1
|
Islam ST, Cheheltani S, Cheng C, Fowler VM. Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing. Cytoskeleton (Hoboken) 2024; 81:789-805. [PMID: 38516850 PMCID: PMC11416570 DOI: 10.1002/cm.21853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
The mouse ocular lens is an excellent vertebrate model system for studying hexagonal cell packing and shape changes during tissue morphogenesis and differentiation. The lens is composed of two types of cells, epithelial and fiber cells. During the initiation of fiber cell differentiation, lens epithelial cells transform from randomly packed cells to hexagonally shaped and packed cells to form meridional row cells. The meridional row cells further differentiate and elongate into newly formed fiber cells that maintain hexagonal cell shape and ordered packing. In other tissues, actomyosin contractility regulates cell hexagonal packing geometry during epithelial tissue morphogenesis. Here, we use the mouse lens as a model to study the effect of two human disease-related non-muscle myosin IIA (NMIIA) mutations on lens cellular organization during fiber cell morphogenesis and differentiation. We studied genetic knock-in heterozygous mice with NMIIA-R702C motor domain or NMIIA-D1424N rod domain mutations. We observed that while one allele of NMIIA-R702C has no impact on lens meridional row epithelial cell shape and packing, one allele of the NMIIA-D1424N mutation can cause localized defects in cell hexagonal packing. Similarly, one allele of NMIIA-R702C motor domain mutation does not affect lens fiber cell organization while the NMIIA-D1424N mutant proteins disrupt fiber cell organization and packing. Our work demonstrates that disease-related NMIIA rod domain mutations (D1424N or E1841K) disrupt mouse lens fiber cell morphogenesis and differentiation.
Collapse
Affiliation(s)
- Sadia T. Islam
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sepideh Cheheltani
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Velia M. Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
2
|
Cai L, Chen S, Zhou Y, Yu H, Li Y, Bao A, Zhang J, Lv Q. Unraveling MYH9-related disease: A case study on misdiagnosis with idiopathic thrombocytopenic purpura, confirmed through genetic. Heliyon 2024; 10:e36203. [PMID: 39309903 PMCID: PMC11415704 DOI: 10.1016/j.heliyon.2024.e36203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
This paper presents a detailed analysis of a case initially misdiagnosed as Idiopathic Thrombocytopenic Purpura (ITP), which was later correctly identified as MYH9-related disease (MYH9-RD), a rare genetic disorder characterized by thrombocytopenia, large platelets, and Döhle-like inclusion bodies in neutrophils. Using advanced slide reading technology, our team identified hallmark features of MYH9-RD in the patient's blood samples, leading to genetic testing that confirmed a spontaneous mutation in the MYH9 gene. This report highlights the diagnostic journey, emphasizing the crucial role of recognizing specific hematologic signs to accurately diagnose MYH9-RD. By comparing our findings with existing literature, we highlight the genetic underpinnings and clinical manifestations of MYH9-RD, emphasizing the necessity for heightened awareness and diagnostic precision in clinical practice to prevent similar cases of misdiagnosis. This case demonstrates the importance of integrating genetic testing into routine diagnostic protocols for unexplained thrombocytopenia, paving the way for improved patient care and treatment outcomes.
