1
|
Fang X, Zhou F, Ye S, Zhang H, Guo H, Chen X, Liang C, Pu X, Cao Y, Ren Q, Li X, Zhai L, Huang H, Hong H. A prognostic index for advanced-stage extranodal natural killer/T-cell lymphoma: A multicenter study. Ann Hematol 2025:10.1007/s00277-024-06160-6. [PMID: 39774927 DOI: 10.1007/s00277-024-06160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Advanced-stage extranodal natural killer/T-cell lymphoma (ENKTL) is a highly heterogeneous disease with very poor prognosis. All commonly utilized prognostic models incorporated both early-stage and advanced-stage patients in the modeling process. This study aim to design a prognostic model specifically for advanced-stage ENKTL, providing risk stratification in affected patients. We analyzed 291 patients with stage III/IV ENKTL receiving asparaginase-based chemotherapy from 8 institutions to develop a new prognostic model and validate it in an independent cohort consisted of 221 patients from 4 additional hospitals. The prognostic model included three independent variables based on a multivariate analysis for overall survival (OS): age, bone marrow invasiveness and visceral organ involvement. We identified three different risk groups: group 1, no adverse factors; group 2, one factor; and group 3, two or three factors, which were associated with 5-year OS rates of 66.0%, 32.3%, and 20.0%, respectively (P < 0.001). The prognostic index of natural killer lymphoma (PINK) and nomogram-revised risk index (NRI) were unsatisfactory for stratifying these patients. These results were validated and confirmed in an independent cohort. This newly proposed model can be used to guide risk-adapted treatment for advanced stage ENKTL.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fenglan Zhou
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610042, China
| | - Sheng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Medical Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hongqiang Guo
- Department of Medical Oncology, He Nan Cancer Hospital, Zhengzhou, China
| | - Xinggui Chen
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaoyong Liang
- Department of Medical Oncology, Guangxi Cancer Hospital, Nanning, China
| | - Xingxiang Pu
- Department of Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Yabing Cao
- Department of Medical Oncology, Kiang Wu Hospital, Macau, China
| | - Quanguang Ren
- Department of Medical Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Li
- Department of Medical Oncology, Shandong Cancer Hospital, Jinan, China
| | - Linzhu Zhai
- Department of Medical Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - He Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610042, China.
| |
Collapse
|
2
|
Deng H, Yang Q, Shi Z. A Rare Case of Severe Facial Disfiguration Due to Extranodal NK/T-Cell Lymphoma. J Asthma Allergy 2025; 18:27-31. [PMID: 39801733 PMCID: PMC11725256 DOI: 10.2147/jaa.s490247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Background Extranodal NK/T-cell lymphoma, nasal type (ENKTCL-NT) is a rare, highly invasive Epstein-Barr virus associated hematological malignant tumor with an unfavorable prognosis. Although ENKTCL-NT has been previously reported, no relevant article has provided an intuitive, progressive series of schematic illustrations of the rapid progression of facial ulcers. Objective This article reports a serious case of ENKTCL-NT that involved the entire process from onset to death. Case Summary A 67-year-old man suffered a facial lesion started at the right ala nasi. The wound continued to spread uncontrollably to the nasion and the nasolabial groove. Subsequently, he used an unauthorized external application of herbal medicine, which unfortunately resulted in further expansion of the wound, encompassing the area from the right eyelid to the left inner canthus, extending up to the eyebrow arch, down to the right ala nasi, and deep into the nasal bone over six months. Histopathological analysis of the two biopsies revealed inflammatory necrotic granulation tissue. Conclusion Nasal extranodal NK/T-cell lymphoma presenting with non-specific symptoms could easily lead to misdiagnosis. It progresses quickly, while adequate, repeated, and multiple spot biopsies for histopathologic examination help confirm the diagnosis.
Collapse
Affiliation(s)
- Huiyi Deng
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Qintai Yang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Zhaohui Shi
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Feng D, Yan Z, Fu B, Bai S, Zhu L, Gale RP, Xia Z, Liang Y, Wang H. Phase II study of pegaspargase, etoposide, gemcitabine (PEG) followed by involved-field radiation therapy in early-stage extranodal natural killer/T-cell lymphoma. Hematology 2024; 29:2402102. [PMID: 39268981 DOI: 10.1080/16078454.2024.2402102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE The prognosis of extra-nodal NK/T cell lymphoma (ENKTL) is poor, and the optimal therapy remains controversial. This study aims to evaluate the safety and efficacy of a new combined modality therapy. METHODS Phase-2 study of pegaspargase, etoposide and gemcitabine (PEG) combined with involved field radiation therapy (IFRT) in newly-diagnosed patients with early-stage ENKTL. Patients received 4 course of PEG followed by IFRT. The primary endpoints were complete response (CR), partial response (PR), and objective response rate (ORR) after IFRT. Secondary endpoints included progression-free survival (PFS), overall survival (OS) and adverse events. RESULTS 34 consecutive patients with Ann Arbor stage I/II were enrolled. 3 patients progressed on PEG, while the remaining 31 received IFRT. The ORR was 88.2% (30/34), included 28 (82.4%) complete and 2 (5.8%) partial responses. With a median follow-up of 56.0 months (Interquartile Range [IQR], 36.0-66.9 months), the estimated 5-year PFS and OS were 87.4% (95% Confidence Interval [CI],69.5%-94.8%) and 97.1% (95%CI, 80.1%-99.6%), respectively. Most adverse events were hematological and easily managed. CONCLUSIONS PEG followed by IFRT is a safe and effective initial therapy for early-stage ENKTL, demonstrating impressive PFS and OS rates. This promising approach warrants further validation in a randomized controlled trial (Registered at Clinicaltrials.gov NCT02705508).Trial registration: ClinicalTrials.gov identifier: NCT02705508.
Collapse
Affiliation(s)
- Demei Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhimin Yan
- Department of Hematology, the First Affiliated Hospital of Gannan Medical College, Ganzhou, People's Republic of China
| | - Bibo Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Shenrui Bai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lewei Zhu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, People's Republic of China
| | - Robert Peter Gale
- Department of Immunology and Inflammation, Haematology Research Centre, Imperial College London, London, UK
| | - Zhongjun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Luo F, Zhong QZ, Liu X, Hou XR, Qian LT, Qiao XY, Wang H, Zhu Y, Cao JZ, Wu JX, Wu T, Zhu SY, Shi M, Zhang HL, Zhang XM, Su H, Song YQ, Zhu J, Zhang YJ, Huang HQ, Wang Y, He X, Zhang LL, Qu BL, Yang Y, Hu C, Deng M, Wang SL, Qi SN, Li YX. Optimizing the combination of chemotherapeutic drugs along with radiotherapy for extranodal NK/T-cell lymphoma. Ther Adv Med Oncol 2024; 16:17588359241285981. [PMID: 39399411 PMCID: PMC11468003 DOI: 10.1177/17588359241285981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Background Extranodal natural killer/T-cell lymphoma (ENKTCL) has a unique treatment principle. However, the optimal combination of drugs along with radiotherapy (RT) is unknown. Design Retrospective cohort study. Objectives We screened multiple drug combinations to identify the most efficacious therapeutic combinations. Methods We reviewed 3105 patients who received 40 chemotherapy regimens with different combinations of 9 drug classes and/or RT. Least absolute shrinkage and selection operator and multivariable Cox regression analyses were used to screen efficacious single drugs and identify optimal combinations for overall survival (OS). Inverse probability of treatment weighting (IPTW) and multivariable analyses were used to compare survival between treatment regimens. Results Screening and validation revealed RT, asparaginase (ASP), and gemcitabine (GEM) to be the most efficacious single modality/drug. RT remained an important component of first-line treatment, whereas ASP was a fundamental drug of non-anthracycline (ANT)-based regimens. Addition of RT to non-ANT-based or ASP/GEM-based regimens, or addition of an ASP-drug into ANT-based or GEM/platinum-based regimens, improved 5-year OS significantly. Use of ASP/GEM-based regimens was associated with significantly higher 5-year OS (79.9%) compared with ASP/ANT-based (69.2%, p = 0.001), ASP/methotrexate-based (63.5%, p = 0.011), or ASP/not otherwise specified-based (63.2%, p < 0.001) regimens. The survival benefit of ASP/GEM-based regimens over other ASP-based regimens was substantial across risk-stratified and advanced-stage subgroups. The survival benefits of a combination of RT, ASP, and GEM were consistent after adjustment for confounding factors by IPTW. Conclusion These results suggest that combining ASP/GEM with RT for ENKTCL is an efficacious and feasible therapeutic option and provides a rationale and strategy for developing combination therapies.
