1
|
Aumann MA, Richerson W, Song AK, Martin D, Davis LT, Davis SM, Milner LL, Kassim AA, DeBaun MR, Jordan LC, Donahue MJ. Cerebral Hemodynamic Responses to Disease-Modifying and Curative Sickle Cell Disease Therapies. Neurology 2025; 104:e210191. [PMID: 39705613 DOI: 10.1212/wnl.0000000000210191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Sickle cell disease (SCD) is a hemoglobinopathy resulting in hemoglobin-S production, hemolytic anemia, and elevated stroke risk. Treatments include oral hydroxyurea, blood transfusions, and hematopoietic stem cell transplantation (HSCT). Our objective was to evaluate the neurologic relevance of these therapies by characterizing how treatment-induced changes in hemoglobin (Hb) affect brain health biomarkers. METHODS In this interventional study, adults with and without SCD underwent a 3T-MRI at Vanderbilt University Medical Center at 2 time points before and after clinically indicated transfusion or HSCT or at 2 time points without the introduction of a new Hb-altering therapy (adult controls and patients with SCD on hydroxyurea). Cerebral blood flow (CBF; mL/100 g/min) and cerebral venous blood relaxation rate (s-1; a marker of Hb and blood oxygen content) responses were assessed to understand how these markers of brain health vary with Hb modulation. CBF was assessed with arterial spin labeling MRI, and blood relaxation rate was assessed using T2 relaxation under spin tagging MRI. Measures were pairwise compared within each cohort using a 2-tailed Wilcoxon signed-rank test, and regression was applied to evaluate the parameter and Hb change relationships. The significance criterion was 2-sided p < 0.05. RESULTS Adults with (n = 43; age 28.7 ± 7.7 years; 42% male) and without (n = 13; age 33.5 ± 12.2 years; 46% male) SCD were evaluated. In adults receiving hydroxyurea (n = 10), neither Hb, CBF, nor venous relaxation rate changed between time 1 (Hb = 8.6 ± 1.2 g/dL) and time 2 (Hb = 9.0 ± 1.8 g/dL) (all p > 0.05). In transfusion patients (n = 19), Hb increased from 8.2 ± 1.4 g/dL to 9.3 ± 1.3 g/dL before vs after transfusion (p < 0.001), paralleling a CBF decrease of 14.2 mL/100 g/min (p < 0.001) toward control levels. The venous relaxation rate did not change after transfusion (p = 0.71). In HSCT patients (n = 14), Hb increased from 8.9 ± 1.9 g/dL to 12.9 ± 2.7 g/dL (p < 0.001) before vs after transplant, paralleling CBF decreases from 68.16 ± 20.24 to 47.43 ± 12.59 mL/100 g/min (p < 0.001) and increase in venous relaxation rate (p = 0.004). Across the Hb spectrum, a CBF decrease of 5.02 mL/100 g/min per g/dL increase in Hb was observed. DISCUSSION Findings demonstrate improvement in cerebral hemodynamics after transfusion and transplant therapies compared with hydroxyurea therapy; quantitative relationships should provide a framework for using these measures as trial end points to assess how new SCD therapies affect brain health.