Collapse
Affiliation(s)
- Lixiu Cai
- Department of Medical Laboratory, The First People's Hospital of Shuangliu, Chengdu/West China (Airport) Hospital Sichuan University, No.120, Chengbei Shangjie, Dongsheng Street, Shuangliu District, Chengdu, 610200, Sichuan Province, China
| | - Shuangyan Chen
- Department of Medical Laboratory, The First People's Hospital of Shuangliu, Chengdu/West China (Airport) Hospital Sichuan University, No.120, Chengbei Shangjie, Dongsheng Street, Shuangliu District, Chengdu, 610200, Sichuan Province, China
| | - Yu Zhou
- Department of Medical Laboratory, The First People's Hospital of Shuangliu, Chengdu/West China (Airport) Hospital Sichuan University, No.120, Chengbei Shangjie, Dongsheng Street, Shuangliu District, Chengdu, 610200, Sichuan Province, China
| | - Hao Yu
- Department of Medical Laboratory, The First People's Hospital of Shuangliu, Chengdu/West China (Airport) Hospital Sichuan University, No.120, Chengbei Shangjie, Dongsheng Street, Shuangliu District, Chengdu, 610200, Sichuan Province, China
| | - Ya Li
- Department of Medical Laboratory, The First People's Hospital of Shuangliu, Chengdu/West China (Airport) Hospital Sichuan University, No.120, Chengbei Shangjie, Dongsheng Street, Shuangliu District, Chengdu, 610200, Sichuan Province, China
| | - Aiping Bao
- Department of Medical Laboratory, The First People's Hospital of Shuangliu, Chengdu/West China (Airport) Hospital Sichuan University, No.120, Chengbei Shangjie, Dongsheng Street, Shuangliu District, Chengdu, 610200, Sichuan Province, China
| | - Jin Zhang
- Department of Medical Laboratory, The First People's Hospital of Shuangliu, Chengdu/West China (Airport) Hospital Sichuan University, No.120, Chengbei Shangjie, Dongsheng Street, Shuangliu District, Chengdu, 610200, Sichuan Province, China
| | - Qin Lv
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, No.32, West 2nd Section, 1st Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| |
Collapse
|
3
|
Gou Z, Zhang D, Cao H, Li Y, Li Y, Zhao Z, Wang Y, Wang Y, Zhou H. Exploring the nexus between MYH9 and tumors: novel insights and new therapeutic opportunities. Front Cell Dev Biol 2024; 12:1421763. [PMID: 39149512 PMCID: PMC11325155 DOI: 10.3389/fcell.2024.1421763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene, located on human chromosome 22, encodes non-muscle myosin heavy chain IIA (NM IIA). This protein is essential to various cellular events, such as generating intracellular chemomechanical force and facilitating the movement of the actin cytoskeleton. Mutations associated with thrombocytopenia in autosomal dominant diseases first highlighted the significance of the MYH9 gene. In recent years, numerous studies have demonstrated the pivotal roles of MYH9 in various cancers. However, its effects on cancer are intricate and not fully comprehended. Furthermore, the elevated expression of MYH9 in certain malignancies suggests its potential as a target for tumor therapy. Nonetheless, there is a paucity of literature summarizing MYH9's role in tumors and the therapeutic strategies centered on it, necessitating a systematic analysis. This paper comprehensively reviews and analyzes the pertinent literature in this domain, elucidating the fundamental structural characteristics, biological functions, and the nexus between MYH9 and tumors. The mechanisms through which MYH9 contributes to tumor development and its multifaceted roles in the tumorigenic process are also explored. Additionally, we discuss the relationship between MYH9-related diseases (MYH9-RD) and tumors and also summarize tumor therapeutic approaches targeting MYH9. The potential clinical applications of studying the MYH9 gene include improving early diagnosis, clinical staging, and prognosis of tumors. This paper is anticipated to provide novel insights for tumor therapy.
Collapse
Affiliation(s)
- Zixuan Gou
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Zijian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ye Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Li J, Chen D, Liu H, Xi Y, Luo H, Wei Y, Liu J, Liang H, Zhang Q. Identifying potential genetic epistasis implicated in Alzheimer's disease via detection of SNP-SNP interaction on quantitative trait CSF Aβ 42. Neurobiol Aging 2024; 134:84-93. [PMID: 38039940 DOI: 10.1016/j.neurobiolaging.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 12/03/2023]
Abstract
Although genome-wide association studies have identified multiple Alzheimer's disease (AD)-associated loci by selecting the main effects of individual single-nucleotide polymorphisms (SNPs), the interpretation of genetic variance in AD is limited. Based on the linear regression method, we performed genome-wide SNP-SNP interaction on cerebrospinal fluid Aβ42 to identify potential genetic epistasis implicated in AD, with age, gender, and diagnosis as covariates. A GPU-based method was used to address the computational challenges posed by the analysis of epistasis. We found 368 SNP pairs to be statistically significant, and highly significant SNP-SNP interactions were identified between the marginal main effects of SNP pairs, which explained a relatively high variance at the Aβ42 level. Our results replicated 100 previously reported AD-related genes and 5 gene-gene interaction pairs of the protein-protein interaction network. Our bioinformatics analyses provided preliminary evidence that the 5-overlapping gene-gene interaction pairs play critical roles in inducing synaptic loss and dysfunction, thereby leading to memory decline and cognitive impairment in AD-affected brains.
Collapse
Affiliation(s)
- Jin Li
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Dandan Chen
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China; School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Hongwei Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, Jilin, China
| | - Haoran Luo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Yiming Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Junfeng Liu
- School of Computer Science, Northeast Electric Power University, Jilin, China
| | - Hong Liang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China.