Collapse
Affiliation(s)
- Fei Luo
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China Department of Radiation Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiu-Zi Zhong
- Department of Radiation Oncology, Beijing Hospital, National Geriatric Medical Center, Beijing, China
| | - Xin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Rong Hou
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Ting Qian
- The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Ying Qiao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hua Wang
- Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang, China
| | - Jian-Zhong Cao
- Shanxi Cancer Hospital and the Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun-Xin Wu
- Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China
| | - Tao Wu
- Affiliated Hospital of Guizhou Medical University, Guizhou Cancer Hospital, Guiyang, Guizhou, China
| | - Su-Yu Zhu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Mei Shi
- Xijing Hospital of Fourth Military Medical University, Xi’an, China
| | - Hui-Lai Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xi-Mei Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Hang Su
- The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yu-Qin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu-Jing Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Hui-Qiang Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Ying Wang
- Chongqing University Cancer Hospital and Chongqing Cancer Hospital, Chongqing, China
| | - Xia He
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Li-Ling Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bao-Lin Qu
- The General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Yong Yang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chen Hu
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Lian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Nan Qi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Road, Chaoyang District, Beijing 100021, China
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Road, Chaoyang District, Beijing 100021, China
| |
Collapse
|
5
|
Song W, Gao Y, Wu J, Li H, Shi Z, Gong C, Zhang Z, Li Z, Zhang M. LMP1 enhances aerobic glycolysis in natural killer/T cell lymphoma. Cell Death Dis 2024; 15:604. [PMID: 39164228 PMCID: PMC11335758 DOI: 10.1038/s41419-024-06999-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Natural killer/T cell lymphoma (NKTCL) exhibits highly aggressive clinical behavior, and the outcomes for relapsed/refractory patients are still poor. Recently, the mechanism underlying the effect of Epstein-Barr virus (EBV) infection, which has not been fully defined in NKTCL, has attracted great attention. We explored how LMP1 promoted aerobic glycolysis via metabolic sequencing combined with mRNA sequencing and immunoprecipitation coupled to mass spectrometry. Experimental assays were used to determine the effects of LMP1 and its downstream pathway on the function and glucose metabolism of NKTCL cells. The correlations between LMP1 expression in patients and their clinical features, treatment response, and prognosis were analyzed. Results show that LMP1 enhances NKTCL cell proliferation in vitro and in vivo, inhibits apoptosis, and decreases gemcitabine sensitivity. In addition, LMP1 also enhances aerobic glycolysis in NKTCL cells, as indicated by increases in glucose uptake, lactate production, and extracellular acidification rate. Clinically, LMP1 expression is correlated with risk stratification, treatment response, and prognosis, and higher LMP1 expression indicates greater SUVmax for NKTCL patients. Mechanistically, LMP1 competitively binds to TRAF3 to promote cell proliferation and aerobic glycolysis by regulating the noncanonical NF-κB pathway. The application of an NF-κB pathway inhibitor or reactivation of the NF-κB pathway affects aerobic glycolysis and the biological function of NKTCL cells. In summary, this study is the first to describe and define in detail how LMP1 affects glucose metabolism in NKTCL and might provide a novel perspective for further treatment.
Collapse
Affiliation(s)
- Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyang Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiazhuo Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Gong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zihe Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Kim TY, Kim TJ, Han EJ, Min GJ, Jeon Y, Cho SG. Challenges in overcoming advanced-stage or relapsed refractory extranodal NK/T-cell lymphoma: meta-analysis of individual patient data. Front Oncol 2024; 14:1362367. [PMID: 39144825 PMCID: PMC11322147 DOI: 10.3389/fonc.2024.1362367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Extranodal NK/T-cell lymphoma (ENKTCL), a non-Hodgkin lymphoma, is known for its destructive local impact on nasal structures and systemic induction of inflammatory cytokines. Concurrent treatment with radiation and nonanthracycline- based chemotherapy has improved survival rates in patients with localized disease stages. However, survival outcomes vary significantly in advanced-stage and relapsed or refractory (R/R) cases. Methods Therefore, we conducted a meta-analysis using random effects models to assess prognostic factors in advanced or R/R ENKTCL, employing a digital extractor on Kaplan-Meier graphs owing to the scarcity of published prospective trials for these patients. Results We observed that patients with advanced ENKTCL treated with Lasparaginase had a median progression-free survival (PFS) of 14.3 months and an overall survival (OS) of 19 months. In R/R ENKTCL, PFS and OS were 11.7 and 15.6 months, respectively. Additionally, OS outcomes in advanced-stage ENKTCL were better in the asparaginase group than that in the non-asparaginase group, with PEG-asparaginase showing superior results compared with that using Lasparaginase. Epstein-Barr Virus (EBV)-DNA positivity in the bloodstream prior to treatment was associated with poor outcomes in advanced-stage ENKTCL, and similar trends were observed in patients with R/R ENKTCL and post-treatment EBV viremia. Discussion Collectively, these findings suggest that chemotherapy with Lasparaginase or PEG-asparaginase can enhance survival in advanced or R/R ENKTCL. However, future strategies must be developed to effectively suppress EBV viremia and achieve a deep response toward tumor eradication.
Collapse
Affiliation(s)
- Tong Yoon Kim
- Department of Hematology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lymphoma and Cell Therapy Research Center, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Ji Han
- Division of Nuclear Medicine, Department of Radiology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gi June Min
- Lymphoma and Cell Therapy Research Center, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youngwoo Jeon
- Department of Hematology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Lymphoma and Cell Therapy Research Center, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Lymphoma and Cell Therapy Research Center, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Fan S, Zhou Q, Zhou Z, Wang D, Lin S, Bi H, Wang H, Min H. Acute myeloid leukemia following remission of AIDS-associated extra-nodal NK/T-cell lymphoma. Heliyon 2024; 10:e33622. [PMID: 39091951 PMCID: PMC11292489 DOI: 10.1016/j.heliyon.2024.e33622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Background AIDS-related NK/T-cell lymphoma is a rare subtype of AIDS-related lymphomas, characterized by a poor prognosis and lack of standardized treatment protocols. To date, there have been no reported cases of AIDS-associated NK/T-cell lymphoma in remission followed by treatment-related acute myeloid leukemia (t-AML), where both the lymphoma and AML achieved remission and long-term survival through chemotherapy alone. Case presentation We report a case of a patient diagnosed with AIDS-related extra-nodal NK/T-cell lymphoma (ENKTCL). The patient achieved complete remission after receiving six cycles of chemotherapy, local radiotherapy, and combination antiretroviral therapy (cART). Throughout the follow-up period, the patient continued cART treatment, maintaining an HIV-RNA level below the lower limit of detection. However, 70 months later, the patient developed new symptoms and was subsequently diagnosed with acute myeloid leukemia (AML) M4 subtype. Following the completion of 10 cycles of chemotherapy and ongoing cART, the patient achieved complete remission of AML, with an overall survival time exceeding 103 months from the initial ENKTCL diagnosis. Conclusions This case highlights the effectiveness of chemotherapy combined with cART in the treatment of AIDS-associated NK/T-cell lymphoma and secondary treatment-related leukemia. This approach may serve as a viable option for patients who are not candidates for bone marrow transplantation. Furthermore, this case underscores the importance of long-term follow-up in the management of AIDS-associated malignancies.