Collapse
Affiliation(s)
- Megan A Aumann
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Wesley Richerson
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Alexander K Song
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Dann Martin
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - L Taylor Davis
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Samantha M Davis
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Lauren L Milner
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Adetola A Kassim
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Michael R DeBaun
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Lori C Jordan
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| | - Manus J Donahue
- From the Department of Neurology (M.A.A., W.R., A.K.S., M.J.D.), Department of Radiology and Radiological Sciences (D.M., L.T.D., L.C.J.), Division of Pediatric Neurology, Department of Pediatrics (S.M.D., L.L.M., L.C.J.), Division of Hematology and Oncology, Department of Medicine (A.A.K., M.R.D.), and Department of Psychiatry and Behavioral Sciences (M.J.D.), Vanderbilt University Medical Center, Nashville; Vanderbilt-Meharry Center of Excellence in Sickle Cell Disease (A.A.K., M.R.D.), Nashville; and Department of Electrical and Computer Engineering (M.J.D.), Vanderbilt University, Nashville, TN
| |
Collapse
|
2
|
Konté K, Afzali‐Hashemi L, Baas KPA, Schrantee A, Wood JC, Nur E, Nederveen AJ, Biemond BJ. Effect of voxelotor on cerebral perfusion and cerebral oxygen metabolism and cardiac stress in adult patients with sickle cell disease. Am J Hematol 2025; 100:78-84. [PMID: 39564863 PMCID: PMC11625979 DOI: 10.1002/ajh.27522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/21/2024]
Abstract
Sickle cell disease (SCD) is complicated by silent cerebral infarcts (SCIs), for which anemia is an important risk factor. Despite normal oxygen delivery (OD), cerebral vascular reserve (CVR), and cerebral metabolic rate of oxygen (CMRO2) are diminished in SCD, possibly causing the formation of SCIs. Voxelotor inhibits polymerization by increasing the hemoglobin oxygen binding, ameliorating hemolytic anemia. Furthermore, anemia is related to cardiac complications. Our aims were to assess the effect of voxelotor on markers of cerebral perfusion, cerebral oxygen metabolism, and markers of cardiac stress in SCD patients. Cerebral hemodynamics and oxygen metabolism were measured with MRI before and after 3 months of voxelotor treatment (1500 mg/day) in 18 adults with SCD (HbSS/HbSβ0-thalassemia). Hemoglobin levels significantly increased (p = .001) and markers of hemolysis decreased (p < .05). OD increased from 6.5 (IQR, 6.0-7.1) mL O2/100 g/min to 8.1 (IQR, 7.2-8.7) mL O2/100 g/min (p = .001). CBF and CVR did not change. CMRO2 decreased from 2.0 (IQR, 1.9-2.1) mL O2/100 g/min to 1.9 (IQR, 1.6-2.1) mL O2/100 g/min (p = .03). N-terminal pro-B type natriuretic peptide (NT-proBNP) levels decreased (p = .048) and maximum tricuspid regurgitation flow velocity (TRVmax) normalized in all but one patient with increased TRVmax. Voxelotor treatment in patients with severe SCD did not decrease CBF despite increased Hb levels. Cerebral oxygen metabolism slightly decreased, despite raised OD, most likely due to drug-induced increase in oxygen binding. Nonetheless, voxelotor improved clinically validated markers of cardiac stress.
Collapse
Affiliation(s)
- Kadère Konté
- Department of Clinical Hematology, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Liza Afzali‐Hashemi
- Department of Clinical Hematology, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Koen P. A. Baas
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - John C. Wood
- Division of Cardiology, Children's Hospital Los Angeles, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Erfan Nur
- Department of Clinical Hematology, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Blood Cell ResearchSanquin ResearchAmsterdamThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Bart J. Biemond
- Department of Clinical Hematology, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Alzaidi AA, Panek R, Blockley NP. Quantitative BOLD (qBOLD) imaging of oxygen metabolism and blood oxygenation in the human body: A scoping review. Magn Reson Med 2024; 92:1822-1837. [PMID: 39072791 DOI: 10.1002/mrm.30165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE There are many approaches to the quantitative BOLD (qBOLD) technique described in the literature, differing in pulse sequences, MRI parameters and data processing. Thus, in this review, we summarized the acquisition methods, approaches used for oxygenation quantification and clinical populations investigated. METHODS Three databases were systematically searched (Medline, Embase, and Web of Science) for published research that used qBOLD methods for quantification of oxygen metabolism. Data extraction and synthesis were performed by one author and reviewed by a second author. RESULTS A total of 93 relevant papers were identified. Acquisition strategies were summarized, and oxygenation parameters were found to have been investigated in many pathologies such as steno-occlusive diseases, stroke, glioma, and multiple sclerosis disease. CONCLUSION A summary of qBOLD approaches for oxygenation measurements and applications could help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Ahlam A Alzaidi