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin, China.
| |
Collapse
|
5
|
Liu Q, Cheng C, Huang J, Yan W, Wen Y, Liu Z, Zhou B, Guo S, Fang W. MYH9: A key protein involved in tumor progression and virus-related diseases. Biomed Pharmacother 2024; 171:116118. [PMID: 38181716 DOI: 10.1016/j.biopha.2023.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of non-muscle myosin IIA (NMIIA), which belongs to the myosin II subfamily of actin-based molecular motors. Previous studies have demonstrated that abnormal expression and mutations of MYH9 were correlated with MYH9-related diseases and tumors. Furthermore, earlier investigations identified MYH9 as a tumor suppressor. However, subsequent research revealed that MYH9 promoted tumorigenesis, progression and chemoradiotherapy resistance. Note-worthily, MYH9 has also been linked to viral infections, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Epstein-Barr virus, and hepatitis B virus, as a receptor or co-receptor. In addition, MYH9 promotes the development of hepatocellular carcinoma by interacting with the hepatitis B virus-encoding X protein. Finally, various findings highlighted the role of MYH9 in the development of these illnesses, especially in tumors. This review summarizes the involvement of the MYH9-regulated signaling network in tumors and virus-related diseases and presents possible drug interventions on MYH9, providing insights for the use of MYH9 as a therapeutic target for tumors and virus-mediated diseases.
Collapse
Affiliation(s)
- Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology hospital, Shenzhen 518000, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Yinhao Wen
- Department of Oncology, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou 510315, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; The People's Hospital of Gaozhou, Gaozhou 525200, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
6
|
Babel NK, Feldman BJ. Glucocorticoid signaling and the impact of high-fat diet on adipogenesis in vivo. Steroids 2024; 201:109336. [PMID: 37944652 PMCID: PMC11005958 DOI: 10.1016/j.steroids.2023.109336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Our research used glucocorticoids as a medically relevant molecular probe to identify a previously unrecognized ADAMTS1-PTN-Wnt pathway. We elucidated the role of this pathway in regulating adipose precursor cell (APC) behavior to either proliferate or differentiate in response to systemic cues, such as elevated caloric intake. Further, our studies identified the non-muscle myosin protein MYH9 as a key target of this pathway to modulate adipogenesis in vivo. These findings enable strategies toward developing novel therapeutics for obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Noah K Babel
- Department of Pediatrics, Division of Endocrinology, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Brian J Feldman
- Department of Pediatrics, Division of Endocrinology, University of California, San Francisco (UCSF), San Francisco, CA, United States.
| |
Collapse
|
7
|
Casas-Mao D, Carrington G, Pujol MG, Peckham M. Effects of specific disease mutations in non-muscle myosin 2A on its structure and function. J Biol Chem 2024; 300:105514. [PMID: 38042490 PMCID: PMC10770755 DOI: 10.1016/j.jbc.2023.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Non-muscle myosin 2A (NM2A), a widely expressed class 2 myosin, is important for organizing actin filaments in cells. It cycles between a compact inactive 10S state in which its regulatory light chain (RLC) is dephosphorylated and a filamentous state in which the myosin heads interact with actin, and the RLC is phosphorylated. Over 170 missense mutations in MYH9, the gene that encodes the NM2A heavy chain, have been described. These cause MYH9 disease, an autosomal-dominant disorder that leads to bleeding disorders, kidney disease, cataracts, and deafness. Approximately two-thirds of these mutations occur in the coiled-coil tail. These mutations could destabilize the 10S state and/or disrupt filament formation or both. To test this, we determined the effects of six specific mutations using multiple approaches, including circular dichroism to detect changes in secondary structure, negative stain electron microscopy to analyze 10S and filament formation in vitro, and imaging of GFP-NM2A in fixed and live cells to determine filament assembly and dynamics. Two mutations in D1424 (D1424G and D1424N) and V1516M strongly decrease 10S stability and have limited effects on filament formation in vitro. In contrast, mutations in D1447 and E1841K, decrease 10S stability less strongly but increase filament lengths in vitro. The dynamic behavior of all mutants was altered in cells. Thus, the positions of mutated residues and their roles in filament formation and 10S stabilization are key to understanding their contributions to NM2A in disease.
