1
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1074-1121.e18. [DOI: 10.1016/b978-0-443-10513-5.00037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Ionova SA, Murtazina AF, Marakhonov AA, Shchagina OA, Ryadninskaya NV, Tebieva IS, Kadyshev VV, Borovikov AO, Ginter EK, Kutsev SI, Zinchenko RA. The Study of the Inheritance Mechanisms of Myotonic Dystrophy Type 1 (DM1) in Families from the Republic of North Ossetia-Alania. Int J Mol Sci 2024; 25:9734. [PMID: 39273681 PMCID: PMC11395446 DOI: 10.3390/ijms25179734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder with progressive myopathy and myotonia. The clinical study was conducted in the Republic of North Ossetia-Alania (RNOA), and in it 39 individuals from 17 unrelated families were identified with DM1. Clinical presentations varied, including muscle weakness, fatigue, intellectual disability, hypersomnia, ophthalmological abnormalities, and alopecia. Using clinical and genotyping data, we confirmed the diagnosis and enabled the study of CTG-repeat anticipation and DM1 prevalence in the Ossetian and Ingush populations. CTG expansion correlated with age of onset, with clinical severity, and with offspring showing more severe symptoms than parents. In many families, the youngest child had a more severe DM1 phenotype than older siblings. The prevalence was 14.17 per 100,000 in Ossetians and 18.74 per 100,000 in Ingush people, aligning with global data. Segregation analysis showed a higher frequency of maternal transmission. The study highlights the clinical and genetic heterogeneity of DM1 and its dependence on repeat expansion and paternal and maternal age.
Collapse
Affiliation(s)
- Sofya A Ionova
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Aysylu F Murtazina
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Andrey A Marakhonov
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Olga A Shchagina
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Nina V Ryadninskaya
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Inna S Tebieva
- North Ossetian State Medical Academy of the Ministry of Health of the Russian Federation, Pushkinskaya St., 40, Republic of North Ossetia-Alania, 362019 Vladikavkaz, Russia
- Medical and Genetic Consultation of the Republican Children's Clinical Hospital of the Republic of North Ossetia-Alania, Barbashova 33A, 362020 Vladikavkaz, Russia
| | - Vitaly V Kadyshev
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Artem O Borovikov
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Evgeny K Ginter
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Sergey I Kutsev
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| | - Rena A Zinchenko
- Research Centre for Medical Genetics, Moskvorechie Str. 1, 115522 Moscow, Russia
| |
Collapse
|
3
|
Ahmadpour‐kacho M, Pasha YZ, Pournajaf S. A couple of the first cousins born with hypotonia and maternal polyhydramnios. Clin Case Rep 2024; 12:e8503. [PMID: 38333661 PMCID: PMC10849984 DOI: 10.1002/ccr3.8503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Congenital myotonic dystrophy should be considered in hypotonic infants with polyhydramniotic mothers with a positive history of myotonia. Abstract Congenital myotonic dystrophy (CDM) is a predominantly maternally inherited disease and results from increased numbers of cytosine, thymine, and guanine (CTG) repeats in the unstable DNA regions and presents as hypotonia in the neonatal period and myotonia in adulthood. This report aims to present two cases of CDM. A first-cousin couple was born and hospitalized due to hypotonia at birth and a maternal history of polyhydramnios during this pregnancy. The first-born baby girl was admitted to the NICU with tachypnea and hypotonia, clubfoot, and frog-like posture. The pregnancy was complicated by polyhydramnios. Interestingly, her first cousin was born the next day with a similar picture and history. Myotonia was detected in their mothers. The concurrent presence of hypotonia and polyhydramnios as well as maternal myotonia in a first cousin should be considered CDM until proven otherwise and this was confirmed by the EMG- NCV test.