Collapse
Affiliation(s)
- Shanshan Fan
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| | - Qiwen Zhou
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| | - Zeping Zhou
- Department of Hematology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Danqing Wang
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| | - Sen Lin
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| | - Hui Bi
- Department of Hematology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Honghui Wang
- Department of Hematology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Haiyan Min
- Department of Infectious Diseases, Yunnan Provincial Infectious Diseases Hospital/Yunnan AIDS Care Center, Kunming, 650301, China
| |
Collapse
|
8
|
Zhang Y, Deng Y, Zou Q, Jing B, Cai P, Tian X, Yang Y, Li B, Liu F, Li Z, Liu Z, Feng S, Peng T, Dong Y, Wang X, Ruan G, He Y, Cui C, Li J, Luo X, Huang H, Chen H, Li S, Sun Y, Xie C, Wang L, Li C, Cai Q. Artificial intelligence for diagnosis and prognosis prediction of natural killer/T cell lymphoma using magnetic resonance imaging. Cell Rep Med 2024; 5:101551. [PMID: 38697104 PMCID: PMC11148767 DOI: 10.1016/j.xcrm.2024.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/04/2024]
Abstract
Accurate diagnosis and prognosis prediction are conducive to early intervention and improvement of medical care for natural killer/T cell lymphoma (NKTCL). Artificial intelligence (AI)-based systems are developed based on nasopharynx magnetic resonance imaging. The diagnostic systems achieve areas under the curve of 0.905-0.960 in detecting malignant nasopharyngeal lesions and distinguishing NKTCL from nasopharyngeal carcinoma in independent validation datasets. In comparison to human radiologists, the diagnostic systems show higher accuracies than resident radiologists and comparable ones to senior radiologists. The prognostic system shows promising performance in predicting survival outcomes of NKTCL and outperforms several clinical models. For patients with early-stage NKTCL, only the high-risk group benefits from early radiotherapy (hazard ratio = 0.414 vs. late radiotherapy; 95% confidence interval, 0.190-0.900, p = 0.022), while progression-free survival does not differ in the low-risk group. In conclusion, AI-based systems show potential in assisting accurate diagnosis and prognosis prediction and may contribute to therapeutic optimization for NKTCL.
Collapse
Affiliation(s)
- YuChen Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - YiShu Deng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Information Technology Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - QiHua Zou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - BingZhong Jing
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Information Technology Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - PeiQiang Cai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - XiaoPeng Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu Yang
- Department of Lymphadenoma and Head & Neck Medical Oncology, Fujian Provincial Cancer Hospital & Institute, Fuzhou, P.R. China
| | - BingZong Li
- Department of Hematology, The Second Affiliated Hospital of Suzhou University, Jiangsu, P.R. China
| | - Fang Liu
- Department of Pathology, The First People's Hospital of Foshan, Foshan, P.R. China
| | - ZhiHua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P.R. China
| | - ZaiYi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, P.R. China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, P.R. China
| | - ShiTing Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - TingSheng Peng
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - YuJun Dong
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - XinYan Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - GuangYing Ruan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Yun He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - ChunYan Cui
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Jiao Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - HuiQiang Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - HaoHua Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Information Technology Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - SongQi Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - ChuanMiao Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China.
| | - ChaoFeng Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Information Technology Center, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - QingQing Cai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
9
|
Xiong J, Cheng S, Gao X, Yu SH, Dai YT, Huang XY, Zhong HJ, Wang CF, Yi HM, Zhang H, Cao WG, Li R, Tang W, Zhao Y, Xu PP, Wang L, Zhao WL. Anti-metabolic agent pegaspargase plus PD-1 antibody sintilimab for first-line treatment in advanced natural killer T cell lymphoma. Signal Transduct Target Ther 2024; 9:62. [PMID: 38448403 PMCID: PMC10917752 DOI: 10.1038/s41392-024-01782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
Natural killer T cell lymphoma (NKTCL) is highly aggressive, with advanced stage patients poorly responding to intensive chemotherapy. To explore effective and safe treatment for newly diagnosed advanced stage NKTCL, we conducted a phase II study of anti-metabolic agent pegaspargase plus PD-1 antibody sintilimab (NCT04096690). Twenty-two patients with a median age of 51 years (range, 24-74) were enrolled and treated with induction treatment of pegaspargase 2500 IU/m2 intramuscularly on day 1 and sintilimab 200 mg intravenously on day 2 for 6 cycles of 21 days, followed by maintenance treatment of sintilimab 200 mg for 28 cycles of 21 days. The complete response and overall response rate after induction treatment were 59% (95%CI, 43-79%) and 68% (95%CI, 47-84%), respectively. With a median follow-up of 30 months, the 2 year progression-free and overall survival rates were 68% (95%CI, 45-83%) and 86% (95%CI, 63-95%), respectively. The most frequently grade 3/4 adverse events were neutropenia (32%, n = 7) and hypofibrinogenemia (18%, n = 4), which were manageable and led to no discontinuation of treatment. Tumor proportion score of PD-L1, peripheral blood high-density lipoprotein cholesterol, and apolipoprotein A-I correlated with good response, while PD-1 on tumor infiltrating lymphocytes and peripheral Treg cells with poor response to pegaspargase plus sintilimab treatment. In conclusion, the chemo-free regimen pegaspargase plus sintilimab was effective and safe in newly diagnosed, advanced stage NKTCL. Dysregulated lipid profile and immunosuppressive signature contributed to treatment resistance, providing an alternative therapeutic approach dual targeting fatty acid metabolism and CTLA-4 in NKTCL.
Collapse
Affiliation(s)
- Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Yun Huang
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Mei Yi
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Otolaryngology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Guo Cao
- Department of Radiation, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Li
- Department of Hematology, Navy Medical Center of PLA, Shanghai, China
| | - Wei Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
10
|
Xing TY, Wang WT, Shen HR, Wu JZ, Yin H, Li Y, Wang L, Liang JH, Li JY, Xu W. [Efficacy and safety analysis of P-GemDOx regimen and stratified prognosis in patients with early extranodal NK/T cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:163-169. [PMID: 38604793 PMCID: PMC11078670 DOI: 10.3760/cma.j.cn121090-20230726-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 04/13/2024]
Abstract
Objective: To assess the efficacy, safety, and related prognostic factors associated with the P-GemDOx regimen as a first-line treatment for patients with early-stage extranodal natural killer (NK) /T cell lymphoma (ENKTL) . Methods: A retrospective analysis was performed on sixty early-stage ENKTL patients treated with the P-GemDOx regimen who were admitted to the First Affiliated Hospital of Nanjing Medical University between August 2015 and May 2021. The Chi-square test or Fisher's exact test was used to compare group differences, and the Log-rank test was used to compare the differences in survival. Survival outcomes and prognostic factors were examined. Results: After completing 4 to 6 cycles of P-GemDOx chemotherapy, the overall response rate (ORR) was 88.3%, with forty-six patients (76.7% ) achieving complete response (CR). The 4-year progression-free survival (PFS) and overall survival (OS) rates were (66.3±7.1) % and (79.5±6.0) %, respectively. According to the PINK/PINK-E model, there was no significant difference in survival outcomes among risk groups. 23.3% of patients experienced progression of disease within 24 months (POD<24). OS estimates differed significantly (P<0.001) between the POD<24 group (n=14) and the POD≥24 group (n=46). Analysis showed that SUVmax > 12.8 at diagnosis, non-single nasal cavity infiltration, and response less than CR after 4-6 cycles all had a significant association with POD24. We used these data as the basis for predicting POD<24 international prognostic index (POD24-IPI). Patients were stratified into low-risk (no risk factors), intermediate-risk (one risk factor), or high risk (two or three risk factors). These groups were associated with 4-year OS rate of 100%, (85.6±9.7) %, and (65.0±10.2) %, respectively (P=0.014). The P-GemDOx regimen was well tolerated, with hematological toxicity being the main side effect. Conclusion: This study demonstrated that the P-GemDOx regimen is effective and safe in the first-line treatment of early-stage ENKTL, and POD24-IPI is a promising prognostic model.