Collapse
Affiliation(s)
- David Casas-Mao
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Glenn Carrington
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Marta Giralt Pujol
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Ghaderi S, Levkau B. An erythrocyte-centric view on the MFSD2B sphingosine-1-phosphate transporter. Pharmacol Ther 2023; 249:108483. [PMID: 37390971 DOI: 10.1016/j.pharmthera.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
MFSD2B has been identified as the exclusive sphingosine-1-phosphate (S1P) transporter in red blood cells (RBC) and platelets. MFSD2B-mediated S1P export from platelets is required for aggregation and thrombus formation, whereas RBC MFSD2B maintains plasma S1P levels in concert with SPNS2, the vascular and lymphatic endothelial cell S1P exporter, to control endothelial permeability and ensure normal vascular development. However, the physiological function of MFSD2B in RBC remains rather elusive despite mounting evidence that the intracellular S1P pool plays important roles in RBC glycolysis, adaptation to hypoxia and the regulation of cell shape, hydration, and cytoskeletal organisation. The large accumulation of S1P and sphingosine in MFSD2B-deficient RBC coincides with stomatocytosis and membrane abnormalities, the reasons for which have remained obscure. MFS family members transport substrates in a cation-dependent manner along electrochemical gradients, and disturbances in cation permeability are known to alter cell hydration and shape in RBC. Furthermore, the mfsd2 gene is a transcriptional target of GATA together with mylk3, the gene encoding myosin light chain kinase (MYLK). S1P is known to activate MYLK and thereby impact on myosin phosphorylation and cytoskeletal architecture. This suggests that metabolic, transcriptional and functional interactions may exist between MFSD2B-mediated S1P transport and RBC deformability. Here, we review the evidence for such interactions and the implications for RBC homeostasis.
Collapse
Affiliation(s)
- Shahrooz Ghaderi
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
9
|
A familial case of MYH9 gene mutation associated with multiple functional and structural platelet abnormalities. Sci Rep 2022; 12:19975. [PMID: 36404341 PMCID: PMC9676191 DOI: 10.1038/s41598-022-24098-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Mutations in the MYH9 gene result in macrothrombocytopenia often associated with hemorrhages. Here, we studied the function and structure of platelets in three family members with a heterozygous mutation R1933X in the MYH9 gene, characteristic of closely related disorders known as the May-Hegglin anomaly and Sebastian syndrome. The examination included complete blood count, blood smear microscopy, platelet flow cytometry (expression of P-selectin and active integrin αIIbβ3 before and after activation), the kinetics of platelet-driven contraction (retraction) of blood clots, as well as scanning/transmission electron microscopy of platelets. Despite severe thrombocytopenia ranging (36-86) × 109/l, none of the patients had hemorrhages at the time of examination, although they had a history of heavy menstruation, spontaneous ecchymosis, and postpartum hemorrhage. Flow cytometry showed background platelet activation, revealed by overexpression of P-selectin and active αIIbβ3 integrin above normal levels. After TRAP-induced stimulation, the fractions of platelets expressing P-selectin in the proband and her sister were below normal response, indicating partial platelet refractoriness. The initiation of clot contraction was delayed. Electron microscopy revealed giant platelets with multiple filopodia and fusion of α-granules with dilated open canalicular system, containing filamentous and vesicular inclusions. The novel concept implies that the R1933X mutation in the MYH9 gene is associated not only with thrombocytopenia, but also with qualitative structural and functional defects in platelets. Platelet dysfunction includes impaired contractility, which can disrupt the compaction of hemostatic clots, making the clots weak and permeable, therefore predisposing patients with MYH9 gene mutations to the hemorrhagic phenotype.
Collapse
|
10
|
Identification of Transferrin Receptor 1 (TfR1) Overexpressed in Lung Cancer Cells, and Internalization of Magnetic Au-CoFe2O4 Core-Shell Nanoparticles Functionalized with Its Ligand in a Cellular Model of Small Cell Lung Cancer (SCLC). Pharmaceutics 2022; 14:pharmaceutics14081715. [PMID: 36015341 PMCID: PMC9413248 DOI: 10.3390/pharmaceutics14081715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Lung cancer is, currently, one of the main malignancies causing deaths worldwide. To date, early prognostic and diagnostic markers for small cell lung cancer (SCLC) have not been systematically and clearly identified, so most patients receive standard treatment. In the present study, we combine quantitative proteomics studies and the use of magnetic core-shell nanoparticles (mCSNP’s), first to identify a marker for lung cancer, and second to functionalize the nanoparticles and their possible application for early and timely diagnosis of this and other types of cancer. In the present study, we used label-free mass spectrometry in combination with an ion-mobility approach to identify 220 proteins with increased abundance in small cell lung cancer (SCLC) cell lines. Our attention was focused on cell receptors for their potential application as mCSNP’s targets; in this work, we report the overexpression of Transferrin Receptor (TfR1) protein, also known as Cluster of Differentiation 71 (CD71) up to a 30-fold increase with respect to the control cell. The kinetics of endocytosis, evaluated by a flow cytometry methodology based on fluorescence quantification, demonstrated that receptors were properly activated with the transferrin supported on the magnetic core-shell nanoparticles. Our results are important in obtaining essential information for monitoring the disease and/or choosing better treatments, and this finding will pave the way for future synthesis of nanoparticles including chemotherapeutic drugs for lung cancer treatments.
