1
|
Tharp ME, Han CZ, Balak CD, Fitzpatrick C, O'Connor C, Preissl S, Buchanan J, Nott A, Escoubet L, Mavrommatis K, Gupta M, Schwartz MS, Sang UH, Jones PS, Levy ML, Gonda DD, Ben-Haim S, Ciacci J, Barba D, Khalessi A, Coufal NG, Chen CC, Glass CK, Page DC. The inactive X chromosome drives sex differences in microglial inflammatory activity in human glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597433. [PMID: 38895459 PMCID: PMC11185629 DOI: 10.1101/2024.06.06.597433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Biological sex is an important risk factor in cancer, but the underlying cell types and mechanisms remain obscure. Since tumor development is regulated by the immune system, we hypothesize that sex-biased immune interactions underpin sex differences in cancer. The male-biased glioblastoma multiforme (GBM) is an aggressive and treatment-refractory tumor in urgent need of more innovative approaches, such as considering sex differences, to improve outcomes. GBM arises in the specialized brain immune environment dominated by microglia, so we explored sex differences in this immune cell type. We isolated adult human TAM-MGs (tumor-associated macrophages enriched for microglia) and control microglia and found sex-biased inflammatory signatures in GBM and lower-grade tumors associated with pro-tumorigenic activity in males and anti-tumorigenic activity in females. We demonstrated that genes expressed or modulated by the inactive X chromosome facilitate this bias. Together, our results implicate TAM-MGs, specifically their sex chromosomes, as drivers of male bias in GBM.
Collapse
Affiliation(s)
- Marla E Tharp
- Whitehead Institute, Cambridge, MA 02142, USA
- These authors contributed equally
| | - Claudia Z Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Chris D Balak
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Conor Fitzpatrick
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sebastian Preissl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
- Present address: Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Justin Buchanan
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexi Nott
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | | | | | - Mihir Gupta
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
- Present address: Department of Neurosurgery, Yale University, New Haven, CT 06520, USA
| | - Marc S Schwartz
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - U Hoi Sang
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Pamela S Jones
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
- Present address: Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael L Levy
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - David D Gonda
- Department of Neurosurgery, University of California, San Diego-Rady Children's Hospital, San Diego, CA 92123, USA
| | - Sharona Ben-Haim
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Joseph Ciacci
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Barba
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexander Khalessi
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
| | - Nicole G Coufal
- Department of Pediatrics University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Clark C Chen
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA 92037, USA
- Present address: Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Sabapathy SR, Mohan M, Venkateswaran G, Ranjani S. Bleeding Post Constriction Ring Release Surgery Causing Lower Limb Ischemia in an Infant with Undetected Hemophilia B. Indian J Plast Surg 2021; 54:218-220. [PMID: 34239249 PMCID: PMC8257317 DOI: 10.1055/s-0041-1729509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bleeding in the immediate postoperative period causing compromised limb circulation is an alarming complication. It is known to occur in coagulation disorders like hemophilia. When such complications happen in a child with no previous history of bleeding problems, one has to have a low threshold for suspecting a coagulation disorder. Repeated diffuse bleeding in the whole of the surgical wound with no specific bleeders must raise the suspicion and appropriate laboratory tests must immediately be ordered. Bleeding in coagulation disorders can stop only with supplementation of the appropriate missing clotting factor. Early diagnosis is important to avoid excess morbidity. We are reporting a 6-month-old child who underwent surgery for constriction ring syndrome in the limbs with Z-plasty and developed impending limb ischemia due to bleeding in the immediate postoperative period. The article emphasizes the need to think of the possibility while encountering recurrent bleeding in the postoperative period.