Collapse
Affiliation(s)
- T Y Xing
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - W T Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - H R Shen
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - J Z Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - H Yin
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Y Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - L Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - J H Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - J Y Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - W Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| |
Collapse
|
11
|
Stuver R, Epstein-Peterson ZD, Horwitz SM. Few and far between: clinical management of rare extranodal subtypes of mature T-cell and NK-cell lymphomas. Haematologica 2023; 108:3244-3260. [PMID: 38037801 PMCID: PMC10690914 DOI: 10.3324/haematol.2023.282717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/03/2023] [Indexed: 12/02/2023] Open
Abstract
While all peripheral T-cell lymphomas are uncommon, certain subtypes are truly rare, with less than a few hundred cases per year in the USA. There are often no dedicated clinical trials in these rare subtypes, and data are generally limited to case reports and retrospective case series. Therefore, clinical management is often based on this limited literature and extrapolation of data from the more common, nodal T-cell lymphomas in conjunction with personal experience. Nevertheless, thanks to tremendous pre-clinical efforts to understand these rare diseases, an increasing appreciation of the biological changes that underlie these entities is forming. In this review, we attempt to summarize the relevant literature regarding the initial management of certain rare subtypes, specifically subcutaneous panniculitis-like T-cell lymphoma, hepatosplenic T-cell lymphoma, intestinal T-cell lymphomas, and extranodal NK/T-cell lymphoma. While unequivocally established approaches in these diseases do not exist, we make cautious efforts to provide our approaches to clinical management when possible.
Collapse
Affiliation(s)
- Robert Stuver
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center.
| | - Zachary D Epstein-Peterson
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center; Department of Medicine, Weill Cornell Medical College
| | - Steven M Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center; Department of Medicine, Weill Cornell Medical College; Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
12
|
He L, Chen N, Dai L, Peng X. Advances and challenges of immunotherapies in NK/T cell lymphomas. iScience 2023; 26:108192. [PMID: 38026157 PMCID: PMC10651691 DOI: 10.1016/j.isci.2023.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Natural killer (NK)/T cell lymphoma (NKTCL) is a rare subtype of Epstein-Barr virus (EBV)-associated non-Hodgkin lymphoma characterized by poor clinical outcomes. It is more common in East Asian and Latin American countries. Despite the introduction of asparaginase/pegaspargase-based chemotherapy, the prognosis of patients with advanced NKTCL needs to be improved, and few salvage treatment options are available for relapsed/refractory patients who fail chemotherapy. Although many unknowns remain, novel treatment strategies to further improve outcomes are urgently needed. Immunotherapy has emerged and shown favorable antitumor activity in NKTCL, including monoclonal antibodies targeting immune checkpoint inhibitors, other receptors on the cellular membrane, and cellular immunotherapy, which could enhance immune cells attack on tumor cells. In this review, we provide an overview of recent immunotherapy in NKTCL, focusing on programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), chimeric antigen receptor (CAR) T cells, EBV-specific cytotoxic T lymphocytes, immunomodulatory agents, and other targeted agents, as well as the current progress and challenges in the field.
Collapse
Affiliation(s)
- Ling He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Xiong J, Dai YT, Wang WF, Zhang H, Wang CF, Yin T, Cheng S, Zhong HJ, Yu SH, Jiang L, Wang SY, Fang H, Zhang RH, Zhu Y, Yi HM, Jiang XF, Chen JY, Wang L, Xu PP, Chen SJ, Zhao WL. GPCR signaling contributes to immune characteristics of microenvironment and process of EBV-induced lymphomagenesis. Sci Bull (Beijing) 2023; 68:2607-2619. [PMID: 37798178 DOI: 10.1016/j.scib.2023.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Epstein-Barr virus (EBV) is the oncogenic driver of multiple cancers. However, the underlying mechanism of virus-cancer immunological interaction during disease pathogenesis remains largely elusive. Here we reported the first comprehensive proteogenomic characterization of natural killer/T-cell lymphoma (NKTCL), a representative disease model to study EBV-induced lymphomagenesis, incorporating genomic, transcriptomic, and in-depth proteomic data. Our multi-omics analysis of NKTCL revealed that EBV gene pattern correlated with immune-related oncogenic signaling. Single-cell transcriptome further delineated the tumor microenvironment as immune-inflamed, -deficient, and -desert phenotypes, in association with different setpoints of cancer-immunity cycle. EBV interacted with transcriptional factors to provoke GPCR interactome (GPCRome) reprogramming. Enhanced expression of chemokine receptor-1 (CCR1) on malignant and immunosuppressive cells modulated virus-cancer interaction on microenvironment. Therapeutic targeting CCR1 showed promising efficacy with EBV eradication, T-cell activation, and lymphoma cell killing in NKTCL organoid. Collectively, our study identified a previously unknown GPCR-mediated malignant progression and translated sensors of viral molecules into EBV-specific anti-cancer therapeutics.
Collapse
Affiliation(s)
- Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Fang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zhang
- Department of Otolaryngology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui-Hong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Mei Yi
- Department of Pathology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu-Feng Jiang
- Department of Nuclear Medicine, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia-Yi Chen
- Department of Radiation, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China.
| |
Collapse
|
14
|
Luo F, Wang JN, Liu X, Wang X, Qi SN, Li YX. Efficacy of Frontline Chemotherapy for Extranodal Natural Killer/T-Cell Lymphoma: A Systematic Review and Network Meta-Analysis. J Hematol 2023; 12:215-226. [PMID: 37936976 PMCID: PMC10627360 DOI: 10.14740/jh1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/21/2023] [Indexed: 11/09/2023] Open
Abstract
Background Treatment with non-anthracycline (ANT)-based chemotherapy has increased survival in patients with extranodal natural killer/T-cell lymphoma (ENKTCL). However, the relative efficacy of various drug combinations has been contentious. We aimed to identify the most effective chemotherapy regimens for newly diagnosed ENKTCL. Methods A network meta-analysis was performed to evaluate the differences in survival and treatment responses across various regimens. The primary objective was overall survival (OS), while secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and complete response (CR). We utilized a Bayesian framework to perform the network meta-analysis. Rank probabilities were assessed by the surface under the cumulative ranking curve (SUCRA). Node-splitting method was used to assess the inconsistency. Results A total of 1,113 patients were enrolled across 10 studies. Chemotherapy regimens were grouped into five modalities, for which six types of direct comparisons were available. We identified the asparaginase (ASP)/gemcitabine (GEM)-based regimens superiority over ANT-based, non-ASP/ANT-based and ASP/methotrexate (MTX)-based regimens on OS. Although no significant differences were observed compared with ASP/not otherwise specified-based, ASP/GEM-based regimens were still the best option chemotherapy for OS. Moreover, the ASP/GEM-based regimens demonstrated advantages in PFS, ORR and CR. Conclusions According to our network meta-analysis, it appears that ASP/GEM-based regimens could potentially serve as the most effective frontline chemotherapy option for ENKTCL.
Collapse
Affiliation(s)
- Fei Luo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Radiation Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Jing Nan Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shu Nan Qi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ye Xiong Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
15
|
Liu X, Zhang LL, Qu BL, Zhong QZ, Qian LT, Yang Y, Hou XR, Qiao XY, Wang H, Zhu Y, Cao JZ, Wu JX, Wu T, Zhu SY, Shi M, Zhang HL, Zhang XM, Su H, Song YQ, Zhu J, Zhang YJ, Huang HQ, Wang Y, Chen F, Yin L, He X, Cai S, Li YX, Qi SN. Evidence of cure for extranodal nasal-type natural killer/T-cell lymphoma with current treatment: an analysis of the CLCG database. Haematologica 2023; 108:2467-2475. [PMID: 36951150 PMCID: PMC10483341 DOI: 10.3324/haematol.2022.281847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Survival from extranodal nasal-type NK/T-cell lymphoma (ENKTCL) has substantially improved over the last decade. However, there is little consensus as to whether a population of patients with ENKTCL can be considered "cured" of the disease. We aimed to evaluate the statistical "cure" of ENKTCL in the modern treatment era. This retrospective multicentric study reviewed the clinical data of 1,955 patients with ENKTCL treated with non-anthracycline-based chemotherapy and/or radiotherapy in the China Lymphoma Collaborative Group multicenter database between 2008 and 2016. A non-mixture cure model with incorporation of background mortality was fitted to estimate cure fractions, median survival times and cure time points. The relative survival curves attained plateau for the entire cohort and most subsets, indicating that the notion of cure was robust. The overall cure fraction was 71.9%. The median survival was 1.1 years in uncured patients. The cure time was 4.5 years, indicating that beyond this time, mortality in ENKTCL patients was statistically equivalent to that in the general population. Cure probability was associated with B symptoms, stage, performance status, lactate dehydrogenase, primary tumor invasion, and primary upper aerodigestive tract site. Elderly patients (>60 years) had a similar cure fraction to that of younger patients. The 5-year overall survival rate correlated well with the cure fraction across risk-stratified groups. Thus, statistical cure is possible in ENKTCL patients receiving current treatment strategies. Overall probability of cure is favorable, though it is affected by the presence of risk factors. These findings have a high potential impact on clinical practice and patients' perspective.