Collapse
|
11
|
Baumann J, Sachs L, Otto O, Schoen I, Nestler P, Zaninetti C, Kenny M, Kranz R, von Eysmondt H, Rodriguez J, Schäffer TE, Nagy Z, Greinacher A, Palankar R, Bender M. Reduced platelet forces underlie impaired hemostasis in mouse models of MYH9-related disease. SCIENCE ADVANCES 2022; 8:eabn2627. [PMID: 35584211 PMCID: PMC9116608 DOI: 10.1126/sciadv.abn2627] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MYH9-related disease patients with mutations in the contractile protein nonmuscle myosin heavy chain IIA display, among others, macrothrombocytopenia and a mild-to-moderate bleeding tendency. In this study, we used three mouse lines, each with one point mutation in the Myh9 gene at positions 702, 1424, or 1841, to investigate mechanisms underlying the increased bleeding risk. Agonist-induced activation of Myh9 mutant platelets was comparable to controls. However, myosin light chain phosphorylation after activation was reduced in mutant platelets, which displayed altered biophysical characteristics and generated lower adhesion, interaction, and traction forces. Treatment with tranexamic acid restored clot retraction in the presence of tPA and reduced bleeding. We verified our findings from the mutant mice with platelets from patients with the respective mutation. These data suggest that reduced platelet forces lead to an increased bleeding tendency in patients with MYH9-related disease, and treatment with tranexamic acid can improve the hemostatic function.
Collapse
Affiliation(s)
- Juliane Baumann
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Laura Sachs
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz—Humorale Immunreaktionen bei Kardiovaskulären Erkrankungen, University Greifswald, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V., Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Peter Nestler
- Zentrum für Innovationskompetenz—Humorale Immunreaktionen bei Kardiovaskulären Erkrankungen, University Greifswald, Greifswald, Germany
| | - Carlo Zaninetti
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- University of Pavia, Pavia, Italy
| | - Martin Kenny
- School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ruth Kranz
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | | | - Johanna Rodriguez
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | | | - Zoltan Nagy
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
- Corresponding author. (M.B.); (R.P.)
| | - Markus Bender
- Institute of Experimental Biomedicine—Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
- Corresponding author. (M.B.); (R.P.)
| |
Collapse
|
12
|
Wu Y, Yu X, Wang Y, Huang Y, Tang J, Gong S, Jiang S, Xia Y, Li F, Yu B, Zhang Y, Kou J. Ruscogenin alleviates LPS-triggered pulmonary endothelial barrier dysfunction through targeting NMMHC IIA to modulate TLR4 signaling. Acta Pharm Sin B 2022; 12:1198-1212. [PMID: 35530141 PMCID: PMC9069402 DOI: 10.1016/j.apsb.2021.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
Pulmonary endothelial barrier dysfunction is a hallmark of clinical pulmonary edema and contributes to the development of acute lung injury (ALI). Here we reported that ruscogenin (RUS), an effective steroidal sapogenin of Radix Ophiopogon japonicus, attenuated lipopolysaccharides (LPS)-induced pulmonary endothelial barrier disruption through mediating non-muscle myosin heavy chain IIA (NMMHC IIA)‒Toll-like receptor 4 (TLR4) interactions. By in vivo and in vitro experiments, we observed that RUS administration significantly ameliorated LPS-triggered pulmonary endothelial barrier dysfunction and ALI. Moreover, we identified that RUS directly targeted NMMHC IIA on its N-terminal and head domain by serial affinity chromatography, molecular docking, biolayer interferometry, and microscale thermophoresis analyses. Downregulation of endothelial NMMHC IIA expression in vivo and in vitro abolished the protective effect of RUS. It was also observed that NMMHC IIA was dissociated from TLR4 and then activating TLR4 downstream Src/vascular endothelial cadherin (VE-cadherin) signaling in pulmonary vascular endothelial cells after LPS treatment, which could be restored by RUS. Collectively, these findings provide pharmacological evidence showing that RUS attenuates LPS-induced pulmonary endothelial barrier dysfunction by inhibiting TLR4/Src/VE-cadherin pathway through targeting NMMHC IIA and mediating NMMHC IIA‒TLR4 interactions.