Collapse
Affiliation(s)
- Mousa Ahmadpour‐kacho
- Non‐Communicable Pediatric Diseases Research Center, Department of PediatricsBabol University of Medical SciencesBabolIran
- Non‐Communicable Pediatric Diseases Research Center, Department of PediatricsClinical Research Development Unit of Rouhani Hospital Babol University of Medical SciencesBabolIran
| | - Yadollah Zahed Pasha
- Non‐Communicable Pediatric Diseases Research Center, Department of PediatricsBabol University of Medical SciencesBabolIran
- Non‐Communicable Pediatric Diseases Research Center, Department of PediatricsClinical Research Development Unit of Rouhani Hospital Babol University of Medical SciencesBabolIran
| | - Samira Pournajaf
- Non‐Communicable Pediatric Diseases Research Center, Department of PediatricsBabol University of Medical SciencesBabolIran
- Non‐Communicable Pediatric Diseases Research Center, Department of PediatricsClinical Research Development Unit of Rouhani Hospital Babol University of Medical SciencesBabolIran
| |
Collapse
|
4
|
Morales F, Corrales E, Zhang B, Vásquez M, Santamaría-Ulloa C, Quesada H, Sirito M, Estecio MR, Monckton DG, Krahe R. Myotonic dystrophy type 1 (DM1) clinical sub-types and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent. Hum Mol Genet 2021; 31:262-274. [PMID: 34432028 DOI: 10.1093/hmg/ddab243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex disease with a wide spectrum of symptoms. The exact relationship between mutant CTG repeat expansion size and clinical outcome remains unclear. DM1 congenital patients (CDM) inherit the largest expanded alleles, which are associated with abnormal and increased DNA methylation flanking the CTG repeat. However, DNA methylation at the DMPK locus remains understudied. Its relationship to DM1 clinical subtypes, expansion size and age-at-onset is not yet completely understood. Using pyrosequencing-based methylation analysis on 225 blood DNA samples from Costa Rican DM1 patients, we determined that the size of the estimated progenitor allele length (ePAL) is not only a good discriminator between CDM and non-CDM cases (with an estimated threshold at 653 CTG repeats), but also for all DM1 clinical subtypes. Secondly, increased methylation at both CTCF sites upstream and downstream of the expansion was almost exclusively present in CDM cases. Thirdly, levels of abnormal methylation were associated with clinical subtype, age and ePAL, with strong correlations between these variables. Fourthly, both ePAL and the intergenerational expansion size were significantly associated with methylation status. Finally, methylation status was associated with ePAL and maternal inheritance, with almost exclusively maternal transmission of CDM. In conclusion, increased DNA methylation at the CTCF sites flanking the DM1 expansion could be linked to ePAL, and both increased methylation and the ePAL could be considered biomarkers for the CDM phenotype.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carolina Santamaría-Ulloa
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Hazel Quesada
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| |
Collapse
|
5
|
Li M, Wang Z, Cui F, Yang F, Wang H, Huang X. Multisystemic Impairments in 93 Chinese Patients With Myotonic Dystrophy Type 1. Front Neurol 2020; 11:277. [PMID: 32373051 PMCID: PMC7186325 DOI: 10.3389/fneur.2020.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular disease characterized by muscle weakness and multisystemic impairments, which significantly impact the quality of life. There is currently an increasing consensus on the necessity of a multidisciplinary assessment in patients with DM1, to improve the management of the disease. Methods: To analyze the prevalence and pairwise relationships between various organs involved, we performed a retrospective study by reviewing demographic and clinical information of DM1 patients including age, disease duration, clinical history, muscular impairment rating scale score (MIRS), results of blood biochemistry, electrocardiogram, echocardiography, and ophthalmologic examination. Results: Ninety three DM1 patients (60 males and 33 females), aged 34.7 ± 12.6 (mean ± standard deviation) years were recruited. Of which, two congenital cases were of maternal and paternal inheritance, respectively. In the other 91 patients, cataract was found in 44.1% of patients, followed by hypogonadism (40.8%), frontal balding (40.7%), and cardiac abnormalities (34.5%). Thyroid dysfunction and insulin insensitivity were relatively uncommon. Age (p < 0.001) is independently correlated with cataract, and MIRS correlates positively with cardiac abnormalities (p = 0.005) and frontal balding (p = 0.015). Male patients more frequently had frontal balding (Risk ratio, 3.98; 95% confidence interval, 1.493–10.611) compared with female patients. Male patients with cataract presented more frequent cardiac abnormalities (Risk ratio, 4.40; 95% confidence interval, 1.055–18.358) compared with non-cataract male patients. Hypogonadism in male patients was characterized as decreased testosterone level, accompanied by elevated levels of luteinizing hormone and follicle-stimulating hormone. Conclusions: In Chinese patients with DM1, we conclude that (1) cataract, hypogonadism, frontal balding and cardiac abnormalities are frequently observed; (2) age is an independent indicator to cataract and MIRS is the only predictor for cardiac abnormalities and frontal balding; (3) a positive correlation between ophthalmologic and cardiac impairments in male patients is found; (4) endocrine abnormalities show diverse manifestations and hormone tests are recommended; (5) particular attention should be given to patients with older age and higher MIRS score.
