1
|
Baghel US, Kriplani P, Patel NM, Kaur M, Sharma K, Meghani M, Sharma A, Singh D, Singh B, Setzer WN, Sharifi-Rad J, Calina D. Flavopiridol: a promising cyclin-dependent kinase inhibitor in cancer treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03599-2. [PMID: 39589530 DOI: 10.1007/s00210-024-03599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024]
Abstract
Flavopiridol, a synthetic flavonoid derived from rohitukine, stands out as a powerful cyclin-dependent kinase (CDK) inhibitor with significant anticancer properties. Its action mechanisms involve inducing cell cycle arrest, triggering apoptosis, and inhibiting transcription across various cancer types. Despite these promising effects, flavopiridol's clinical use has been hampered by issues related to toxicity and drug resistance. This study aims to comprehensively review flavopiridol's mechanisms of action, structure-activity relationships, synthetic derivatives, pharmacokinetics, and its potential role in clinical applications, with a focus on how combination therapies can enhance its efficacy and address resistance challenges in cancer treatment. A thorough analysis of key studies was performed, examining flavopiridol's anticancer properties, emphasizing its structure-activity relationships, synthetic modifications, and clinical outcomes. The anticancer effects of flavopiridol are primarily driven by its inhibition of CDKs, induction of apoptosis, promotion of oxidative stress, and antiangiogenic activity. Modifications in its chemical structure, especially in the D ring, have shown a significant impact on its CDK inhibitory potency. Several synthetic derivatives have also demonstrated enhanced anticancer activity. While preclinical models highlight flavopiridol's potential in treating cancers such as leukemia and solid tumors, clinical trials have brought attention to its limitations, particularly regarding toxicity and resistance. However, flavopiridol remains a promising candidate for cancer therapy, especially when used in combination with other treatments. Future research efforts should focus on refining its therapeutic profile, minimizing toxicity, and investigating synergistic treatment combinations, including those with immunotherapy. Understanding the mechanisms of resistance and discovering predictive biomarkers will be crucial for its effective integration into clinical practice.
Collapse
Affiliation(s)
| | | | | | - Manpreet Kaur
- Gurukul Pharmacy College, Ranpur, 325003, Kota, India
| | - Kapil Sharma
- Gurukul Pharmacy College, Ranpur, 325003, Kota, India
| | | | - Abhay Sharma
- Department of Pharmacy, University of Kota, Kota, 324005, Rajasthan, India
| | | | - Bhawani Singh
- Deparment of Pure and Applied Chemistry, University of Kota, Kota, 324005, India
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
2
|
Wiese W, Barczuk J, Racinska O, Siwecka N, Rozpedek-Kaminska W, Slupianek A, Sierpinski R, Majsterek I. PI3K/Akt/mTOR Signaling Pathway in Blood Malignancies-New Therapeutic Possibilities. Cancers (Basel) 2023; 15:5297. [PMID: 37958470 PMCID: PMC10648005 DOI: 10.3390/cancers15215297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Blood malignancies remain a therapeutic challenge despite the development of numerous treatment strategies. The phosphatidylinositol-3 kinase (PI3K)/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway plays a central role in regulating many cellular functions, including cell cycle, proliferation, quiescence, and longevity. Therefore, dysregulation of this pathway is a characteristic feature of carcinogenesis. Increased activation of PI3K/Akt/mTOR signaling enhances proliferation, growth, and resistance to chemo- and immunotherapy in cancer cells. Overactivation of the pathway has been found in various types of cancer, including acute and chronic leukemia. Inhibitors of the PI3K/Akt/mTOR pathway have been used in leukemia treatment since 2014, and some of them have improved treatment outcomes in clinical trials. Recently, new inhibitors of PI3K/Akt/mTOR signaling have been developed and tested both in preclinical and clinical models. In this review, we outline the role of the PI3K/Akt/mTOR signaling pathway in blood malignancies' cells and gather information on the inhibitors of this pathway that might provide a novel therapeutic opportunity against leukemia.