Collapse
|
13
|
Ghosh A, Coffin M, West R, Fowler VM. Erythroid differentiation in mouse erythroleukemia cells depends on Tmod3-mediated regulation of actin filament assembly into the erythroblast membrane skeleton. FASEB J 2022; 36:e22220. [PMID: 35195928 DOI: 10.1096/fj.202101011r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/11/2022]
Abstract
Erythroid differentiation (ED) is a complex cellular process entailing morphologically distinct maturation stages of erythroblasts during terminal differentiation. Studies of actin filament (F-actin) assembly and organization during terminal ED have revealed essential roles for the F-actin pointed-end capping proteins, tropomodulins (Tmod1 and Tmod3). Tmods bind tropomyosins (Tpms), which enhance Tmod capping and F-actin stabilization. Tmods can also nucleate F-actin assembly, independent of Tpms. Tmod1 is present in the red blood cell (RBC) membrane skeleton, and deletion of Tmod1 in mice leads to a mild compensated anemia due to mis-regulated F-actin lengths and membrane instability. Tmod3 is not present in RBCs, and global deletion of Tmod3 leads to embryonic lethality in mice with impaired ED. To further decipher Tmod3's function during ED, we generated a Tmod3 knockout in a mouse erythroleukemia cell line (Mel ds19). Tmod3 knockout cells appeared normal prior to ED, but showed defects during progression of ED, characterized by a marked failure to reduce cell and nuclear size, reduced viability, and increased apoptosis. Tmod3 does not assemble with Tmod1 and Tpms into the Triton X-100 insoluble membrane skeleton during ED, and loss of Tmod3 had no effect on α1,β1-spectrin and protein 4.1R assembly into the membrane skeleton. However, F-actin, Tmod1 and Tpms failed to assemble into the membrane skeleton during ED in absence of Tmod3. We propose that Tmod3 nucleation of F-actin assembly promotes incorporation of Tmod1 and Tpms into membrane skeleton F-actin, and that this is integral to morphological maturation and cell survival during erythroid terminal differentiation.
Collapse
Affiliation(s)
- Arit Ghosh
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Megan Coffin
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Richard West
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Velia M Fowler
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
Nowak RB, Alimohamadi H, Pestonjamasp K, Rangamani P, Fowler VM. Nanoscale Dynamics of Actin Filaments in the Red Blood Cell Membrane Skeleton. Mol Biol Cell 2022; 33:ar28. [PMID: 35020457 PMCID: PMC9250383 DOI: 10.1091/mbc.e21-03-0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15–18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200–300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.
Collapse
Affiliation(s)
- Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Biological Sciences, University of Delaware, Newark, DE 19716
| |
Collapse
|
15
|
Lassandro G, Palladino V, Faleschini M, Barone A, Boscarol G, Cesaro S, Chiocca E, Farruggia P, Giona F, Gorio C, Maggio A, Marinoni M, Marzollo A, Palumbo G, Russo G, Saracco P, Spinelli M, Verzegnassi F, Morga F, Savoia A, Giordano P. "CHildren with Inherited Platelet disorders Surveillance" (CHIPS) retrospective and prospective observational cohort study by Italian Association of Pediatric Hematology and Oncology (AIEOP). Front Pediatr 2022; 10:967417. [PMID: 36507135 PMCID: PMC9728612 DOI: 10.3389/fped.2022.967417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inherited thrombocytopenias (ITs) are rare congenital bleeding disorders characterized by different clinical expression and variable prognosis. ITs are poorly known by clinicians and often misdiagnosed with most common forms of thrombocytopenia. MATERIAL AND METHODS "CHildren with Inherited Platelet disorders Surveillance" study (CHIPS) is a retrospective - prospective observational cohort study conducted between January 2003 and January 2022 in 17 centers affiliated to the Italian Association of Pediatric Hematology and Oncology (AIEOP). The primary objective of this study was to collect clinical and laboratory data on Italian pediatric patients with inherited thrombocytopenias. Secondary objectives were to calculate prevalence of ITs in Italian pediatric population and to assess frequency and genotype-phenotype correlation of different types of mutations in our study cohort. RESULTS A total of 139 children, with ITs (82 male - 57 female) were enrolled. ITs prevalence in Italy ranged from 0.7 per 100,000 children during 2010 to 2 per 100,000 children during 2022. The median time between the onset of thrombocytopenia and the diagnosis of ITs was 1 years (range 0 - 18 years). A family history of thrombocytopenia has been reported in 90 patients (65%). Among 139 children with ITs, in 73 (53%) children almost one defective gene has been identified. In 61 patients a pathogenic mutation has been identified. Among them, 2 patients also carry a variant of uncertain significance (VUS), and 4 others harbour 2 VUS variants. VUS variants were identified in further 8 patients (6%), 4 of which carry more than one variant VUS. Three patients (2%) had a likely pathogenic variant while in 1 patient (1%) a variant was identified that was initially given an uncertain significance but was later classified as benign. In addition, in 17 patients the genetic diagnosis is not available, but their family history and clinical/laboratory features strongly suggest the presence of a specific genetic cause. In 49 children (35%) no genetic defect were identified. In ninetyseven patients (70%), thrombocytopenia was not associated with other clinically apparent disorders. However, 42 children (30%) had one or more additional clinical alterations. CONCLUSION Our study provides a descriptive collection of ITs in the pediatric Italian population.