Collapse
Affiliation(s)
- Xin Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
| | - Li-Ling Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Bao-Lin Qu
- The General Hospital of Chinese People's Liberation Army, Beijing
| | - Qiu-Zi Zhong
- Beijing Hospital, National Geriatric Medical Center, Beijing
| | - Li-Ting Qian
- The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui
| | - Yong Yang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P. R. China
| | - Xiao-Rong Hou
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing
| | - Xue-Ying Qiao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang
| | - Hua Wang
- Second Affiliated Hospital of Nanchang University, Nanchang
| | - Yuan Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Zhejiang
| | - Jian-Zhong Cao
- Shanxi Cancer Hospital and the Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, Shanxi
| | - Jun-Xin Wu
- Fujian Provincial Cancer Hospital, Fuzhou, Fujian
| | - Tao Wu
- Affiliated Hospital of Guizhou Medical University, Guizhou Cancer Hospital, Guiyang, Guizhou
| | - Su-Yu Zhu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan
| | - Mei Shi
- Xijing Hospital of Fourth Military Medical University, Xi'an
| | - Hui-Lai Zhang
- Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin
| | - Xi-Mei Zhang
- Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin
| | - Hang Su
- The Fifth Medical Center of PLA General Hospital, Beijing
| | - Yu-Qin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing
| | - Yu-Jing Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong
| | - Hui-Qiang Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong
| | - Ying Wang
- Chongqing University Cancer Hospital and Chongqing Cancer Hospital, Chongqing
| | - Fan Chen
- Affiliated Hospital of Qinghai University, Qinghai, P. R. China
| | - Lin Yin
- Affiliated Hospital of Qinghai University, Qinghai, P. R. China
| | - Xia He
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu
| | - Shang Cai
- Department of Radiation Oncology, the Second Affiliated Hospital of Soochow University, Suzhou
| | - Ye-Xiong Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021.
| | - Shu-Nan Qi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021.
| |
Collapse
|
16
|
Tian XP, Cao Y, Cai J, Zhang YC, Zou QH, Wang JN, Fang Y, Wang JH, Guo SB, Cai QQ. Novel target and treatment agents for natural killer/T-cell lymphoma. J Hematol Oncol 2023; 16:78. [PMID: 37480137 PMCID: PMC10362755 DOI: 10.1186/s13045-023-01483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The rapidly increasing use of high-throughput screening had produced a plethora of expanding knowledge on the molecular basis of natural killer/T-cell lymphoma (NKTCL), which in turn has revolutionized the treatment. Specifically, the use of asparaginase-containing regimens has led to substantial improvement in survival outcomes in NKTCL patients. Novel treatment strategies that are currently under development include cell-surface-targeted antibodies, immune checkpoint inhibitors, Epstein-Barr virus targeted cytotoxic T lymphocyte, immunomodulatory agents, chimeric antigen receptor T cells, signaling pathway inhibitors and epigenetic targeted agents. In almost all cases, initial clinical studies of newly developed treatment are conducted in patients relapsed, and refractory NKTCL due to very limited treatment options. This review summarizes the results of these novel treatments for NKTCL and discusses their potential for likely use in NKTCL in a wider setting in the future.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yi Cao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu-Chen Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qi-Hua Zou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jin-Ni Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Hui Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Song-Bin Guo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qing-Qing Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
17
|
Wu J, Shi C, Li H, Song W, Huang S, Zhang J, Li W, Li Z, Zhang M. PARP inhibitor exerts an anti-tumor effect via LMO2 and synergizes with cisplatin in natural killer/T cell lymphoma. BMC Med 2023; 21:253. [PMID: 37442994 PMCID: PMC10347840 DOI: 10.1186/s12916-023-02904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND PARP inhibitor (PARPi), as a kind of DNA damage repair inhibitor, has been shown to be effective in various solid tumors and hematologic malignancies. Natural killer/T cell lymphoma (NKTCL) is a highly aggressive malignancy, the treatment of which has long been a major challenge in the clinic. Here, we investigated the efficacy and mechanism of PARPi, and the therapeutic value of PARPi combined with cisplatin in NKTCL. METHODS The cell proliferation, cell apoptosis, and cell cycle of NKTCL cells were detected respectively by CCK-8 and flow cytometry. The changes of mRNA expression and protein level were measured respectively by mRNA-sequencing, quantitative real-time PCR, western blotting, and immunofluorescence. LMO2 expression was detected by immunohistochemistry and western blotting. Targeted knockdown of LMO2 was conducted by short hairpin RNA. The tumor xenograft models were established to evaluate the efficacy of drugs in vivo. RESULTS PARPi inhibited cell proliferation, promoted cell apoptosis, and induced S-phase cell cycle arrest in NKTCL cells. PARPi led to the accumulation of DNA damage by blocking DNA repair and DNA replication. Additionally, LMO2 deficiency reduced the sensitivity of NKTCL cells to PARPi. Finally, the combination of PARPi and cisplatin exhibited significant synergistic effects both in vitro and in vivo. CONCLUSIONS In summary, we found that PARPi exerted an anti-tumor effect via LMO2 and synergized with cisplatin in NKTCL, which provides the theoretical basis for the clinical application of PARPi.
Collapse
Affiliation(s)
- Jiazhuo Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Cunzhen Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuo Huang
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jianxiang Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
18
|
Zhong H, Cheng S, Zhang X, Xu B, Chen J, Jiang X, Xiong J, Hu Y, Cui G, Wei J, Qian W, Huang X, Hou M, Yan F, Wang X, Song Y, Hu J, Liu Y, Ma X, Li F, Wu C, Chen J, Yu L, Bai O, Xu J, Zhu Z, Liu L, Zhou X, Huang L, Tong Y, Niu T, Wu D, Zhang H, Wang C, Ouyang B, Yi H, Song Q, Cai G, Li B, Liu J, Li Z, Xiao R, Wang L, Jiang Y, Liu Y, Zheng X, Xu P, Huang H, Wang L, Chen S, Zhao W. Etoposide, dexamethasone, and pegaspargase with sandwiched radiotherapy in early-stage natural killer/T-cell lymphoma: A randomized phase III study. Innovation (N Y) 2023; 4:100426. [PMID: 37181228 PMCID: PMC10173773 DOI: 10.1016/j.xinn.2023.100426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Methotrexate, etoposide, dexamethasone, and pegaspargase (MESA) with sandwiched radiotherapy is known to be effective for early-stage extranodal natural killer/T-cell lymphoma, nasal type (NKTCL). We explored the efficacy and safety of reduced-intensity, non-intravenous etoposide, dexamethasone, and pegaspargase (ESA) with sandwiched radiotherapy. This multicenter, randomized, phase III trial enrolled patients aged between 14 and 70 years with newly diagnosed early-stage nasal NKTCL from 27 centers in China. Patients were randomly assigned (1:1) to receive ESA (pegaspargase 2,500 IU/m2 intramuscularly on day 1, etoposide 200 mg orally, and dexamethasone 40 mg orally on days 2-4) or MESA (methotrexate 1 g/m2 intravenously on day 1, etoposide 200 mg orally, and dexamethasone 40 mg orally on days 2-4, and pegaspargase 2,500 IU/m2 intramuscularly on day 5) regimen (four cycles), combined with sandwiched radiotherapy. The primary endpoint was overall response rate (ORR). The non-inferiority margin was -10.0%. From March 16, 2016, to July 17, 2020, 256 patients underwent randomization, and 248 (ESA [n = 125] or MESA [n = 123]) made up the modified intention-to-treat population. The ORR was 88.8% (95% confidence interval [CI], 81.9-93.7) for ESA with sandwiched radiotherapy and 86.2% (95% CI, 78.8-91.7) for MESA with sandwiched radiotherapy, with an absolute rate difference of 2.6% (95% CI, -5.6-10.9), meeting the non-inferiority criteria. Per-protocol and sensitivity analysis supported this result. Adverse events of grade 3 or higher occurred in 42 (33.6%) patients in the ESA arm and 81 (65.9%) in the MESA arm. ESA with sandwiched radiotherapy is an effective, low toxicity, non-intravenous regimen with an outpatient design, and can be considered as a first-line treatment option in newly diagnosed early-stage nasal NKTCL.