Collapse
Affiliation(s)
- Wojciech Wiese
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Olga Racinska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Wioletta Rozpedek-Kaminska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| | - Artur Slupianek
- Department of Pathology, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA;
| | - Radoslaw Sierpinski
- Faculty of Medicine, Cardinal Stefan Wyszyński University, 01-938 Warsaw, Poland;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (W.W.); (J.B.); (O.R.); (N.S.); (W.R.-K.)
| |
Collapse
|
3
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
4
|
Genthon A, Dragoi D, Memoli M, Hirsch P, Favale F, Suner L, Chaquin M, Boncoeur P, Marjanovic Z, Bonnin A, Sestili S, Dulery R, Malard F, Brissot E, Banet A, van de Wyngaert Z, Vekhoff A, Delhommeau F, Mohty M, Legrand O. Isocitrate dehydrogenase inhibitors as a bridge to allogeneic stem cell transplant in relapsed or refractory acute myeloid leukaemia. Br J Haematol 2022; 198:780-784. [PMID: 35615877 DOI: 10.1111/bjh.18290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Alexis Genthon
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Diana Dragoi
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Mara Memoli
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Pierre Hirsch
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Fabrizia Favale
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Ludovic Suner
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Michael Chaquin
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Pierre Boncoeur
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Zora Marjanovic
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Agnès Bonnin
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Simona Sestili
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Remy Dulery
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Florent Malard
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Eolia Brissot
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Anne Banet
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Zoe van de Wyngaert
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Anne Vekhoff
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Francois Delhommeau
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Mohamad Mohty
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Ollivier Legrand
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| |
Collapse
|
5
|
Venugopal S, Takahashi K, Daver N, Maiti A, Borthakur G, Loghavi S, Short NJ, Ohanian M, Masarova L, Issa G, Wang X, Carlos BR, Yilmaz M, Kadia T, Andreeff M, Ravandi F, Konopleva M, Kantarjian HM, DiNardo CD. Efficacy and safety of enasidenib and azacitidine combination in patients with IDH2 mutated acute myeloid leukemia and not eligible for intensive chemotherapy. Blood Cancer J 2022; 12:10. [PMID: 35078972 PMCID: PMC8789767 DOI: 10.1038/s41408-021-00604-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Preclinically, enasidenib and azacitidine (ENA + AZA) synergistically enhance cell differentiation, and venetoclax (VEN), a small molecule Bcl2 inhibitor (i) is particularly effective in IDH2 mutated acute myeloid leukemia (IDH2mutAML). This open label phase II trial enrolled patients (pts) with documented IDH2mutAML. All patients received AZA 75 mg/m2/d x 7 d/cycle and ENA 100 mg QD continuously. Concomitant Bcl2i and FLT3i were allowed (NCT03683433).Twenty-six pts received ENA + AZA (median 68 years, range, 24–88); 7 newly diagnosed (ND) and 19 relapsed/refractory (R/R). In R/R AML patients, three had received prior ENA and none had received prior VEN. The composite complete remission rate (CRc) [complete remission (CR) or complete remission with incomplete hematologic recovery (CRi)] was 100% in ND AML, and 58% in R/R AML. Median OS was not reached in ND AML with median follow-up of 13.1 months (mo); Pts treated in first relapse had improved OS than those with ≥2 relapse (median OS not reached vs 5.2 mo; HR 0.24, 95% CI 0.07–0.79, p = 0.04). Two patients received ENA + AZA with a concomitant FLT3i, one responding ND AML patient and one nonresponding R/R AML patient. Seven R/R AML pts received ENA + AZA + VEN triplet, and with median follow up of 11.2 mo, median OS was not reached and 6-mo OS was 70%. The most frequent treatment-emergent adverse events include febrile neutropenia (23%). Adverse events of special interest included all-grade IDH differentiation syndrome (8%) and indirect hyperbilirubinemia (35%). ENA + AZA was a well-tolerated, and effective therapy for elderly pts with IDH2mut ND AML as well as pts with R/R AML. The addition of VEN to ENA + AZA appears to improve outcomes in R/R IDH2mutAML. Clinical trial registration information: https://clinicaltrials.gov/.NCT03683433
Collapse
|
6
|
Zeidner JF, Vincent BG, Ivanova A, Moore D, McKinnon KP, Wilkinson AD, Mukhopadhyay R, Mazziotta F, Knaus HA, Foster MC, Coombs CC, Jamieson K, Van Deventer H, Webster JA, Prince GT, DeZern AE, Smith BD, Levis MJ, Montgomery ND, Luznik L, Serody JS, Gojo I. Phase II Trial of Pembrolizumab after High-Dose Cytarabine in Relapsed/Refractory Acute Myeloid Leukemia. Blood Cancer Discov 2021; 2:616-629. [PMID: 34778801 DOI: 10.1158/2643-3230.bcd-21-0070] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/12/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Immune suppression, exhaustion, and senescence are frequently seen throughout disease progression in acute myeloid leukemia (AML). We conducted a phase II study of high-dose cytarabine followed by pembrolizumab 200 mg i.v. on day 14 to examine whether PD-1 inhibition improves clinical responses in relapsed/refractory (R/R) AML. Overall responders could receive pembrolizumab maintenance up to 2 