- David Greenfield Human Physiology Unit, School of Life Sciences, University of Nottingham, Nottingham, UK
- Radiology Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Rafal Panek
- Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nicholas P Blockley
- David Greenfield Human Physiology Unit, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Brothers RO, Turrentine KB, Akbar M, Triplett S, Zhao H, Urner TM, Goldman-Yassen A, Jones RA, Knight-Scott J, Milla SS, Bai S, Tang A, Brown RC, Buckley EM. The influence of voxelotor on cerebral blood flow and oxygen extraction in pediatric sickle cell disease. Blood 2024; 143:2145-2151. [PMID: 38364110 PMCID: PMC11443564 DOI: 10.1182/blood.2023022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Voxelotor is an inhibitor of sickle hemoglobin polymerization that is used to treat sickle cell disease. Although voxelotor has been shown to improve anemia, the clinical benefit on the brain remains to be determined. This study quantified the cerebral hemodynamic effects of voxelotor in children with sickle cell anemia (SCA) using noninvasive diffuse optical spectroscopies. Specifically, frequency-domain near-infrared spectroscopy combined with diffuse correlation spectroscopy were used to noninvasively assess regional oxygen extraction fraction (OEF), cerebral blood volume, and an index of cerebral blood flow (CBFi). Estimates of CBFi were first validated against arterial spin-labeled magnetic resonance imaging (ASL-MRI) in 8 children with SCA aged 8 to 18 years. CBFi was significantly positively correlated with ASL-MRI-measured blood flow (R2 = 0.651; P = .015). Next, a single-center, open-label pilot study was completed in 8 children with SCA aged 4 to 17 years on voxelotor, monitored before treatment initiation and at 4, 8, and 12 weeks (NCT05018728). By 4 weeks, both OEF and CBFi significantly decreased, and these decreases persisted to 12 weeks (both P < .05). Decreases in CBFi were significantly correlated with increases in blood hemoglobin (Hb) concentration (P = .025), whereas the correlation between decreases in OEF and increases in Hb trended toward significance (P = .12). Given that previous work has shown that oxygen extraction and blood flow are elevated in pediatric SCA compared with controls, these results suggest that voxelotor may reduce cerebral hemodynamic impairments. This trial was registered at www.ClinicalTrials.gov as #NCT05018728.
Collapse
Affiliation(s)
- Rowan O. Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Katherine B. Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Mariam Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Hongting Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Tara M. Urner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
| | - Adam Goldman-Yassen
- Department of Radiology and Imaging Sciences, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
| | - Richard A. Jones
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Jack Knight-Scott
- Department of Radiology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Sarah S. Milla
- Department of Pediatric Radiology, Children's Hospital Colorado, Aurora, CO
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Shasha Bai
- Pediatric Biostatistics Core, Emory University School of Medicine, Atlanta, GA
| | - Amy Tang
- Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - R. Clark Brown
- Department of Pediatrics, Children’s Healthcare of Atlanta and Emory University, Atlanta, GA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA
- Department of Pediatrics, Emory University, Atlanta, GA
- Children’s Research Scholar, Children’s Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
5
|
Gou Y, Golden WC, Lin Z, Shepard J, Tekes A, Hu Z, Li X, Oishi K, Albert M, Lu H, Liu P, Jiang D. Automatic Rejection based on Tissue Signal (ARTS) for motion-corrected quantification of cerebral venous oxygenation in neonates and older adults. Magn Reson Imaging 2024; 105:92-99. [PMID: 37939974 PMCID: PMC10841989 DOI: 10.1016/j.mri.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Cerebral venous oxygenation (Yv) is a key parameter for the brain's oxygen utilization and has been suggested to be a valuable biomarker in various brain diseases including hypoxic ischemic encephalopathy in neonates and Alzheimer's disease in older adults. T2-Relaxation-Under-Spin-Tagging (TRUST) MRI is a widely used technique to measure global Yv level and has been validated against gold-standard PET. However, subject motion during TRUST MRI scan can introduce considerable errors in Yv quantification, especially for noncompliant subjects. The aim of this study was to develop an Automatic Rejection based on Tissue Signal (ARTS) algorithm for automatic detection and exclusion of motion-contaminated images to improve the precision of Yv quantification. METHODS TRUST MRI data were collected from a neonatal cohort (N = 37, 16 females, gestational age = 39.12 ± 1.11 weeks, postnatal age = 1.89 ± 0.74 days) and an older adult cohort (N = 223, 134 females, age = 68.02 ± 9.01 years). Manual identification of motion-corrupted images was conducted for both cohorts to serve as a gold-standard. 