Collapse
Affiliation(s)
- S Raja Sabapathy
- Department of Plastic, Hand and Reconstructive Microsurgery, Ganga Hospital, Coimbatore, Tamil Nadu, India
| | - Monusha Mohan
- Department of Plastic, Hand and Reconstructive Microsurgery, Ganga Hospital, Coimbatore, Tamil Nadu, India
| | - G Venkateswaran
- Department of Anaesthesiology, Ganga Hospital, Coimbatore, Tamil Nadu, India
| | - Shashi Ranjani
- Visiting Pediatric hematologist, Ganga Hospital, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Chytła A, Gajdzik-Nowak W, Olszewska P, Biernatowska A, Sikorski AF, Czogalla A. Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules 2020; 25:molecules25214954. [PMID: 33114686 PMCID: PMC7662862 DOI: 10.3390/molecules25214954] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane palmitoylated proteins (MPPs) are a subfamily of a larger group of multidomain proteins, namely, membrane-associated guanylate kinases (MAGUKs). The ubiquitous expression and multidomain structure of MPPs provide the ability to form diverse protein complexes at the cell membranes, which are involved in a wide range of cellular processes, including establishing the proper cell structure, polarity and cell adhesion. The formation of MPP-dependent complexes in various cell types seems to be based on similar principles, but involves members of different protein groups, such as 4.1-ezrin-radixin-moesin (FERM) domain-containing proteins, polarity proteins or other MAGUKs, showing their multifaceted nature. In this review, we discuss the function of the MPP family in the formation of multiple protein complexes. Notably, we depict their significant role for cell physiology, as the loss of interactions between proteins involved in the complex has a variety of negative consequences. Moreover, based on recent studies concerning the mechanism of membrane raft formation, we shed new light on a possible role played by MPPs in lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Chytła
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Weronika Gajdzik-Nowak
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Paulina Olszewska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
- Correspondence: ; Tel.: +48-71375-6356
| |
Collapse
|
5
|
Held MA, Greenfest-Allen E, Su S, Stoeckert CJ, Stokes MP, Wojchowski DM. Phospho-PTM proteomic discovery of novel EPO- modulated kinases and phosphatases, including PTPN18 as a positive regulator of EPOR/JAK2 Signaling. Cell Signal 2020; 69:109554. [PMID: 32027948 DOI: 10.1016/j.cellsig.2020.109554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
The formation of erythroid progenitor cells depends sharply upon erythropoietin (EPO), its cell surface receptor (erythropoietin receptor, EPOR), and Janus kinase 2 (JAK2). Clinically, recombinant human EPO (rhEPO) additionally is an important anti-anemia agent for chronic kidney disease (CKD), myelodysplastic syndrome (MDS) and chemotherapy, but induces hypertension, and can exert certain pro-tumorigenic effects. Cellular signals transduced by EPOR/JAK2 complexes, and the nature of EPO-modulated signal transduction factors, therefore are of significant interest. By employing phospho-tyrosine post-translational modification (p-Y PTM) proteomics and human EPO- dependent UT7epo cells, we have identified 22 novel kinases and phosphatases as novel EPO targets, together with their specific sites of p-Y modification. New kinases modified due to EPO include membrane palmitoylated protein 1 (MPP1) and guanylate kinase 1 (GUK1) guanylate kinases, together with the cytoskeleton remodeling kinases, pseudopodium enriched atypical kinase 1 (PEAK1) and AP2 associated kinase 1 (AAK1). Novel EPO- modified phosphatases include protein tyrosine phosphatase receptor type A (PTPRA), phosphohistidine phosphatase 1 (PHPT1), tensin 2 (TENC1), ubiquitin associated and SH3 domain containing B (UBASH3B) and protein tyrosine phosphatase non-receptor type 18 (PTPN18). Based on PTPN18's high expression in hematopoietic progenitors, its novel connection to JAK kinase signaling, and a unique EPO- regulated PTPN18-pY389 motif which is modulated by JAK2 inhibitors, PTPN18's actions in UT7epo cells were investigated. Upon ectopic expression, wt-PTPN18 promoted EPO dose-dependent cell proliferation, and survival. Mechanistically, PTPN18 sustained the EPO- induced activation of not only mitogen-activated protein kinases 1 and 3 (ERK1/2), AKT serine/threonine kinase 1-3 (AKT), and signal transducer and activator of transcription 5A and 5B (STAT5), but also JAK2. Each effect further proved to depend upon PTPN18's EPO- modulated (p)Y389 site. In analyses of the EPOR and the associated adaptor protein RHEX (regulator of hemoglobinization and erythroid cell expansion), wt-PTPN18 increased high molecular weight EPOR forms, while sharply inhibiting the EPO-induced phosphorylation of RHEX-pY141. Each effect likewise depended upon PTPN18-Y389. PTPN18 thus promotes signals for EPO-dependent hematopoietic cell growth, and may represent a new druggable target for myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Matthew A Held
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Emily Greenfest-Allen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Su Su
- Molecular Medicine Department, Maine Medical Center Research Institute, Scarborough, ME, 04074, United States of America
| | - Christian J Stoeckert
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Matthew P Stokes
- Proteomics Division, Cell Signaling Technology, Danvers, MA, 01923., United States of America
| | - Don M Wojchowski
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America.
| |
Collapse
|