years. Among 37 patients enrolled, the overall response rate, composite complete remission (CRc) rate (primary endpoint), and median overall survival (OS) were 46%, 38%, and 11.1 months, respectively. Patients with refractory/early relapse and those receiving treatment as first salvage had encouraging outcomes (median OS, 13.2 and 11.3 months, respectively). Grade ≥3 immune-related adverse events were rare (14%) and self-limiting. Patients who achieved CRc had a higher frequency of progenitor exhausted CD8+ T cells expressing TCF-1 in the bone marrow prior to treatment. A multifaceted correlative approach of genomic, transcriptomic, and immunophenotypic profiling offers insights on molecular correlates of response and resistance to pembrolizumab. Significance Immune-checkpoint blockade with pembrolizumab was tolerable and feasible after high-dose cytarabine in R/R AML, with encouraging clinical activity, particularly in refractory AML and those receiving treatment as first salvage regimen. Further study of pembrolizumab and other immune-checkpoint blockade strategies after cytotoxic chemotherapy is warranted in AML.See related commentary by Wei et al., p. 551. This article is highlighted in the In This Issue feature, p. 549.
Collapse
Affiliation(s)
- Joshua F Zeidner
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,University of North Carolina, Department of Microbiology and Immunology, Chapel Hill, North Carolina.,Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Anastasia Ivanova
- University of North Carolina School of Medicine, Department of Biostatistics, Chapel Hill, North Carolina
| | - Dominic Moore
- University of North Carolina School of Medicine, Department of Biostatistics, Chapel Hill, North Carolina
| | - Karen P McKinnon
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,University of North Carolina, Department of Microbiology and Immunology, Chapel Hill, North Carolina
| | - Alec D Wilkinson
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Rupkatha Mukhopadhyay
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Francesco Mazziotta
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,University of Siena, Department of Medical Biotechnologies, Siena, Italy
| | - Hanna A Knaus
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Matthew C Foster
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Catherine C Coombs
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Katarzyna Jamieson
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Hendrik Van Deventer
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jonathan A Webster
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Oncology, Division of Hematological Malignancies, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Gabrielle T Prince
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Oncology, Division of Hematological Malignancies, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amy E DeZern
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Oncology, Division of Hematological Malignancies, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - B Douglas Smith
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Oncology, Division of Hematological Malignancies, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Mark J Levis
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Oncology, Division of Hematological Malignancies, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Nathan D Montgomery
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Leo Luznik
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,Department of Oncology, Division of Hematological Malignancies, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jonathan S Serody
- University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.,Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,University of North Carolina, Department of Microbiology and Immunology, Chapel Hill, North Carolina.,Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ivana Gojo
- Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.,University of Siena, Department of Medical Biotechnologies, Siena, Italy
| |
Collapse
|
7
|
A prospective biomarker analysis of alvocidib followed by cytarabine and mitoxantrone in MCL-1-dependent relapsed/refractory acute myeloid leukemia. Blood Cancer J 2021; 11:175. [PMID: 34718324 PMCID: PMC8557202 DOI: 10.1038/s41408-021-00568-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
|
8
|
Linton AE, Weekman EM, Wilcock DM. Pathologic sequelae of vascular cognitive impairment and dementia sheds light on potential targets for intervention. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100030. [PMID: 36324710 PMCID: PMC9616287 DOI: 10.1016/j.cccb.2021.100030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is one of the leading causes of dementia along with Alzheimer's disease (AD) and, importantly, VCID often manifests as a comorbidity of AD(Vemuri and Knopman 2016; Schneider and Bennett 2010)(Vemuri and Knopman 2016; Schneider and Bennett 2010). Despite its common clinical manifestation, the mechanisms underlying VCID disease progression remains elusive. In this review, existing knowledge is used to propose a novel hypothesis linking well-established risk factors of VCID with the distinct neurodegenerative cascades of neuroinflammation and chronic hypoperfusion. It is hypothesized that these two synergistic signaling cascades coalesce to initiate aberrant angiogenesis and induce blood brain barrier breakdown trough a mechanism mediated by vascular growth factors and matrix metalloproteinases respectively. Finally, this review concludes by highlighting several potential therapeutic interventions along this neurodegenerative sequalae providing diverse opportunities for future translational study.