9.3% of the images in the neonatal datasets and 0.4% of the images in the older adult datasets were manually identified as motion-contaminated. The ARTS algorithm was trained using the neonatal datasets. TRUST Yv values, as well as the estimation uncertainty (ΔR2) and test-retest coefficient-of-variation (CoV) of Yv, were calculated with and without ARTS motion exclusion. The ARTS algorithm was tested on datasets of older adults: first on the original adult datasets with little motion, and then on simulated adult datasets where the percentage of motion-corrupted images matched that of the neonatal datasets. RESULTS In the neonatal datasets, the ARTS algorithm exhibited a sensitivity of 0.95 and a specificity of 0.97 in detecting motion-contaminated images. Compared to no motion exclusion, ARTS significantly reduced the ΔR2 (median = 3.68 Hz vs. 4.89 Hz, P = 0.0002) and CoV (median = 2.57% vs. 6.87%, P = 0.0005) of Yv measurements. In the original older adult datasets, the sensitivity and specificity of ARTS were 0.70 and 1.00, respectively. In the simulated adult datasets, ARTS demonstrated a sensitivity of 0.91 and a specificity of 1.00. Additionally, ARTS significantly reduced the ΔR2 compared to no motion exclusion (median = 2.15 Hz vs. 3.54 Hz, P < 0.0001). CONCLUSION ARTS can improve the reliability of Yv estimation in noncompliant subjects, which may enhance the utility of Yv as a biomarker for brain diseases.
Collapse
Affiliation(s)
- Yifan Gou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - W Christopher Golden
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Shepard
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiyi Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xin Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kumiko Oishi
- Center for Imaging Science, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Yee MEM, Fasano RM. Novel approaches to measure transfusion effectiveness. Curr Opin Hematol 2023; 30:230-236. [PMID: 37594015 PMCID: PMC10924773 DOI: 10.1097/moh.0000000000000783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW This review encompasses different considerations of transfusion effectiveness based upon clinical scenario and transfusion indication. Tissue oxygenation, cerebral metabolic oxygen use, and red blood cell (RBC) survival are important elements of transfusion effectiveness in individuals with acute and chronic transfusion requirements. RECENT FINDINGS Noninvasive measures of tissue and cerebral oxygen extraction include near-infrared spectroscopy (NIRS) and specialized MRI sequences. RBC survival timepoints including 24 h posttransfusion recovery, 50% recovery timepoint, and mean potential lifespan may be accurately measured with biotin-labeling of RBC prior to transfusion. Labeling at different cell surface densities allows survival of multiple RBC populations to be determined. SUMMARY Although past trials of optimal transfusion thresholds have focused on Hb as a singular marker for transfusion needs, measures of oxygenation (via NIRS or specialized MRI) and RBC survival (via biotin labeling) provide the opportunity to personalize transfusion decisions to individual patient's acute health needs or chronic transfusion goals.
Collapse
Affiliation(s)
- Marianne Elaine McPherson Yee
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta
- Division of Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
7
|
Karkoska KA, Gollamudi J, Hyacinth HI. Molecular and environmental contributors to neurological complications in sickle cell disease. Exp Biol Med (Maywood) 2023; 248:1319-1332. [PMID: 37688519 PMCID: PMC10625341 DOI: 10.1177/15353702231187646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy in which affected hemoglobin polymerizes under hypoxic conditions resulting in red cell distortion and chronic hemolytic anemia. SCD affects millions of people worldwide, primarily in Sub-Saharan Africa and the Indian subcontinent. Due to vaso-occlusion of sickled red cells within the microvasculature, SCD affects virtually every organ system and causes significant morbidity and early mortality. The neurological complications of SCD are particularly devastating and diverse, ranging from overt stroke to covert cerebral injury, including silent cerebral infarctions and blood vessel tortuosity. However, even individuals without evidence of neuroanatomical changes in brain imaging have evidence of cognitive deficits compared to matched healthy controls likely due to chronic cerebral hypoxemia and neuroinflammation. In this review, we first examined the biological contributors to SCD-related neurological complications and then discussed the equally important socioenvironmental contributors. We then discuss the evidence for neuroprotection from the two primary disease-modifying therapies, chronic monthly blood transfusions and hydroxyurea, and end with several experimental therapies designed to specifically target these complications.