Collapse
Affiliation(s)
- Mao Li
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fang Cui
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Yang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hongfen Wang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xusheng Huang
- Department of Neurology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Xusheng Huang
| |
Collapse
|
6
|
Joosten IBT, Hellebrekers DMEI, de Greef BTA, Smeets HJM, de Die-Smulders CEM, Faber CG, Gerrits MM. Parental repeat length instability in myotonic dystrophy type 1 pre- and protomutations. Eur J Hum Genet 2020; 28:956-962. [PMID: 32203199 DOI: 10.1038/s41431-020-0601-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG trinucleotide repeat expansion on chromosome 19q13.3. While DM1 premutation (36-50 repeats) and protomutation (51-80 repeats) allele carriers are mostly asymptomatic, offspring is at risk of inheriting expanded, symptom-associated, (CTG)n repeats of n > 80. In this study we aimed to evaluate the intergenerational instability of DM1 pre- and protomutation alleles, focussing on the influence of parental gender. One hundred and forty-six parent-child pairs (34 parental premutations, 112 protomutations) were retrospectively selected from the DM1 patient cohort of the Maastricht University Medical Center+. CTG repeat size of parents and children was determined by (triplet-primed) PCR followed by fragment length analysis and Southern blot analysis. Fifty-eight out of eighty-one (71.6%) paternal transmissions led to a (CTG)n repeat of n > 80 in offspring, compared with 15 out of 65 (23.1%) maternal transmissions (p < 0.001). Repeat length instability occurred for paternal (CTG)n repeats of n ≥ 45, while maternal instability did not occur until (CTG)n repeats reached a length of n ≥ 71. Transmission of premutations caused (CTG)n repeats of n > 80 in offspring only when paternally transmitted (two cases), while protomutations caused (CTG)n repeats of n > 80 in offspring in 71 cases, of which 56 (78.9%) were paternally transmitted. In conclusion, our data show that paternally transmitted pre- and protomutations were more unstable than maternally transmitted pre- and protomutations. For genetic counseling, this implies that males with a small DMPK mutation have a higher risk of symptomatic offspring compared with females. Consequently, we suggest addressing sex-dependent factors in genetic counseling of small-sized CTG repeat carriers.
Collapse
Affiliation(s)
- Isis B T Joosten
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Bianca T A de Greef
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Hubert J M Smeets
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, Clinical Genomics Unit, Maastricht University, Maastricht, The Netherlands.,School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | | | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center+, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Ballester-Lopez A, Koehorst E, Almendrote M, Martínez-Piñeiro A, Lucente G, Linares-Pardo I, Núñez-Manchón J, Guanyabens N, Cano A, Lucia A, Overend G, Cumming SA, Monckton DG, Casadevall T, Isern I, Sánchez-Ojanguren J, Planas A, Rodríguez-Palmero A, Monlleó-Neila L, Pintos-Morell G, Ramos-Fransi A, Coll-Cantí J, Nogales-Gadea G. A DM1 family with interruptions associated with atypical symptoms and late onset but not with a milder phenotype. Hum Mutat 2019; 41:420-431. [PMID: 31608518 DOI: 10.1002/humu.23932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2019] [Accepted: 10/06/2019] [Indexed: 12/16/2022]
Abstract
Carriage of interruptions in CTG repeats of the myotonic dystrophy protein kinase gene has been associated with a broad spectrum of myotonic dystrophy type 1 (DM1) phenotypes, mostly mild. However, the data available on interrupted DM1 patients and their phenotype are scarce. We studied 49 Spanish DM1 patients, whose clinical phenotype was evaluated in depth. Blood DNA was obtained and analyzed through triplet-primed polymerase chain reaction (PCR), long PCR-Southern blot, small pool PCR, AciI digestion, and sequencing. Five patients of our registry (10%), belonging to the same family, carried CCG interruptions at the 3'-end of the CTG expansion. Some of them presented atypical traits such as very late onset of symptoms ( > 50 years) and a severe axial and proximal weakness requiring walking assistance. They also showed classic DM1 symptoms including cardiac and respiratory dysfunction, which were severe in some of them. Sizes and interrupted allele patterns were determined, and we found a contraction and an expansion in two intergenerational transmissions. Our study contributes to the observation that DM1 patients carrying interruptions present with atypical clinical features that can make DM1 diagnosis difficult, with a later than expected age of onset and a previously unreported aging-related severe disease manifestation.