Collapse
Affiliation(s)
- Alexandria E. Linton
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Erica M. Weekman
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Donna M. Wilcock
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| |
Collapse
|
9
|
Cyclin-dependent kinases-based synthetic lethality: Evidence, concept, and strategy. Acta Pharm Sin B 2021; 11:2738-2748. [PMID: 34589394 PMCID: PMC8463275 DOI: 10.1016/j.apsb.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Synthetic lethality is a proven effective antitumor strategy that has attracted great attention. Large-scale screening has revealed many synthetic lethal genetic phenotypes, and relevant small-molecule drugs have also been implemented in clinical practice. Increasing evidence suggests that CDKs, constituting a kinase family predominantly involved in cell cycle control, are synthetic lethal factors when combined with certain oncogenes, such as MYC, TP53, and RAS, which facilitate numerous antitumor treatment options based on CDK-related synthetic lethality. In this review, we focus on the synthetic lethal phenotype and mechanism related to CDKs and summarize the preclinical and clinical discoveries of CDK inhibitors to explore the prospect of CDK inhibitors as antitumor compounds for strategic synthesis lethality in the future.
Collapse
|
10
|
Yang Y, Dai Y, Yang X, Wu S, Wang Y. DNMT3A Mutation-Induced CDK1 Overexpression Promotes Leukemogenesis by Modulating the Interaction between EZH2 and DNMT3A. Biomolecules 2021; 11:biom11060781. [PMID: 34067359 PMCID: PMC8224654 DOI: 10.3390/biom11060781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
DNMT3A mutations are frequently identified in acute myeloid leukemia (AML) and indicate poor prognosis. Previously, we found that the hotspot mutation DNMT3A R882H could upregulate CDK1 and induce AML in conditional knock-in mice. However, the mechanism by which CDK1 is involved in leukemogenesis of DNMT3A mutation-related AML, and whether CDK1 could be a therapeutic target, remains unclear. In this study, using fluorescence resonance energy transfer and immunoprecipitation analysis, we discovered that increased CDK1 could compete with EZH2 to bind to the PHD-like motif of DNMT3A, which may disturb the protein interaction between EZH2 and DNMT3A. Knockdown of CDK1 in OCI-AML3 cells with DNMT3A mutation markedly inhibited proliferation and induced apoptosis. CDK1 selective inhibitor CGP74514A (CGP) and the pan-CDK inhibitor flavopiridol (FLA) arrested OCI-AML3 cells in the G2/M phase, and induced cell apoptosis. CGP significantly increased CD163-positive cells. Moreover, the combined application of CDK1 inhibitor and traditional chemotherapy drugs synergistically inhibited proliferation and induced apoptosis of OCI-AML3 cells. In conclusion, this study highlights CDK1 overexpression as a pathogenic factor and a potential therapeutic target for DNMT3A mutation-related AML.
Collapse
|
11
|
Zhang H, Wang P, Li Z, He Y, Gan W, Jiang H. Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia. Clin Cancer Res 2021; 27:3549-3555. [PMID: 33832948 DOI: 10.1158/1078-0432.ccr-20-4543] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/20/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expressed on AML stem cells, blast cells, and monocytes, but not on normal hematopoietic stem cells, indicating the therapeutic potential of anti-CLL1 CAR T in AML treatment. This study aimed to test the safety and efficacy of CAR T-cell therapy in R/R-AML. PATIENTS AND METHODS Four pediatric patients with R/R-AML were enrolled in the ongoing phase I/II anti-CLL1 CAR T-cell therapy trial. The CAR design was based on an apoptosis-inducing gene, FKBP-caspase 9, to establish a safer CAR (4SCAR) application. Anti-CLL1 CAR was transduced into peripheral blood mononuclear cells of the patients via lentivector 4SCAR, followed by infusion into the recipients after lymphodepletion chemotherapy. Cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other adverse events were documented. Treatment response was evaluated by morphology and flow cytometry-based minimal residual disease assays. RESULTS Three patients with R/R-AML achieved complete remission and minimal residual disease negativity, while the other patient remained alive for 5 months. All these patients experienced low-grade and manageable adverse events. CONCLUSIONS On the basis of our single-institution experience, autologous anti-CLL1 CAR T-cell therapy has the potential to be a safe and efficient alternative treatment for children with R/R-AML, and therefore requires further investigation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| | - Pengfei Wang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Zhuoyan Li
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Yingyi He
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China
| | - Wenting Gan
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
12
|
Why isn't there a one-size-fits-all approach for relapsed/refractory acute myeloid leukemia? Insights into different variables for decision-making. Best Pract Res Clin Haematol 2021; 34:101240. [PMID: 33762095 DOI: 10.1016/j.beha.2021.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relapsed refractory acute myeloid leukemia (R/R AML) has a poor prognosis. While the heterogeneity and diversity of R/R AML pose hurdles towards defining a standard of care, there have been various advances over the years. These, however, have added to the complexity of decision-making for R/R AML. This review has summarized evidence that will provide insights into factors that influence treatment choices in R/R AML and determine whether ongoing clinical trials can aid in identifying a standard approach for different sub-groups of patients.
