymphocytic leukemia. Oncotarget 2016; 6:32061-74. [PMID: 26393680 PMCID: PMC4741659 DOI: 10.18632/oncotarget.5201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023] Open
Abstract
TNF-like ligand 1A (TL1A) and its unique receptor death receptor 3 (DR3) acts as broad T-cell costimulator involved in regulatory mechanisms of adaptive immune response under physiological and pathological settings. Moreover, we have recently shown that TL1A negatively regulates B-cell proliferation. Despite increasing interest on the TL1A/DR3-axis functions, very little is known on its expression and role in leukemia. In this study, we investigated the expression and function of TL1A/DR3 axis in chronic lymphocytic leukemia (CLL). DR3 was differentially expressed in activated CLL cells and predominantly detected in patients with early clinical stage disease. Soluble TL1A has been revealed in the sera of CLL patients where higher TL1A levels were associated with early stage disease. T cells, monocytes and leukemic B cells have been identified as major sources of TL1A in CLL. The relevance of these findings has been sustained by functional data showing that exogenous TL1A reduces CLL proliferation induced by stimulation of the B cell receptor. Overall, these data document the expression of the TL1A/DR3 axis in early-stage CLL. They also identify a novel function for TL1A as a negative regulator of leukemic cell proliferation that may influence the CLL physiopathology and clinical outcome at an early-stage disease.
Collapse
Affiliation(s)
- Chiara Cavallini
- Interdepartmental Laboratory of Medical Research (LURM), University of Verona, Verona, Italy
| | - Ornella Lovato
- Interdepartmental Laboratory of Medical Research (LURM), University of Verona, Verona, Italy
| | - Anna Bertolaso
- Department of Pathology and Diagnostics, Section of Pathological Anatomy, University of Verona, Verona, Italy
| | - Elisa Zoratti
- Interdepartmental Laboratory of Medical Research (LURM), University of Verona, Verona, Italy.,Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Giorgio Malpeli
- Department of Pathology and Diagnostics, Section of Pathological Anatomy, University of Verona, Verona, Italy.,Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Elda Mimiola
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Martina Tinelli
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Fiorenza Aprili
- Department of Pathology and Diagnostics, Laboratory of Cytogenetics, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Cristina Tecchio
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Omar Perbellini
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, Section of Pathological Anatomy, University of Verona, Verona, Italy.,Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Pathology and Diagnostics, Section of Pathological Anatomy, University of Verona, Verona, Italy
| | - Marco Antonio Cassatella
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Verona, Italy
| | - Giovanni Pizzolo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Maria Teresa Scupoli
- Interdepartmental Laboratory of Medical Research (LURM), University of Verona, Verona, Italy.,Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy.,Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Heyman B, Volkheimer AD, Weinberg JB. Double IGHV DNA gene rearrangements in CLL: influence of mixed-mutated and -unmutated rearrangements on outcomes in CLL. Blood Cancer J 2016; 6:e440. [PMID: 27367477 PMCID: PMC5030375 DOI: 10.1038/bcj.2016.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- B Heyman
- Duke University and Durham Veterans Affairs Medical Centers, Department of Medicine, Durham, NC, USA
| | - A D Volkheimer
- Duke University and Durham Veterans Affairs Medical Centers, Department of Medicine, Durham, NC, USA
| | - J B Weinberg
- Duke University and Durham Veterans Affairs Medical Centers, Department of Medicine, Durham, NC, USA
| |
Collapse
|
11
|
Perbellini O, Falisi E, Giaretta I, Boscaro E, Novella E, Facco M, Fortuna S, Finotto S, Amati E, Maniscalco F, Montaldi A, Alghisi A, Aprili F, Bonaldi L, Paolini R, Scupoli MT, Trentin L, Ambrosetti A, Semenzato G, Pizzolo G, Rodeghiero F, Visco C. Clinical significance of LAIR1 (CD305) as assessed by flow cytometry in a prospective series of patients with chronic lymphocytic leukemia. Haematologica 2014; 99:881-7. [PMID: 24415628 PMCID: PMC4008102 DOI: 10.3324/haematol.2013.096362] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/08/2014] [Indexed: 01/30/2023] Open
Abstract
Most patients affected by chronic lymphocytic leukemia are diagnosed by flow cytometry. Several immunophenotypic markers have been identified as significant and independent prognostic variables, especially from retrospective cohorts. However, while attractive because their detection is inexpensive and feasible in most laboratories, only few have been validated by independent series. The expression of leukocyte-associated immunoglobulin-like receptor-1 (also known as LAIR1, LAIR-1 or CD305), an inhibitor of B-cell receptor-mediated signaling, has been reported to be lacking in high-risk chronic lymphocytic leukemia. However, its correlation with biological variables and its prognostic significance remain unknown. We investigated 311 consecutive patients, prospectively enrolled since 2007. Methods for studying patients were standardized and included clinical assessment, immunophenotype, fluorescence in situ hybridization, and status of immunoglobulin heavy chain variable region genes. Overall, 22.1% of patients had Binet stage B or C disease, 38.5% had unmutated