1
|
Ludwig LS, Lareau CA, Bao EL, Liu N, Utsugisawa T, Tseng AM, Myers SA, Verboon JM, Ulirsch JC, Luo W, Muus C, Fiorini C, Olive ME, Vockley CM, Munschauer M, Hunter A, Ogura H, Yamamoto T, Inada H, Nakagawa S, Ohzono S, Subramanian V, Chiarle R, Glader B, Carr SA, Aryee MJ, Kundaje A, Orkin SH, Regev A, McCavit TL, Kanno H, Sankaran VG. Congenital anemia reveals distinct targeting mechanisms for master transcription factor GATA1. Blood 2022; 139:2534-2546. [PMID: 35030251 PMCID: PMC9029090 DOI: 10.1182/blood.2021013753] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/24/2021] [Indexed: 11/20/2022] Open
Abstract
Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.
Collapse
Affiliation(s)
- Leif S Ludwig
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Nan Liu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Taiju Utsugisawa
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Alex M Tseng
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Samuel A Myers
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- La Jolla Institute for Immunology, La Jolla, CA
| | - Jeffrey M Verboon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA
| | - Wendy Luo
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Christoph Muus
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- John A. Paulson School of Engineering and Applied Sciences, Faculty of Arts and Sciences, Harvard University, Cambridge, MA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Christopher M Vockley
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Mathias Munschauer
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Helmholtz Institute for RNA-Based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
- Infection and Immunity Department, Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | | | - Hiromi Ogura
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | | | - Shinichiro Nakagawa
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shuichi Ohzono
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Vidya Subramanian
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bertil Glader
- Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
| | - Martin J Aryee
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Anshul Kundaje
- Department of Computer Science and
- Department of Genetics, Stanford University, Stanford, CA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Aviv Regev
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Department of Biology and
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, MA; and
| | | | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Faculty of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Vijay G Sankaran
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
6
|
Zarza R, Alvarez R, Pujades A, Nomdedeu B, Carrera A, Estella J, Remacha A, Sánchez JM, Morey M, Cortes T, Pérez Lungmus G, Bureo E, Vives Corrons JL. Molecular characterization of the PK-LR gene in pyruvate kinase deficient Spanish patients. Red Cell Pathology Group of the Spanish Society of Haematology (AEHH). Br J Haematol 1998; 103:377-82. [PMID: 9827908 DOI: 10.1046/j.1365-2141.1998.01013.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PK-LR gene has been studied in 12 unrelated patients with red cell pyruvate kinase deficiency and hereditary nonspherocytic haemolytic anaemia (CNSHA). The entire codifying region of the R-type PK gene and the flanking intronic regions were analysed by single-stranded conformation polymorphism (SSCP) followed by direct sequencing of abnormal DNA. 10 different mutations were identified in 22/24 alleles at risk. Eight of these were missense mutations that caused the following single amino acid changes: G514C (172Glu-Gln), G1010A (337Arg-Gln), G1015C (339Asp-Gln), T1070C (357Ile-Thr), C1223T (408Thr-Ile), G1291A (431Ala-Thr), C1456T (486Arg-Trp) and G1595A (532Arg-Gln). Two were nonsense mutations: G721T (241Glu-Stop) and C1675T (559Arg-Stop). 7/22 alleles demonstrated the same C1456 --> T mutation. The study of the polymorphic site at nucleotide (nt) 1705 performed in all cases disclosed a 1705 C/C mutation in 10 and a 1705 A/C mutation in three. This is the first report on the presence of several different L-type PK gene mutations within Spanish population. Furthermore, from the PK gene mutations found, six were unique and not previously described (1015C, 1070C, 1223T, 1291A, 1595A and 1675T) and one (C1456T) seems to be predominant in Spain. Interestingly, no case with the 1529A mutation commonly found in Northern European populations was present here.
Collapse
Affiliation(s)
- R Zarza
- Haematology Department of Hospital Clinic i Provincial, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|