Collapse
|
13
|
Feng Y, Chen X, Cassady K, Zou Z, Yang S, Wang Z, Zhang X. The Role of mTOR Inhibitors in Hematologic Disease: From Bench to Bedside. Front Oncol 2021; 10:611690. [PMID: 33489922 PMCID: PMC7821787 DOI: 10.3389/fonc.2020.611690] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/27/2020] [Indexed: 02/05/2023] Open
Abstract
The mTOR pathway plays a central role in many cellular processes, such as cellular growth, protein synthesis, glucose, and lipid metabolism. Aberrant regulation of mTOR is a hallmark of many cancers, including hematological malignancies. mTOR inhibitors, such as Rapamycin and Rapamycin analogs (Rapalogs), have become a promising class of agents to treat malignant blood diseases-either alone or in combination with other treatment regimens. This review highlights experimental evidence underlying the molecular mechanisms of mTOR inhibitors and summarizes their evolving role in the treatment of hematologic disease, including leukemia, lymphoma, myeloma, immune hemocytopenia, and graft-versus-host disease (GVHD). Based on data presented in this review, we believe that mTOR inhibitors are becoming a trusted therapeutic in the clinical hematologist's toolbelt and should be considered more routinely in combination therapy for the management of hematologic disease.
Collapse
Affiliation(s)
- Yimei Feng
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| | - Xiaoli Chen
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| | - Zheng Wang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
- Chongqing Sub-center of National Clinical Research Center for Hematologic Disease, Chongqing, China
| |
Collapse
|
14
|
Zeidner JF, Lee DJ, Frattini M, Fine GD, Costas J, Kolibaba K, Anthony SP, Bearss D, Smith BD. Phase I Study of Alvocidib Followed by 7+3 (Cytarabine + Daunorubicin) in Newly Diagnosed Acute Myeloid Leukemia. Clin Cancer Res 2020; 27:60-69. [PMID: 32998965 DOI: 10.1158/1078-0432.ccr-20-2649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Alvocidib is a cyclin-dependent kinase 9 inhibitor leading to downregulation of the antiapoptotic BCL-2 family member, MCL-1. Alvocidib has shown clinical activity in a timed sequential regimen with cytarabine and mitoxantrone in relapsed/refractory and newly diagnosed acute myeloid leukemia (AML) but has not been studied in combination with traditional 7+3 induction therapy. PATIENTS AND METHODS A multiinstitutional phase I dose-escalation study of alvocidib on days 1-3 followed by 7+3 (cytarabine 100 mg/m2/day i.v. infusion days 5-12 and daunorubicin 60 mg/m2 i.v. days 5-7) was performed in newly diagnosed AML ≤65 years. Core-binding factor AML was excluded. RESULTS There was no MTD on this study; the recommended phase II dose of alvocidib was 30 mg/m2 i.v. over 30 minutes followed by 60 mg/m2 i.v. infusion over 4 hours. There was one dose-limiting toxicity of cytokine release syndrome. The most common grade ≥3 nonhematologic toxicities were diarrhea (44%) and tumor lysis syndrome (34%). Overall, 69% (22/32) of patients achieved complete remission (CR). In an exploratory cohort, eight of nine (89%) patients in complete remission had no measurable residual disease, as determined by a centralized flow cytometric assay. Clinical activity was seen in patients with secondary AML, AML with myelodysplastic syndrome-related changes, and a genomic signature of secondary AML (50%, 50%, and 92% CR rates, respectively). CONCLUSIONS Alvocidib can be safely administered prior to 7+3 induction with encouraging clinical activity. These findings warrant further investigation of alvocidib combinations in newly diagnosed AML. This study was registered at clinicaltrials.gov identifier NCT03298984.