Collapse
Affiliation(s)
- Alfonsina Ballester-Lopez
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Koehorst
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Ian Linares-Pardo
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Nicolau Guanyabens
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Antoni Cano
- Neurology Unit, Neuroscience Department, Hospital de Mataró, Barcelona, Spain
| | - Alejandro Lucia
- Universidad Europea (Faculty of Sport Sciences), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gayle Overend
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Teresa Casadevall
- Neurology Service, Hospital Comarcal Sant Jaume de Calella, Barcelona, Spain
| | - Irina Isern
- Unitat de Neurologia, Hospital de l'Esperit Sant, Barcelona, Spain
| | | | - Albert Planas
- Servei de medicina interna, Secció de neurologia, Hospital Municipal de Badalona, Barcelona, Spain
| | - Agustí Rodríguez-Palmero
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuropediatric Unit, Pediatric Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Laura Monlleó-Neila
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuropediatric Unit, Pediatric Service, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Guillem Pintos-Morell
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Division of Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Jaume Coll-Cantí
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Lanni S, Pearson CE. Molecular genetics of congenital myotonic dystrophy. Neurobiol Dis 2019; 132:104533. [PMID: 31326502 DOI: 10.1016/j.nbd.2019.104533] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/29/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a neuromuscular disease showing strong genetic anticipation, and is caused by the expansion of a CTG repeat tract in the 3'-UTR of the DMPK gene. Congenital Myotonic Dystrophy (CDM1) represents the most severe form of the disease, with prenatal onset, symptoms distinct from adult onset DM1, and a high rate of perinatal mortality. CDM1 is usually associated with very large CTG expansions, but this correlation is not absolute and cannot explain the distinct clinical features and the strong bias for maternal transmission. This review focuses upon the molecular and epigenetic factors that modulate disease severity and might be responsible for CDM1. Changes in the epigenetic status of the DM1 locus and in gene expression have recently been observed. Increasing evidence supports a role of a CTCF binding motif as a cis-element, upstream of the DMPK CTG tract, whereby CpG methylation of this site regulates the interaction of the insulator protein CTCF as a modulating trans-factor responsible for the inheritance and expression of CDM1.
Collapse
Affiliation(s)
- Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Ontario, Canada
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto M5G 0A4, Ontario, Canada; University of Toronto, Program of Molecular Genetics, Canada.
| |
Collapse
|
9
|
Abstract
Myotonic dystrophy is an autosomal dominant muscular dystrophy not only associated with muscle weakness, atrophy, and myotonia but also prominent multisystem involvement. There are 2 similar, but distinct, forms of myotonic dystrophy; type 1 is caused by a CTG repeat expansion in the DMPK gene, and type 2 is caused by a CCTG repeat expansion in the CNBP gene. Type 1 is associated with distal limb, neck flexor, and bulbar weakness and results in different phenotypic subtypes with variable onset from congenital to very late-onset as well as variable signs and symptoms. The classically described adult-onset form is the most common. In contrast, myotonic dystrophy type 2 is adult-onset or late-onset, has proximal predominant muscle weakness, and generally has less severe multisystem involvement. In both forms of myotonic dystrophy, the best characterized disease mechanism is a RNA toxic gain-of-function during which RNA repeats form nuclear foci resulting in sequestration of RNA-binding proteins and, therefore, dysregulated splicing of premessenger RNA. There are currently no disease-modifying therapies, but clinical surveillance, preventative measures, and supportive treatments are used to reduce the impact of muscular impairment and other systemic involvement including cataracts, cardiac conduction abnormalities, fatigue, central nervous system dysfunction, respiratory weakness, dysphagia, and endocrine dysfunction. Exciting preclinical progress has been made in identifying a number of potential strategies including genome editing, small molecule therapeutics, and antisense oligonucleotide-based therapies to target the pathogenesis of type 1 and type 2 myotonic dystrophies at the DNA, RNA, or downstream target level.