immunoglobulin genes, 15.1% had high-risk cytogenetic abnormalities, 23.4% were CD38(+), 37.8% CD49d(+), and 59.8% LAIR1(+). Expression of LAIR1 was inversely related to that of CD38 (P=0.0005), but was not associated with CD49d expression (P=0.96). A significantly lower expression of LAIR1 was observed in patients with Binet stage B or C disease (P=0.023), and in the presence of high-risk cytogenetic abnormalities (P=0.048) or unmutated immunoglobulin heavy chain variable region genes (P<0.0001). At univariate analysis LAIR1(+) was significantly associated with longer time to first treatment (P=0.0002). This favorable effect of LAIR1(+) was confirmed by multivariate analysis (hazard ratio=2.1, P=0.03 for LAIR1). Our results indicate that LAIR1 expression is a reliable and inexpensive marker capable of independently predicting time to first treatment in newly diagnosed unselected patients with chronic lymphocytic leukemia.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Chromosome Aberrations
- Disease Progression
- Female
- Flow Cytometry
- Follow-Up Studies
- Gene Expression
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Middle Aged
- Mutation
- Neoplasm Staging
- Patient Outcome Assessment
- Prognosis
- Prospective Studies
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
Collapse
|
12
|
Plevova K, Francova HS, Burckova K, Brychtova Y, Doubek M, Pavlova S, Malcikova J, Mayer J, Tichy B, Pospisilova S. Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lymphocytic leukemia are mostly derived from independent clones. Haematologica 2013; 99:329-38. [PMID: 24038023 DOI: 10.3324/haematol.2013.087593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In chronic lymphocytic leukemia, usually a monoclonal disease, multiple productive immunoglobulin heavy chain gene rearrangements are identified sporadically. Prognostication of such cases based on immunoglobulin heavy variable gene mutational status can be problematic, especially if the different rearrangements have discordant mutational status. To gain insight into the possible biological mechanisms underlying the origin of the multiple rearrangements, we performed a comprehensive immunogenetic and immunophenotypic characterization of 31 cases with the multiple rearrangements identified in a cohort of 1147 patients with chronic lymphocytic leukemia. For the majority of cases (25/31), we provide evidence of the co-existence of at least two B lymphocyte clones with a chronic lymphocytic leukemia phenotype. We also identified clonal drifts in serial samples, likely driven by selection forces. More specifically, higher immunoglobulin variable gene identity to germline and longer complementarity determining region 3 were preferred in persistent or newly appearing clones, a phenomenon more pronounced in patients with stereotyped B-cell receptors. Finally, we report that other factors, such as TP53 gene defects and therapy administration, influence clonal selection. Our findings are relevant to clonal evolution in the context of antigen stimulation and transition of monoclonal B-cell lymphocytosis to chronic lymphocytic leukemia.
Collapse
|
13
|
Falisi E, Novella E, Visco C, Guercini N, Maura F, Giaretta I, Pomponi F, Nichele I, Finotto S, Montaldi A, Neri A, Rodeghiero F. B-cell receptor configuration and mutational analysis of patients with chronic lymphocytic leukaemia and trisomy 12 reveal recurrent molecular abnormalities. Hematol Oncol 2013; 32:22-30. [PMID: 23861036 DOI: 10.1002/hon.2086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/15/2013] [Accepted: 06/04/2013] [Indexed: 01/02/2023]
Abstract
Trisomy 12 (+12) is the third most frequent cytogenetic aberration in chronic lymphocytic leukaemia (CLL) retrievable both as the sole chromosomal abnormality or in association with additional alterations. NOTCH1 mutations are known to be more prevalent among +12 patients, whereas mutations of FBXW7, a gene involved in NOTCH1 degradation, that lead to the constitutional activation of NOTCH1 have not been investigated in this setting. We analyzed a unicentric cohort of 44 +12 patients with CLL for mutations of TP53, NOTCH1 and FBXW7 genes, and we correlated them with B-cell receptor (BCR) configurations. FBXW7, TP53 and NOTCH1 mutations were identified in 4.5%, 6.8% and 18.2% of patients, respectively. FBXW7 and NOTCH1 mutations appeared in a mutually exclusive fashion, suggesting that both aberrations might affect the same biological pathway. We found that 44.1% of +12 CLL patients had stereotyped B-cell receptors, which is significantly higher than that observed in patients with CLL and no +12 (27%, p = 0.01). Subsets #1, #8, #10, #28 and #59 were the most represented stereotyped patterns, and IGHV4-39*01 was the gene configuration most commonly used. There was a significantly higher risk for Richter's syndrome (RS) transformation in patients with NOTCH1 or FBXW7 mutations, with four of the seven (57%) patients developing RS and characterized at least by one of the two abnormalities. These observations suggest that, similarly to the aberrations of NOTCH1, FBXW7 gene mutations may also result in cell proliferation and evasion from apoptosis in patients with +12 CLL. Together with the extremely high frequency of stereotyped BCRs and RS transformation, these abnormalities appear to cluster in these CLL patients with additional chromosome 12, suggesting a connection with the prognosis of the disease.
Collapse
Affiliation(s)
- Erika Falisi
- Department of Hematology and Cell Therapy, S. Bortolo Hospital, Vicenza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|