Collapse
Affiliation(s)
- Joshua F Zeidner
- University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina.
| | - Daniel J Lee
- Columbia University Medical Center, New York, New York
| | - Mark Frattini
- Columbia University Medical Center, New York, New York
- Celgene, Summit, New Jersey
| | - Gil D Fine
- Sumitomo Dainippon Pharma Oncology, Lehi, Utah
| | - Judy Costas
- Sumitomo Dainippon Pharma Oncology, Lehi, Utah
| | | | | | | | - B Douglas Smith
- Johns Hopkins University School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
15
|
Mushtaq MU, Harrington AM, Chaudhary SG, Michaelis LC, Carlson KSB, Abedin S, Runass L, Callander NS, Fallon MJ, Juckett M, Hall AC, Hematti P, Mattison RJ, Atallah EL, Guru Murthy GS. Comparison of salvage chemotherapy regimens and prognostic significance of minimal residual disease in relapsed/refractory acute myeloid leukemia. Leuk Lymphoma 2020; 62:158-166. [PMID: 32951486 DOI: 10.1080/10428194.2020.1821009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We compared the outcomes of salvage chemotherapy in 146 patients with relapsed (57.5%) or refractory (42.5%) AML who received CLAG-M (51%), MEC (39%) or CLAG (10%). Minimal residual disease (MRD) was assessed by flow cytometry. Bivariate, Kaplan-Meier, and Cox regression analyses were conducted. Complete remission (CR) rate of 46% (CLAG-M 54% versus MEC/CLAG 40%, p = .045) was observed with MRD-negative CR of 33% (CLAG-M 39% versus MEC/CLAG 22%, p = .042). Median overall survival (OS) was 9.7 months; the longest OS occurred with CLAG-M (13.3, 95%CI 2.4-24.3) versus MEC (6.9, 95%CI 2.9-10.9) or CLAG (6.2, 95%CI 2.4-12.6) (p = .025). When adjusted for age, gender, relapsed/refractory AML, poor risk AML, MRD, chemotherapy and transplant, CLAG-M (HR 0.63, 95% CI 0.40-0.98, p = .042), MRD-negativity (HR 0.15, 95% CI 0.07-0.30, p < .001) and transplant (HR 0.22, 95% CI 0.13-0.39, p < .001) were associated with higher OS. Our findings confirm that CLAG-M is a reasonable salvage regimen for RR-AML followed by transplant.
Collapse
Affiliation(s)
- Muhammad Umair Mushtaq
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | | - Sibgha Gull Chaudhary
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Laura C Michaelis
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Karen-Sue B Carlson
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sameem Abedin
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lyndsey Runass
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Natalie S Callander
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | | | - Mark Juckett
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Aric C Hall
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Peiman Hematti
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ryan J Mattison
- Division of Hematology/Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ehab L Atallah
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
16
|
DeWolf S, Tallman MS. How I treat relapsed or refractory AML. Blood 2020; 136:1023-1032. [PMID: 32518943 PMCID: PMC7453152 DOI: 10.1182/blood.2019001982] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Treatment of relapsed or refractory acute myeloid leukemia (AML) has presented challenges for hematologists for decades. Despite numerous clinical studies, outcomes are consistently disappointing with 5-year overall survival rates of ∼10%. Allogeneic hematopoietic cell transplantation at the time of second complete remission remains the only reliable option with curative potential. However, recent approval of several new agents has transformed treatment paradigms that had been in place for almost half a century in AML. This new therapeutic landscape provides the opportunity to revisit the approach to relapsed or refractory AML. Through illustrative cases, we describe our approach, which increasingly relies on specific disease biology. We focus on treatment outside of the context of clinical trials because such trials are not available in most parts of the world. Primarily, we consider age, fitness to tolerate intensive chemotherapy, remission duration, and presence of a targetable mutation to guide treatment. The coming years will inevitably bring new targets and agents that may prove most effective when combined with each other and/or chemotherapy. Future studies are needed to determine how best to implement this evolving armamentarium of treatment options, to elucidate mechanisms of resistance, and to continue the pursuit of novel drug discovery.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
| | - Martin S Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
- Leukemia Service, Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
17
|
Popescu B, Sheela S, Thompson J, Grasmeder S, Intrater T, DeStefano CB, Hourigan CS, Lai C. Timed sequential salvage chemotherapy for relapsed or refractory acute myeloid leukemia. Clin Hematol Int 2020; 2:27-31. [PMID: 32190831 PMCID: PMC7079712 DOI: 10.2991/chi.d.191128.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/27/2019] [Indexed: 01/12/2023] Open
Abstract
Therapy for those with relapsed or refractory acute myeloid leukemia is suboptimal. Studies have suggested that timed sequential salvage combination cytotoxic chemotherapy may have particular utility for that indication. We report here a series of ten such adult patients treated sequentially at a single center with EMA (cytarabine 500 mg/m2/day as continuous infusion on days 1-3 and days 8-10, mitoxantrone 12 mg/m2/day on days 1-3, and etoposide 200 mg/m2/day as continuous infusion on days 8-10). The overall complete remission rate was 40% (including 3 of 4 of those with relapsed disease) but use of this regimen was associated with prolonged cytopenia and a high rate of infectious adverse events. Even with the availability of modern infectious prophylaxis and therapies, the EMA regimen is likely best reserved for those with relapsed disease treated with curative intent prior to an allogeneic hematopoietic cell transplant.