Collapse
Affiliation(s)
- Samantha LoRusso
- Department of Neurology, The Ohio State University, 395 West 12th Avenue, Columbus, OH, 43210, USA
| | - Benjamin Weiner
- The Ohio State University College of Medicine, The Ohio State University, 370 West 9th Avenue, Columbus, OH, 43210, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University, 395 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Wenninger S, Montagnese F, Schoser B. Core Clinical Phenotypes in Myotonic Dystrophies. Front Neurol 2018; 9:303. [PMID: 29770119 PMCID: PMC5941986 DOI: 10.3389/fneur.2018.00303] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) represent the most frequent multisystemic muscular dystrophies in adulthood. They are progressive, autosomal dominant diseases caused by an abnormal expansion of an unstable nucleotide repeat located in the non-coding region of their respective genes DMPK for DM1 and CNBP in DM2. Clinically, these multisystemic disorders are characterized by a high variability of muscular and extramuscular symptoms, often causing a delay in diagnosis. For both subtypes, many symptoms overlap, but some differences allow their clinical distinction. This article highlights the clinical core features of myotonic dystrophies, thus facilitating their early recognition and diagnosis. Particular attention will be given to signs and symptoms of muscular involvement, to issues related to respiratory impairment, and to the multiorgan involvement. This article is part of a Special Issue entitled “Beyond Borders: Myotonic Dystrophies—A European Perception.”
Collapse
Affiliation(s)
- Stephan Wenninger
- Friedrich-Baur-Institute, Klinikum der Universität München, Munich, Germany
| | | | - Benedikt Schoser
- Friedrich-Baur-Institute, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
11
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:922-970.e15. [DOI: 10.1016/b978-0-323-42876-7.00033-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Thean LJ, Koh THHG. A premature baby with bilateral pleural effusions, Turner syndrome (monosomy X) and myotonic dystrophy. CASE REPORTS IN PERINATAL MEDICINE 2017. [DOI: 10.1515/crpm-2016-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Respiratory distress in the premature neonate has a variety of causes, some more common than others. Sometimes it may not be apparent that rare underlying conditions may be associated with common clinical presentations. In this case report, we describe an extremely premature neonate presenting with severe respiratory distress who was subsequently diagnosed with both myotonic dystrophy and Turner syndrome (monosomy X; 45, X0). A literature review correlating this neonate’s particular presentation with these diagnoses has been included.
Collapse
|
13
|
Barbé L, Lanni S, López-Castel A, Franck S, Spits C, Keymolen K, Seneca S, Tomé S, Miron I, Letourneau J, Liang M, Choufani S, Weksberg R, Wilson MD, Sedlacek Z, Gagnon C, Musova Z, Chitayat D, Shannon P, Mathieu J, Sermon K, Pearson CE. CpG Methylation, a Parent-of-Origin Effect for Maternal-Biased Transmission of Congenital Myotonic Dystrophy. Am J Hum Genet 2017; 100:488-505. [PMID: 28257691 PMCID: PMC5339342 DOI: 10.1016/j.ajhg.2017.01.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
CTG repeat expansions in DMPK cause myotonic dystrophy (DM1) with a continuum of severity and ages of onset. Congenital DM1 (CDM1), the most severe form, presents distinct clinical features, large expansions, and almost exclusive maternal transmission. The correlation between CDM1 and expansion size is not absolute, suggesting contributions of other factors. We determined CpG methylation flanking the CTG repeat in 79 blood samples from 20 CDM1-affected individuals; 21, 27, and 11 individuals with DM1 but not CDM1 (henceforth non-CDM1) with maternal, paternal, and unknown inheritance; and collections of maternally and paternally derived chorionic villus samples (7 CVSs) and human embryonic stem cells (4 hESCs). All but two CDM1-affected individuals showed high levels of methylation upstream and downstream of the repeat, greater than non-CDM1 individuals (p = 7.04958 × 10−12). Most non-CDM1 individuals were devoid of methylation, where one in six showed downstream methylation. Only two non-CDM1 individuals showed upstream methylation, and these were maternally derived childhood onset, suggesting a continuum of methylation with age of onset. Only maternally derived hESCs and CVSs showed upstream methylation. In contrast, paternally derived samples (27 blood samples, 3 CVSs, and 2 hESCs) never showed upstream methylation. CTG tract length did not strictly correlate with CDM1 or methylation. Thus, methylation patterns flanking the CTG repeat are stronger indicators of CDM1 than repeat size. Spermatogonia with upstream methylation may not survive due to methylation-induced reduced expression of the adjacent SIX5, thereby protecting DM1-affected fathers from having CDM1-affected children. Thus, DMPK methylation may account for the maternal bias for CDM1 transmission, larger maternal CTG expansions, age of onset, and clinical continuum, and may serve as a diagnostic indicator.