Collapse
Affiliation(s)
- Kristine A Karkoska
- Division of Hematology & Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0525, USA
| | - Jahnavi Gollamudi
- Division of Hematology & Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219-0525, USA
| | - Hyacinth I Hyacinth
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0525, USA
| |
Collapse
|
8
|
|
9
|
Hulbert ML, Fields ME, Guilliams KP, Bijlani P, Shenoy S, Fellah S, Towerman AS, Binkley MM, McKinstry RC, Shimony JS, Chen Y, Eldeniz C, Ragan DK, Vo K, An H, Lee JM, Ford AL. Normalization of cerebral hemodynamics after hematopoietic stem cell transplant in children with sickle cell disease. Blood 2023; 141:335-344. [PMID: 36040484 PMCID: PMC9936296 DOI: 10.1182/blood.2022016618] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 02/08/2023] Open
Abstract
Children with sickle cell disease (SCD) demonstrate cerebral hemodynamic stress and are at high risk of strokes. We hypothesized that curative hematopoietic stem cell transplant (HSCT) normalizes cerebral hemodynamics in children with SCD compared with pre-transplant baseline. Whole-brain cerebral blood flow (CBF) and oxygen extraction fraction (OEF) were measured by magnetic resonance imaging 1 to 3 months before and 12 to 24 months after HSCT in 10 children with SCD. Three children had prior overt strokes, 5 children had prior silent strokes, and 1 child had abnormal transcranial Doppler ultrasound velocities. CBF and OEF of HSCT recipients were compared with non-SCD control participants and with SCD participants receiving chronic red blood cell transfusion therapy (CRTT) before and after a scheduled transfusion. Seven participants received matched sibling donor HSCT, and 3 participants received 8 out of 8 matched unrelated donor HSCT. All received reduced-intensity preparation and maintained engraftment, free of hemolytic anemia and SCD symptoms. Pre-transplant, CBF (93.5 mL/100 g/min) and OEF (36.8%) were elevated compared with non-SCD control participants, declining significantly 1 to 2 years after HSCT (CBF, 72.7 mL/100 g per minute; P = .004; OEF, 27.0%; P = .002), with post-HSCT CBF and OEF similar to non-SCD control participants. Furthermore, HSCT recipients demonstrated greater reduction in CBF (-19.4 mL/100 g/min) and OEF (-8.1%) after HSCT than children with SCD receiving CRTT after a scheduled transfusion (CBF, -0.9 mL/100 g/min; P = .024; OEF, -3.3%; P = .001). Curative HSCT normalizes whole-brain hemodynamics in children with SCD. This restoration of cerebral oxygen reserve may explain stroke protection after HSCT in this high-risk patient population.
Collapse
Affiliation(s)
- Monica L. Hulbert
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Melanie E. Fields
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Kristin P. Guilliams
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Priyesha Bijlani
- Department of Internal Medicine, University of California San Diego, San Diego, CA
| | - Shalini Shenoy
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | - Slim Fellah
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Alison S. Towerman
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO
| | | | - Robert C. McKinstry
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Yasheng Chen
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Dustin K. Ragan
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI
| | - Katie Vo
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Andria L. Ford
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
10
|
Ramos K, Guilliams KP, Fields ME. The Development of Neuroimaging Biomarkers for Cognitive Decline in Sickle Cell Disease. Hematol Oncol Clin North Am 2022; 36:1167-1186. [PMID: 36400537 PMCID: PMC9973749 DOI: 10.1016/j.hoc.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sickle cell disease (SCD) is complicated by neurologic complications including vasculopathy, hemorrhagic or ischemic overt stroke, silent cerebral infarcts and cognitive dysfunction. Patients with SCD, even in the absence of vasculopathy or stroke, have experience cognitive dysfunction that progresses with age. Transcranial Doppler ultrasound and structural brain MRI are currently used for primary and secondary stroke prevention, but laboratory or imaging biomarkers do not currently exist that are specific to the risk of cognitive dysfunction in patients with SCD. Recent investigations have used advanced MR sequences assessing cerebral hemodynamics, white matter microstructure and functional connectivity to better understand the pathophysiology of cognitive decline in SCD, with the long-term goal of developing neuroimaging biomarkers to be used in risk prediction algorithms and to assess the efficacy of treatment options for patients with SCD.