Collapse
Affiliation(s)
- Bogdan Popescu
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Sheenu Sheela
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Julie Thompson
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Sophia Grasmeder
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Therese Intrater
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Christin B. DeStefano
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | | | | |
Collapse
|
18
|
Rizio AA, Bhor M, Lin X, McCausland KL, White MK, Paulose J, Nandal S, Halloway RI, Bronté-Hall L. The relationship between frequency and severity of vaso-occlusive crises and health-related quality of life and work productivity in adults with sickle cell disease. Qual Life Res 2020; 29:1533-1547. [PMID: 31933113 PMCID: PMC7253500 DOI: 10.1007/s11136-019-02412-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2019] [Indexed: 11/13/2022]
Abstract
Purpose Patients with sickle cell disease (SCD) may experience sickle cell-related pain crises, also referred to as vaso-occlusive crises (VOCs), which are a substantial cause of morbidity and mortality. The study explored how VOC frequency and severity impacts health-related quality of life (HRQoL) and work productivity. Methods Three hundred and three adults with SCD who completed an online survey were included in the analysis. Patients answered questions regarding their experience with SCD and VOCs, and completed the Adult Sickle Cell Quality of Life Measurement Information System (ASCQ-Me) and the Workplace Productivity and Activity Impairment: Specific Health Problem (WPAI:SHP). Differences in ASCQ-Me and WPAI:SHP domains were assessed according to VOC frequency and severity. Results Nearly half of the patient sample (47.2%) experienced ≥ 4 VOCs in the past 12 months. The most commonly reported barriers to receiving care for SCD included discrimination by or trouble trusting healthcare professionals (39.6%, 33.3%, respectively), limited access to treatment centers (38.9%), and difficulty affording services (29.4%). Patients with more frequent VOCs reported greater impacts on emotion, social functioning, stiffness, sleep and pain, and greater absenteeism, overall productivity loss, and activity impairment than patients with less frequent VOCs (P < 0.05). Significant impacts on HRQoL and work productivity were also observed when stratifying by VOC severity (P < 0.05 for all ASCQ-Me and WPAI domains, except for presenteeism). Conclusions Results from the survey indicated that patients with SCD who had more frequent or severe VOCs experienced deficits in multiple domains of HRQoL and work productivity. Future research should examine the longitudinal relationship between these outcomes.
Collapse
Affiliation(s)
- Avery A Rizio
- Patient Insights, Optum, 1301 Atwood Ave, Suite 311N, Johnston, RI, USA.