Collapse
Affiliation(s)
- Huijuan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Chongqing 400037, China
| | - Bing Xu
- Department of Hematology, First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361009, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xufeng Jiang
- Department of Nuclear Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guohui Cui
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Juying Wei
- Department of Hematology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Wenbin Qian
- Department of Hematology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaobing Huang
- Institute of Hematology, Department of Hematology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072, China
| | - Ming Hou
- Department of Hematology, Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Feng Yan
- Department of Hematology, Third Affiliated Hospital of Suzhou University, First People’s Hospital of Changzhou, Changzhou, Jiangsu 213004, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350401, China
| | - Yuanhua Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xuejun Ma
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Fei Li
- Department of Hematology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chongyang Wu
- Department of Hematology, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, China
| | - Junmin Chen
- Department of Hematology and Rheumatology, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, China
| | - Ou Bai
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, China
| | - Zunmin Zhu
- Department of Hematology, Henan Province People’s Hospital, Zhengzhou, Henan 450003, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shanxi 710032, China
| | - Xin Zhou
- Department of Hematology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Li Huang
- Department of Oncology and Hematology, Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200080, China
| | - Ting Niu
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Depei Wu
- First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Hao Zhang
- Department of Otolaryngology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Binshen Ouyang
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Song
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Cai
- Department of Radiation Oncology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Liu
- Department of Hematology, Xinqiao Hospital, Chongqing 400037, China
| | - Zhifeng Li
- Department of Hematology, First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361009, China
| | - Rong Xiao
- Institute of Hematology, Department of Hematology, Sichuan Provincial People’s Hospital, Chengdu, Sichuan 610072, China
| | - Luqun Wang
- Department of Hematology, Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yanyan Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Xiaoyun Zheng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350401, China
| | - Pengpeng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hengye Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
- Corresponding author
| |
Collapse
|
19
|
Zhang S, Sun C, Chen X, Li D, Hu L, Zhang M, Zhang X, Zhang H, Ye J, Wang L, Jia T, Zhu T, Miao Y, Wang C, Wang L, Yan D, Shen Z, Sang W. The prognostic value of controlling nutritional status (CONUT) score-based nomogram on extranodal natural killer/T cell lymphoma patients. Ann Hematol 2023; 102:1433-1442. [PMID: 37074377 DOI: 10.1007/s00277-023-05232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Controlling nutritional status (CONUT) score as an original nutritional assessment tool can be used to assess the prognosis of patients with a variety of malignancies. However, the predictive power of CONUT in extranodal natural killer/T cell lymphoma (ENKTL) patients has never been demonstrated. Our retrospective multicenter study aimed to explore the prognostic value of CONUT in newly diagnosed ENKTL. A total of 1085 newly diagnosed ENKTL patients between 2003 and 2021 were retrospectively retrieved. Cox proportional hazard model was used to explore the prognostic factors of overall survival (OS). The survival rate of ENKTL was evaluated using Kaplan-Meier analysis, and log-rank test was applied to the difference between groups. We investigated the prognostic performance of CONUT, the International Prognostic Index (IPI), the Korean Prognostic Index (KPI), and the Prognostic Index of Natural Killer Cell Lymphoma (PINK) using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). The median age at diagnosis for the whole cohort was 47 years, and the male to female ratio was 2.2:1. The 5-year OS for all patients was 72.2%. Multivariable analysis showed that CONUT, age, bone marrow involvement, ECOG PS score, and Chinese Southwest Oncology Group and Asia Lymphoma Study Group ENKTL stage were identified as independent predictive factors for OS. Based on multivariable results, a prognostic nomogram was developed. Subgroup analysis demonstrated that patients with severe malnutrition had poorest clinical outcome. In addition, ROC curves and DCA analysis proved that compared with IPI, KPI, and PINK models, the CONUT score-based nomogram showed a better prognostic predictive efficiency of ENKTL. CONUT could effectively stratify the prognosis of ENKTL and the proposed nomogram based on CONUT was an effective prognostic model for prediction.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Cai Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Xicheng Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Dashan Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Lingling Hu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Meng Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Xudong Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hao Zhang
- Department of Hematology, The Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ling Wang
- Department of Hematology, Tai'an Central Hospital, Tai'an, 271000, Shandong, China
| | - Tao Jia
- Department of Hematology, The First People's Hospital of Lianyungang, Lianyungang, 222061, Jiangsu, China
| | - Taigang Zhu
- Department of Hematology, The General Hospital of Wanbei Coal-Electric Group, Suzhou, 234011, Anhui, China
| | - Yuqing Miao
- Department of Hematology, Yancheng First People's Hospital, Yancheng, 224001, Jiangsu, China
| | - Chunling Wang
- Department of Hematology, The First People's Hospital of Huai'an, Huai'an, 223300, Jiangsu, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China
| | - Dongmei Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Ziyuan Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
20
|
Liang JH, Wang WT, Du KX, Xing TY, Wang Y, Wang H, Liu L, Guo R, Shao Y, Liang J, Li Y, Shen HR, Wang L, Li JY, Xu W. Establishment and comprehensive analysis of a new human cell line (NK-NJ) with NK-cell characteristics established from extranodal natural killer cell lymphoma/leukemia. Hum Cell 2023; 36:835-846. [PMID: 36520345 DOI: 10.1007/s13577-022-00841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Extranodal NK/T cell lymphoma, nasal type (ENKTL) is an aggressive and heterogeneous disease. With standard treatment containing pegaspargase-based regimen, patients who were resistant to pegaspargase have rapidly disease progression and worse prognosis. Thus, there is an urgent requirement for constructing ENKTL cell line model to explore the mechanism of pegaspargase resistance and new molecular targeted drugs to improve prognosis. We report here on the establishment of a novel ENKTL cell line, NK-NJ. The cells were isolated from a 52-year-old Chinese man who was diagnosed with relapse/refractory (R/R) ENKTL and grow steadily in vitro. The NK-NJ cells express CD56, CD2, CD45RA with no expression of CD3, CD16, CD57, CD4, CD8, CD26, CD28, CD5, TCR, CD45RO and CD161 and showed a TCR gene unrearrangement, which suggested an origin in the NK-lineage but not T-lineage. The immunophenotypes of NK-NJ cells were consistent with the patient. Moreover, short tandem repeat (STR) profiling results also demonstrated that NK-NJ originated from the patient. NK-NJ showed complex karyotype. Target sequencing method indicated that the main mutation genes of the first-time disease progression of lymph nodal were the same as main mutation genes of the primary nasal lesions. Moreover, NK-NJ was recognized as latency I with EBER positivity and carried high EBV-DNA viral load. The chemosensitivity results suggested synthetic lethality of epigenetic drugs and PD-1 inhibitor for ENKTL patients by reasons of epigenetic drugs promoting PD-L1 expression. In conclusion, we established a new ENKTL cell line in the era of new targeted drugs. We hope that this cell line can help to further understand underlying pathogenesis of ENKTL especially for advanced ENKTL and the functional role of EBV in ENKTL pathogenetic process.