Collapse
|
14
|
Yum K, Wang ET, Kalsotra A. Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Curr Opin Genet Dev 2017; 44:30-37. [PMID: 28213156 DOI: 10.1016/j.gde.2017.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/11/2016] [Accepted: 01/13/2017] [Indexed: 01/29/2023]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease primarily characterized by myotonia and progressive muscle weakness. The pathogenesis of DM involves microsatellite expansions in noncoding regions of transcripts that result in toxic RNA gain-of-function. Each successive generation of DM families carries larger repeat expansions, leading to an earlier age of onset with increasing disease severity. At present, diagnosis of DM is challenging and requires special genetic testing to account for somatic mosaicism and meiotic instability. While progress in genetic testing has been made, more rapid, accurate, and cost-effective approaches for measuring repeat lengths are needed to establish clear correlations between repeat size and disease phenotypes.
Collapse
Affiliation(s)
- Kevin Yum
- Department of Biochemistry, University of Illinois, Urbana-Champaign, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA.
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois, Urbana-Champaign, USA; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
15
|
|
16
|
Singh S, Zhang A, Dlouhy S, Bai S. Detection of large expansions in myotonic dystrophy type 1 using triplet primed PCR. Front Genet 2014; 5:94. [PMID: 24795756 PMCID: PMC4006065 DOI: 10.3389/fgene.2014.00094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/03/2014] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular disease caused by expansion of a CTG trinucleotide repeat in the DMPK gene. Methodology for genetic testing of DM1 is currently not optimal, in particular for the early-onset patients in pediatric populations where large expanded (CTG)n alleles are usually common. Individuals who are homozygous for a normal allele and individuals who are heterozygous for one normal and one large expanded allele are indistinguishable by conventional PCR, as both generate a single product of the normal allele. Thus, reflex Southern blot has often been needed to distinguish these cases. With the aim to decrease the need for reflex Southern blot tests, a novel, single-tube CTG repeat primed PCR technology was designed to distinguish the true homozygous patients from the individuals whose large alleles are missed by conventional PCR. The method utilizes two gene-specific primers that flank the triplet repeat region and a third primer set complementary to the repeated region to detect the large alleles. Compared to traditional PCR, this novel Triplet-repeat Primed PCR can detect the presence of large expanded alleles with demonstrating a ladder pattern. Using this single-step protocol, 45 specimens were tested. The alleles with sizes~í~85 repeats were determined by the gene specific primers. 13 abnormal alleles, which were missed by conventional PCR, were successfully detected by the Triplet-repeat Primed PCR. All the abnormal alleles were confirmed and measured by Southern Blot analysis. In summary, optimized Triplet-Primed PCR (TP-PCR) can accurately detect the presence of the large expanded alleles. With the ability to distinguish the true homozygous patients from the false negative homozygous individuals, the application of the optimized TP-PCR can significantly reduce the need of Southern Blot tests.