Collapse
Affiliation(s)
- Kristie Ramos
- Department of Pediatrics, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Kristin P Guilliams
- Department of Pediatrics, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Neurology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Melanie E Fields
- Department of Pediatrics, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Neurology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
González-Zacarías C, Choi S, Vu C, Xu B, Shen J, Joshi AA, Leahy RM, Wood JC. Chronic anemia: The effects on the connectivity of white matter. Front Neurol 2022; 13:894742. [PMID: 35959402 PMCID: PMC9362738 DOI: 10.3389/fneur.2022.894742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/29/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic anemia is commonly observed in patients with hemoglobinopathies, mainly represented by disorders of altered hemoglobin (Hb) structure (sickle cell disease, SCD) and impaired Hb synthesis (e.g. thalassemia syndromes, non-SCD anemia). Both hemoglobinopathies have been associated with white matter (WM) alterations. Novel structural MRI research in our laboratory demonstrated that WM volume was diffusely lower in deep, watershed areas proportional to anemia severity. Furthermore, diffusion tensor imaging analysis has provided evidence that WM microstructure is disrupted proportionally to Hb level and oxygen saturation. SCD patients have been widely studied and demonstrate lower fractional anisotropy (FA) in the corticospinal tract and cerebellum across the internal capsule and corpus callosum. In the present study, we compared 19 SCD and 15 non-SCD anemia patients with a wide range of Hb values allowing the characterization of the effects of chronic anemia in isolation of sickle Hb. We performed a tensor analysis to quantify FA changes in WM connectivity in chronic anemic patients. We calculated the volumetric mean of FA along the pathway of tracks connecting two regions of interest defined by BrainSuite's BCI-DNI atlas. In general, we found lower FA values in anemic patients; indicating the loss of coherence in the main diffusion direction that potentially indicates WM injury. We saw a positive correlation between FA and hemoglobin in these same regions, suggesting that decreased WM microstructural integrity FA is highly driven by chronic hypoxia. The only connection that did not follow this pattern was the connectivity within the left middle-inferior temporal gyrus. Interestingly, more reductions in FA were observed in non-SCD patients (mainly along with intrahemispheric WM bundles and watershed areas) than the SCD patients (mainly interhemispheric).
Collapse
Affiliation(s)
- Clio González-Zacarías
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States,Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, United States,Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States,Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, United States,Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Chau Vu
- Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States,Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Botian Xu
- Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States,Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Jian Shen
- Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States,Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Anand A. Joshi
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, United States
| | - Richard M. Leahy
- Signal and Image Processing Institute, University of Southern California, Los Angeles, CA, United States,Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - John C. Wood
- Department of Pediatrics and Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States,Biomedical Engineering, University of Southern California, Los Angeles, CA, United States,*Correspondence: John C. Wood
| |
Collapse
|
12
|
Stout JN, Lin PY, Sutin J, Higgins J, Ellen Grant P. Magnetic resonance imaging metrics of oxygen extraction fraction: Contradictions or insight into pathophysiological mechanisms? Am J Hematol 2022; 97:679-681. [PMID: 35405034 PMCID: PMC10353571 DOI: 10.1002/ajh.26567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jeffrey N. Stout
- Fetal Neonatal Neuroimaging and Developmental Science
Center, Boston Children’s Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Pei-Yi Lin
- Fetal Neonatal Neuroimaging and Developmental Science
Center, Boston Children’s Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - Jason Sutin
- Fetal Neonatal Neuroimaging and Developmental Science
Center, Boston Children’s Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| | - John Higgins
- Center for Systems Biology and Department of Pathology,
Massachusetts General Hospital Boston, Department of Systems Biology, Harvard
Medical School, Boston, Massachusetts, USA
| | - P. Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science
Center, Boston Children’s Hospital, Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|