Collapse
Affiliation(s)
- Giuseppe Lassandro
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Palladino
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Michela Faleschini
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Angelica Barone
- Pediatric Hematology Oncology, Dipartimento Materno-Infantile, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianluca Boscarol
- Department of Pediatrics, Central Teaching Hospital of Bolzano/Bozen, Bolzano, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Elena Chiocca
- Pediatric Hematology Oncology, Department of Pediatric Hematology/Oncology and HSCT, Meyer Children's University Hospital, Florence, Italy
| | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, ARNAS (Azienda di Rilievo Nazionale ad Alta Specializzazione) Ospedale Civico, Palermo, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, AOU Policlinico Umberto I, Rome, Italy
| | - Chiara Gorio
- Hematology Oncology Unit, Children's Hospital, ASST Spedali Civili, Brescia, Italy
| | - Angela Maggio
- UOC Oncoematologia Pediatrica-IRCCS Ospedale Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Maddalena Marinoni
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Socio Sanitaria Settelaghi, Varese, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Giuseppe Palumbo
- Department of Pediatric Hematology and Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Russo
- Pediatric Hematology Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paola Saracco
- Pediatric Hematology, Department of Pediatrics, University Hospital Città Della Salute e Della Scienza, Turin, Italy
| | - Marco Spinelli
- Pediatric Hematology Oncology, Department of Pediatrics, MBBM Foundation, Monza, Italy
| | - Federico Verzegnassi
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesca Morga
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Savoia
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
16
|
MYH9 is crucial for stem cell-like properties in non-small cell lung cancer by activating mTOR signaling. Cell Death Discov 2021; 7:282. [PMID: 34635641 PMCID: PMC8505404 DOI: 10.1038/s41420-021-00681-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
The fatality rate of non-small cell lung cancer (NSCLC) has been high due to the existence of cancer stem cells (CSCs). Non-muscle myosin heavy chain 9 (MYH9) can promote the progression of various tumors, but its effect on the stem cell-like characteristics of lung cancer cells (LCCs) has not been clarified. Our research found that the stemness characteristics of LCCs were significantly enhanced by the overexpression of MYH9, and the knockout of MYH9 had the opposite effects. The in vivo with inhibitor blebbistatin further confirmed the effect of MYH9 on the stem cell-like behavior of LCCs. Furthermore, western blotting showed that the expression level of CSCs markers (CD44, SOX2, Nanog, CD133, and OCT4) was also regulated by MYH9. Mechanistic studies have shown that MYH9 regulates stem cell-like features of LCCs by regulating the mTOR signaling pathway, which was supported by sphere formation experiments after LCCs were treated with inhibitors Rapamycin and CHIR-99021. Importantly, high expression of MYH9 in lung cancer is positively correlated with poor clinical prognosis and is an independent risk factor for patients with NSCLC.
Collapse
|
17
|
Tennessen JA, Duraisingh MT. Three Signatures of Adaptive Polymorphism Exemplified by Malaria-Associated Genes. Mol Biol Evol 2021; 38:1356-1371. [PMID: 33185667 PMCID: PMC8042748 DOI: 10.1093/molbev/msaa294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malaria has been one of the strongest selective pressures on our species. Many of the best-characterized cases of adaptive evolution in humans are in genes tied to malaria resistance. However, the complex evolutionary patterns at these genes are poorly captured by standard scans for nonneutral evolution. Here, we present three new statistical tests for selection based on population genetic patterns that are observed more than once among key malaria resistance loci. We assess these tests using forward-time evolutionary simulations and apply them to global whole-genome sequencing data from humans, and thus we show that they are effective at distinguishing selection from neutrality. Each test captures a distinct evolutionary pattern, here called Divergent Haplotypes, Repeated Shifts, and Arrested Sweeps, associated with a particular period of human prehistory. We clarify the selective signatures at known malaria-relevant genes and identify additional genes showing similar adaptive evolutionary patterns. Among our top outliers, we see a particular enrichment for genes involved in erythropoiesis and for genes previously associated with malaria resistance, consistent with a major role for malaria in shaping these patterns of genetic diversity. Polymorphisms at these genes are likely to impact resistance to malaria infection and contribute to ongoing host-parasite coevolutionary dynamics.