Collapse
Affiliation(s)
- Jin-Hua Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei-Ting Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Kai-Xin Du
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Tong-Yao Xing
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hui Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lu Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Rui Guo
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Junheng Liang
- Nanjing Geneseeq Technology Inc, Nanjing, Jiangsu, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hao-Rui Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China. .,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, 210029, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
21
|
Tian XP, Zhang YC, Lin NJ, Wang L, Li ZH, Guo HG, Ma SY, An MJ, Yang J, Hong YH, Wang XH, Zhou H, Li YJ, Rao HL, Li M, Hu SX, Lin TY, Li ZM, Huang H, Liang Y, Xia ZJ, Lv Y, Liu YY, Duan ZH, Chen QY, Wang JN, Cai J, Xie Y, Ong CK, Liu F, Liu YY, Yan Z, Huang L, Tao R, Li WY, Huang HQ, Cai QQ. Diagnostic performance and prognostic value of circulating tumor DNA methylation marker in extranodal natural killer/T cell lymphoma. Cell Rep Med 2023; 4:100859. [PMID: 36812892 PMCID: PMC9975248 DOI: 10.1016/j.xcrm.2022.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 11/18/2022] [Indexed: 02/23/2023]
Abstract
Circulating tumor DNA (ctDNA) carries tumor-specific genetic and epigenetic variations. To identify extranodal natural killer/T cell lymphoma (ENKTL)-specific methylation markers and establish a diagnostic and prognosis prediction model for ENKTL, we describe the ENKTL-specific ctDNA methylation patterns by analyzing the methylation profiles of ENKTL plasma samples. We construct a diagnostic prediction model based on ctDNA methylation markers with both high specificity and sensitivity and close relevance to tumor staging and therapeutic response. Subsequently, we built a prognostic prediction model showing excellent performance, and its predictive accuracy is significantly better than the Ann Arbor staging and prognostic index of natural killer lymphoma (PINK) risk system. Notably, we further establish a PINK-C risk grading system to select individualized treatment for patients with different prognostic risks. In conclusion, these results suggest that ctDNA methylation markers are of great value in diagnosis, monitoring, and prognosis, which might have implications for clinical decision-making of patients with ENKTL.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu-Chen Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ning-Jing Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhi-Hua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Han-Guo Guo
- Division of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Shu-Yun Ma
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ming-Jie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, P.R. China
| | - Jing Yang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China
| | - Yu-Heng Hong
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Xian-Huo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hui Zhou
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Ya-Jun Li
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Hui-Lan Rao
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Shao-Xuan Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Tong-Yu Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhi-Ming Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - He Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yang Liang
- Department of Hematology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhong-Jun Xia
- Department of Hematology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yue Lv
- Department of Hematology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu-Ying Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhao-Hui Duan
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Guangzhou, P.R. China
| | - Qing-Yu Chen
- Department of Medical Examination Center, Sun Yat-sen Memorial Hospital, Guangzhou, P.R. China
| | - Jin-Ni Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jun Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ying Xie
- Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Choon-Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, 169610 Singapore, Singapore
| | - Fang Liu
- Department of Pathology, The First People's Hospital of Foshan, Foshan, P.R. China
| | - Yan-Yan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou 450008, P.R. China
| | - Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou 450008, P.R. China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Rong Tao
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.
| | - Wen-Yu Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, P.R. China.
| | - Hui-Qiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Qing-Qing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
22
|
Yan Z, Yao S, Wang Z, Zhou W, Yao Z, Liu Y. Treatment of extranodal NK/T-cell lymphoma: From past to future. Front Immunol 2023; 14:1088685. [PMID: 36825002 PMCID: PMC9941192 DOI: 10.3389/fimmu.2023.1088685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTCL) is the most common subtype of T/NK-cell lymphoma in Asia and Latin America, but very rare in North American and Europe. Patient survival has improved significantly over the past two decades. However, standard treatment has not yet been established, although dozens of prospective trials have been conducted. To help understand how the treatment of ENKTCL has evolved in the past and what trends lie ahead, we have comprehensively reviewed the treatment of this aggressive malignancy, with a particular focus on neglected or unanswered issues, such as the optimal staging method, the best partner of asparaginase (Asp), the individualized administration of Asp, the preferred sequence of CT and RT and so on. Overall, the 5-year overall survival (OS) of patients with Ann Arbor stage I/II disease increased from < 50% in the early 20th century to > 80% in recent years, and the median OS of patients with Ann Arbor stage III/IV disease increased from < 1 year to more than 3 years. The improvement in patient survival is largely attributable to advances in radiation technology and the introduction of Asp and anti-PD-1/PD-L1 immunotherapy into practice. Radiotherapy is essential for patients with early-stage disease, while Asp-based chemotherapy (CT) and PD-1/PD-L1 inhibitors significantly improved the prognosis of patients with advanced-stage disease. ENKTCL management is trending toward simpler regimens, less toxicity, and higher efficacy. Novel drugs, such as manufactured T cells, monoclonal antibodies, and small molecule inhibitors, are being intensively investigated. Based on the fact that ENKTCL is highly resistant to cytotoxic drugs except Asp, and aggressive CT leads to higher toxicity rather than better outcomes, we recommend it is unnecessary to expend additional resources to compare different combinations of Asp with cytotoxic agents. Instead, more efforts should be made to optimize the use of Asp and immunotherapy to maximize efficacy and minimize toxicity, explore ways to overcome resistance to Asp and immunotherapy, identify novel treatment targets, and define subpopulations who may benefit more from specific treatments.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shuna Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhizhong Wang
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Wenping Zhou
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhihua Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yanyan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Yang Y, Wang J, Zhao R, Huang C, Shi G, Zheng H, Tang T, Liao S, Chen J, Shen J, Liu T, Xu B, Zhang Y. The value of routine bone marrow examination in patients with extranodal NK/T-cell lymphoma staged with PET/CT. Cancer 2022; 128:3943-3950. [PMID: 36181669 PMCID: PMC9828511 DOI: 10.1002/cncr.34473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Limited evidence supports the omission of routine bone marrow (BM) examination (biopsy and aspiration) in patients with nasal-type extranodal NK/T-cell lymphoma (ENKTCL). This study was aimed at assessing whether BM examination provides valuable information for positron emission tomography/computed tomography (PET/CT)-based staging in this patient population. PATIENTS AND METHODS Patients newly diagnosed with ENKTCL who underwent initial staging with both PET/CT and BM examination between 2013 and 2020 were retrospectively identified in two Chinese institutions. Overall, 742 patients were included; the BM examination was positive in 67 patients. RESULTS Compared with BM biopsy alone, the combination of BM biopsy and aspiration assessment did not afford any additional diagnostic value. No patient with a positive BM biopsy was found to have early-stage disease by PET/CT. BM biopsy or PET/CT led to upstaging from stage III to IV as a result of BM involvement in 21 patients. In 135 patients with distant organ involvement, BM involvement was associated with worse overall survival (OS) and progression-free survival (PFS) compared with the corresponding durations in patients without BM involvement (2-year OS: 35.9% vs. 60.4%, p < .001; PFS: 26% vs. 40.7%, p = .003). No difference in survival was noted between groups judged positive based on PET/CT and BM biopsy. CONCLUSION Compared with aspiration, BM biopsy led to the detection of more BM lesions. Baseline PET/CT can be safely used to exclude BM involvement in early-stage disease. Overall, routine BM examination affords diagnostic or prognostic value over PET/CT in patients with advanced-stage nasal-type ENKTCL.