| | - Menaka Bhor
- Novartis Pharmaceutical Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Xiaochen Lin
- Patient Insights, Optum, 1301 Atwood Ave, Suite 311N, Johnston, RI, USA
| | | | - Michelle K White
- Patient Insights, Optum, 1301 Atwood Ave, Suite 311N, Johnston, RI, USA
| | - Jincy Paulose
- Novartis Pharmaceutical Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Savita Nandal
- Novartis Pharmaceutical Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Rashid I Halloway
- Formerly Novartis Pharmaceutical Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Lanetta Bronté-Hall
- Foundation for Sickle Cell Disease Research, 3858 Sheridan St, Suite S, Hollywood, FL, USA
| |
Collapse
|
19
|
Narayan R, Blonquist TM, Emadi A, Hasserjian RP, Burke M, Lescinskas C, Neuberg DS, Brunner AM, Hobbs G, Hock H, McAfee SL, Chen Y, Attar E, Graubert TA, Bertoli C, Moran JA, Bergeron MK, Foster JE, Ramos AY, Som TT, Vartanian MK, Story JL, McGregor K, Macrae M, Behnan T, Wey MC, Rae J, Preffer FI, Lesho P, Duong VH, Mann ML, Ballen KK, Connolly C, Amrein PC, Fathi AT. A phase 1 study of the antibody‐drug conjugate brentuximab vedotin with re‐induction chemotherapy in patients with CD30‐expressing relapsed/refractory acute myeloid leukemia. Cancer 2019; 126:1264-1273. [DOI: 10.1002/cncr.32657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/13/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023]
|
20
|
Horibata S, Gui G, Lack J, DeStefano CB, Gottesman MM, Hourigan CS. Heterogeneity in refractory acute myeloid leukemia. Proc Natl Acad Sci U S A 2019; 116:10494-10503. [PMID: 31064876 PMCID: PMC6535032 DOI: 10.1073/pnas.1902375116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Successful clinical remission to therapy for acute myeloid leukemia (AML) is required for long-term survival to be achieved. Despite trends in improved survival due to better supportive care, up to 40% of patients will have refractory disease, which has a poorly understood biology and carries a dismal prognosis. The development of effective treatment strategies has been hindered by a general lack of knowledge about mechanisms of chemotherapy resistance. Here, through transcriptomic analysis of 154 cases of treatment-naive AML, three chemorefractory patient groups with distinct expression profiles are identified. A classifier, four key refractory gene signatures (RG4), trained based on the expression profile of the highest risk refractory patients, validated in an independent cohort (n = 131), was prognostic for overall survival (OS) and refined an established 17-gene stemness score. Refractory subpopulations have differential expression in pathways involved in cell cycle, transcription, translation, metabolism, and/or stem cell properties. Ex vivo drug sensitivity to 122 small-molecule inhibitors revealed effective group-specific targeting of pathways among these three refractory groups. Gene expression profiling by RNA sequencing had a suboptimal ability to correctly predict those individuals resistant to conventional cytotoxic induction therapy, but could risk-stratify for OS and identify subjects most likely to have superior responses to a specific alternative therapy. Such personalized therapy may be studied prospectively in clinical trials.
Collapse
Affiliation(s)
- Sachi Horibata
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Gege Gui
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702
| | - Christin B DeStefano
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20814;
| |
Collapse
|
21
|
Faraoni I, Giansanti M, Voso MT, Lo-Coco F, Graziani G. Targeting ADP-ribosylation by PARP inhibitors in acute myeloid leukaemia and related disorders. Biochem Pharmacol 2019; 167:133-148. [PMID: 31028744 DOI: 10.1016/j.bcp.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/16/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease characterized by uncontrolled proliferation, block in myeloid differentiation and recurrent genetic abnormalities. In the search of new effective therapies, identification of synthetic lethal partners of AML genetic alterations might represent a suitable approach to tailor patient treatment. Genetic mutations directly affecting DNA repair genes are not commonly present in AML. Nevertheless, several studies indicate that AML cells show high levels of DNA lesions and genomic instability. Leukaemia-driving oncogenes (e.g., RUNX1-RUNXT1, PML-RARA, TCF3-HLF, IDH1/2, TET2) or treatment with targeted agents directed against aberrant kinases (e.g., JAK1/2 and FLT3 inhibitors) have been associated with reduced DNA repair gene expression/activity that would render leukaemia blasts selectively sensitive to synthetic lethality induced by poly(ADP-ribose) polymerase inhibitors (PARPi). Thus, specific oncogenic chimeric proteins or gene mutations, rare or typically distinctive of certain leukaemia subtypes, may allow tagging cancer cells for destruction by PARPi. In this review, we will discuss the rationale for using PARPi in AML subtypes characterized by a specific genetic background and summarize the preclinical and clinical evidence reported so far on their activity when used as single agents or in combination with classical cytotoxic chemotherapy or with agents targeting AML-associated mutated proteins.
Collapse
Affiliation(s)
- Isabella Faraoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Manuela Giansanti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Unit of Neuro-Oncohematology, Santa Lucia Foundation-I.R.C.C.S., Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|