Collapse
|
18
|
Han X, Li C, Zhang S, Hou X, Chen Z, Zhang J, Zhang Y, Sun J, Wang Y. Why thromboembolism occurs in some patients with thrombocytopenia and treatment strategies. Thromb Res 2020; 196:500-509. [PMID: 33091704 DOI: 10.1016/j.thromres.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022]
Abstract
Platelets play such an important role in the process of thrombosis that patients with thrombocytopenia generally have an increased risk of bleeding. However, abnormal thrombotic events can sometimes occur in patients with thrombocytopenia, which is unusual and inexplicable. The treatments for thrombocytopenia and thromboembolism are usually contradictory. This review introduces the mechanisms of thromboembolism in patients with different types of thrombocytopenia and outlines treatment recommendations for the prevention and treatment of thrombosis. According to the cause of thrombocytopenia, this article addresses four etiologies, including inherited thrombocytopenia (Myh9-related disease, ANKRD26-associated thrombocytopenia, Glanzmann thrombasthenia, Bernard-Soulier syndrome), thrombotic microangiopathy (thrombotic thrombocytopenic purpura, atypical hemolytic uremic syndrome, hemolytic uremic syndrome, Hemolysis Elevated Liver enzymes and Low Platelets syndrome, disseminated intravascular coagulation), autoimmune-related thrombocytopenia (immune thrombocytopenic purpura, antiphospholipid syndrome, systemic lupus erythematosus), and acquired thrombocytopenia (Infection-induced thrombocytopenia and drug-induced thrombocytopenia, heparin-induced thrombocytopenia). We hope to provide more evidence for clinical applications and future research.
Collapse
Affiliation(s)
- Xiaorong Han
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Cheng Li
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Shuai Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Xiaojie Hou
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, China.
| | - Zhongbo Chen
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jin Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Ying Zhang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Jian Sun
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| | - Yonggang Wang
- Department of Cardiovascular Center, Jilin University First Hospital, China.
| |
Collapse
|
19
|
Fernandez-Prado R, Carriazo-Julio SM, Torra R, Ortiz A, Perez-Gomez MV. MYH9-related disease: it does exist, may be more frequent than you think and requires specific therapy. Clin Kidney J 2019; 12:488-493. [PMID: 31384439 PMCID: PMC6671427 DOI: 10.1093/ckj/sfz103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
In this issue of ckj, Tabibzadeh et al. report one of the largest series of patients with MYH9 mutations and kidney disease. The cardinal manifestation of MYH9-related disease is thrombocytopenia with giant platelets. The population frequency of pathogenic MYH9 mutations may be at least 1 in 20 000. The literature abounds in misdiagnosed cases treated for idiopathic thrombocytopenic purpura with immune suppressants and even splenectomy. Additional manifestations include neurosensorial deafness and proteinuric and hematuric progressive kidney disease (at some point, it was called Alport syndrome with macrothrombocytopenia), leucocyte inclusions, cataracts and liver enzyme abnormalities, resulting in different names for different manifestation combinations (MATINS, May-Hegglin anomaly, Fechtner, Epstein and Sebastian syndromes, and deafness AD 17). The penetrance and severity of kidney disease are very variable, which may obscure the autosomal dominant inheritance. A correct diagnosis will both preclude unnecessary and potentially dangerous therapeutic interventions and allow genetic counselling and adequate treatment. Morphological erythrocyte, granulocyte and platelet abnormalities may allow the future development of high-throughput screening techniques adapted to clinical peripheral blood flow cytometers.
Collapse
Affiliation(s)
- Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- REDinREN, Instituto de Investigación Carlos III, Madrid, Spain
| | - Sol Maria Carriazo-Julio
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- REDinREN, Instituto de Investigación Carlos III, Madrid, Spain
| | - Roser Torra
- REDinREN, Instituto de Investigación Carlos III, Madrid, Spain
- Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- REDinREN, Instituto de Investigación Carlos III, Madrid, Spain
| | - María Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- REDinREN, Instituto de Investigación Carlos III, Madrid, Spain
| |
Collapse
|