Collapse
Affiliation(s)
- Yong Yang
- Department of Radiation OncologyFujian Medical University Union HospitalFujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University)Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies)FuzhouChina
| | - Ji‐Jin Wang
- Department of Radiation OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Rui‐Zhi Zhao
- Department of Radiation OncologyFujian Medical University Union HospitalFujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University)Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies)FuzhouChina
| | - Cheng Huang
- Department of Radiation OncologyFujian Medical University Union HospitalFujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University)Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies)FuzhouChina
| | - Gui‐Qing Shi
- Department of Radiation OncologyFujian Medical University Union HospitalFujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University)Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies)FuzhouChina
| | - Hao Zheng
- Department of Radiation OncologyFujian Medical University Union HospitalFujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University)Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies)FuzhouChina
| | - Tian‐Lan Tang
- Department of Radiation OncologyFujian Medical University Union HospitalFujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University)Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies)FuzhouChina
| | - Si‐Qin Liao
- Department of PET/CTFujian Medical University Union HospitalFuzhouChina
| | - Jin‐Hua Chen
- Follow‐Up CenterFujian Medical University Union HospitalFuzhouChina
| | - Jian‐Zhen Shen
- Department of HematologyFujian Medical University Union HospitalFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFuzhouChina
| | - Ting‐Bo Liu
- Department of HematologyFujian Medical University Union HospitalFujian Institute of HematologyFujian Provincial Key Laboratory on HematologyFuzhouChina
| | - Ben‐Hua Xu
- Department of Radiation OncologyFujian Medical University Union HospitalFujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University)Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies)FuzhouChina
| | - Yu‐Jing Zhang
- Department of Radiation OncologySun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Epstein-Barr virus (EBV)-associated neoplasms derived from natural killer (NK) or T cells comprise a group of clinically and biologically heterogenous disorders affecting children and adults, which are overall rare but more prevalent in Asia and South America. This review focuses on neoplasms presenting in the adulthood, addressing recent genomic discoveries as well as therapeutic developments in these highly aggressive disorders. RECENT FINDINGS Distinct molecular subtypes of extranodal NK/T-cell lymphomas (ENKTCLs) have been described, with differences in cell of origin, EBV pattern, genomic alterations, clinical characteristics, response to asparaginase-based therapies and to more recent approaches targeting molecular aberrations of the lymphoma. For the last two decades, progress in the clinical management of ENKTCL was based on L-asapraginase containing combinations and the incoroperation of radiotherapy. A subset of cases with PDL1-2 structural alterations may be more responsive to treatment with immune checkpoint inhibitors. Primary nodal EBV+ lymphomas derived from T or NK cells have distinctive features separating them from both peripheral T-cell lymphoma not otherwise specified and ENKTCL. Treatment algorithms correspond to those for advanced ENKTCL. SUMMARY With better understanding of lymphomagenesis, genomic landscape and immunologic aspects of the diseases, future treatment options will include targeted therapies including immune checkpoint inhibitors and novel antibodies.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Switzerland
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
25
|
Abstract
Natural killer (NK)/T-cell lymphomas are aggressive malignancies with a predilection for Asian and South American populations. Epstein-Barr virus (EBV) infection in lymphoma cells is universal. Predominantly extranodal, NK/T-cell lymphomas are divided clinically into nasal (involving the nose and upper aerodigestive tract), non-nasal (involving the skin, gastrointestinal tract, testes, and other organs), and aggressive leukaemia/lymphoma (involving the marrow and multiple organs) subtypes. Initial assessment should include imaging with positron emission tomography computed tomography (PET/CT), quantification of plasma EBV DNA as a surrogate marker of lymphoma load, and bone marrow examination with in situ hybridization for EBV-encoded small RNA. Prognostication can be based on presentation parameters (age, stage, lymph node involvement, clinical subtypes, and EBV DNA), which represent patient factors and lymphoma load; and dynamic parameters during treatment (serial plasma EBV DNA and interim/end-of-treatment PET/CT), which reflect response to therapy. Therapeutic goals are to achieve undetectable plasma EBV DNA and normal PET/CT (Deauville score ≤ 3). NK/T-cell lymphomas express the multidrug resistance phenotype, rendering anthracycline-containing regimens ineffective. Stage I/II nasal cases are treated with non-anthracycline asparaginase-based regimens plus sequential/concurrent radiotherapy. Stage III/IV nasal, and non-nasal and aggressive leukaemia/lymphoma cases are treated with asparaginase-containing regimens and consolidated by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable patients. Autologous HSCT does not improve outcome. In relapsed/refractory cases, novel approaches comprise immune checkpoint blockade of PD1/PD-L1, EBV-specific cytotoxic T-cells, monoclonal antibodies, and histone deacetylase inhibitors. Future strategies may include inhibition of signalling pathways and driver mutations, and immunotherapy targeting the lymphoma and its microenvironment.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yok-Lam Kwong
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
26
|
Evaluation of different staging systems and prognostic analysis of nasal-type extranodal NK/T-cell lymphoma based on consistent LVDP chemotherapy regimen. Transl Oncol 2022; 21:101437. [PMID: 35489119 PMCID: PMC9062442 DOI: 10.1016/j.tranon.2022.101437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
The LVDP chemotherapy regimen was effective and safe for nasal-type ENKTL. The CMT yielded better survival outcomes than CT alone in nasal-type ENKTL. The CASS had a better survival discrimination than the AASS.
Nasal-type extranodal NK-T-cell lymphoma (ENKTL) is a rare non-Hodgkin lymphoma. The optimal staging system for it remains undefined. In this study, we evaluated different staging systems in 205 patients with nasal-type ENKTL based on a consistent LVDP (L-asparaginase, etoposide, dexamethasone, cisplatin) regimen. All patients were staged by Ann Arbor staging system (AASS) and CA staging system (CASS). Their characteristics, treatment responses, survival outcomes, prognostic factors, and prognostic values of AASS and CASS were analyzed. The median follow-up time was 78 months. All patients received a median 4 cycles of the LVDP chemotherapy. Based on CASS, patients with stages I through IV were more evenly distributed than with AASS, and numbered at 56 (27.3%), 70 (33.2%), 45 (21.9%), and 34 (17.6%), respectively. At the end of therapy, the objective response rate (ORR) was 81.2% for all patients. For all patients, the 5-year progression-free survival (PFS) and overall survival (OS) were 61.6% and 67.8%. According to AASS, the 5-year OS of patients with stages Ⅰ through Ⅳ were 77.9%, 61.2%, 60.0%, and 38.7%, respectively (χ²=20.578, p<0.001). Based on CASS, the 5-year OS of patients with stages Ⅰ to Ⅳ were 89.1%, 65.5%, 58.6%, and 45.4%, respectively (χ²=22.973, p<0.001). In ROC analysis of OS, the area under the curve (AUC) for CASS was 0.70 and 0.64 for AASS. CASS was better in discriminating survival than AASS (p = 0.018). In conclusion, the LVDP regimen is effective for nasal-type ENKTL and the CASS has a better prognostic value in survival analysis than the AASS.
Collapse
|
27
|
Yoon SE, Kim WS. Promising clinical efficacy and acceptable safety profile of sequential P-GEMOX and radiotherapy for localized ENKTL. Hematol Oncol 2022; 40:341-342. [PMID: 35114729 DOI: 10.1002/hon.2970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most cases of Extranodal natural/T-cell lymphoma, nasal-type (ENKTL) usually presents stage I/II disease at the diagnosis, especially the upper respiratory tract. Current standard treatment strategies for the localized ENKTL have been settled on concurrent, sequential, and sandwich chemoradiotherapy. Furthermore, radiotherapy and non-anthracycline-based systemic chemotherapies combined with L-asparaginase, including DeVIC, GELOX, VIPD, VIDL, and SMILE, show about 70-90% of the overall response rate (ORR) and 2-year progression-free survival (PFS) of 70-80%. However, the optimal chemotherapy regimen, when combined with radiation therapy, has not been consolidated yet. Recently, sequential P-GEMOX (pegaspargase, gemcitabine, and oxaliplatin) and radiotherapy presented similar therapeutic outcomes and safety issues compared to the other chemoradiotherapy strategies. Thus, we suggest P-GEMOX and radiotherapy as other effective treatment options for localized ENKTL patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Won Seog Kim
- Division of Hematology-oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
28
|
Gu J, Dai B, Shi X, He Z, Xu Y, Meng X, Zhu J. lncRNA HCG11 suppresses human osteosarcoma growth through upregulating p27 Kip1. Aging (Albany NY) 2021; 13:21743-21757. [PMID: 34518440 PMCID: PMC8457558 DOI: 10.18632/aging.203517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is a common malignant bone cancer threatening children and young adults. Emerging evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in the progression of OS. Herein, we want to clarify the roles of lncRNA human leukocyte antigen complex group 11 (HCG11) in OS. Our data revealed that HCG11 expression is decreased in OS, which is a result of transcriptional repression of YY1. Low HCG11 level is closely associated with larger tumor size and shorter overall survival of OS patients. HCG11 negatively regulates cell proliferation, cell cycle, DNA replication in vitro and tumor growth in vivo. HCG11 can raise p27 Kip1 expression via binding to miR-942-5p and IGF2BP2, and p27 Kip1 acts as a key effector for HCG11 exerting biological functions. In conclusion, HCG11 is downregulated in OS, and restrains OS growth both in vitro and in vivo by raising p27 Kip1 expression via binding to miR-942-5p and IGF2BP2.
Collapse
Affiliation(s)
- Jie Gu
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Bo Dai
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Xuchao Shi
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Zhennian He
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Yuanlin Xu
- Department of Orthopaedics Surgery, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Xiangqian Meng
- Department of Stomatology, Beilun People's Hospital, Ningbo, Zhejiang, China
| | - Junlan Zhu
- The Precision Medicine Laboratory, Beilun People's Hospital, Ningbo, Zhejiang, China
| |
Collapse
|