Collapse
Affiliation(s)
- Susmita Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Amy Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Stephen Dlouhy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Shaochun Bai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
17
|
Abstract
Myotonic dystrophies (dystrophia myotonica, or DM) are inherited disorders characterized by myotonia and progressive muscle degeneration, which are variably associated with a multisystemic phenotype. To date, two types of myotonic dystrophy, type 1 (DM1) and type 2 (DM2), are known to exist; both are autosomal dominant disorders caused by expansion of an untranslated short tandem repeat DNA sequence (CTG)(n) and (CCTG)(n), respectively. These expanded repeats in DM1 and DM2 show different patterns of repeat-size instability. Phenotypes of DM1 and DM2 are similar but there are some important differences, most conspicuously in the severity of the disease (including the presence or absence of the congenital form), muscles primarily affected (distal versus proximal), involved muscle fiber types (type 1 versus type 2 fibers), and some associated multisystemic phenotypes. The pathogenic mechanism of DM1 and DM2 is thought to be mediated by the mutant RNA transcripts containing expanded CUG and CCUG repeats. Strong evidence supports the hypothesis that sequestration of muscle-blind like (MBNL) proteins by these expanded repeats leads to misregulated splicing of many gene transcripts in corroboration with the raised level of CUG-binding protein 1. However, additional mechanisms, such as changes in the chromatin structure involving CTCN-binding site and gene expression dysregulations, are emerging. Although treatment of DM1 and DM2 is currently limited to supportive therapies, new therapeutic approaches based on pathogenic mechanisms may become feasible in the near future.
Collapse
Affiliation(s)
- Tetsuo Ashizawa
- Department of Neurology, McKnight Brain Institute, The University of Texas Medical Branch, Galveston, TX, USA.
| | | |
Collapse
|
18
|
Łusakowska A, Sułek-Piątkowska A. Dystrofia miotoniczna – nowe spojrzenie na znaną chorobę. Neurol Neurochir Pol 2010; 44:264-76. [DOI: 10.1016/s0028-3843(14)60041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Macniven JAB, Graham NL, Davies RR, Wilson BA. A 5-year follow-up study of an atypical case of myotonic dystrophy. Brain Inj 2009; 19:1213-21. [PMID: 16286337 DOI: 10.1080/02699050500283509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study presents 5-year follow-up data on NG, a woman with adult onset myotonic dystrophy and progressive cognitive decline who was first described by Wilson et al. The extent of the cognitive impairment is atypical of symptom-onset in adulthood and of paternal inheritance, both of which apply to this case. Together, the present and earlier studies report the results of regular neuropsychological assessments over a 16-year period. Severe impairment in executive functioning, episodic and semantic memory were apparent early in the history, while visuospatial skills and working memory were only mildly impaired after 16 years of follow-up. There was also a progressive dyslexia, initially characterized by the regularization errors typical of surface dyslexia, but subsequently dominated by visual/phonological reading errors. This pattern of impairment is not typical of myotonic dystrophy but resembles semantic dementia. Whilst the deficits may be attributable wholly to myotonic dystrophy pathology, the co-existence of a form of semantic dementia is also possible. It is noted that the aggregation of tau protein is a neuropathological feature common to both diseases.
Collapse
Affiliation(s)
- J A B Macniven
- Medical School, c/o Psychopharmacology, University Hospital, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
20
|
Paternally inherited case of congenital DM1: brain MRI and review of literature. Brain Dev 2009; 31:79-82. [PMID: 18541397 DOI: 10.1016/j.braindev.2008.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 03/12/2008] [Accepted: 04/28/2008] [Indexed: 11/18/2022]
Abstract
The congenital form of myotonic dystrophy type 1 (CDM1) has an almost exclusively maternal transmission and is characterized by mental retardation and by moderate/severe ventriculomegaly and white matter hyperintensities on brain magnetic resonance imaging (MRI). We report a 20-year-old case of CDM1 with paternal inheritance showing mental retardation and normal brain MRI, and presenting at birth with hypotonia, facial weakness and feeding difficulties. We reviewed the literature for studies addressing the brain neuroimaging in paternally transmitted CDM1 and found four studies reporting diffuse cerebral, frontal lobe or mild parietal cortical atrophy, or mild ventricular dilatation, without white matter abnormalities. To our knowledge, this is the first report describing normal brain MRI in a mentally retarded CDM1 patient with paternal transmission.
Collapse
|
21
|
Echenne B, Rideau A, Roubertie A, Sébire G, Rivier F, Lemieux B. Myotonic dystrophy type I in childhood Long-term evolution in patients surviving the neonatal period. Eur J Paediatr Neurol 2008; 12:210-23. [PMID: 17892958 DOI: 10.1016/j.ejpn.2007.07.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/16/2007] [Accepted: 07/31/2007] [Indexed: 01/19/2023]
Abstract
In a retrospective study, 32 patients with myotonic dystrophy, including congenital (n=17) and infantile/juvenile forms (n=15) were studied during a long follow-up lasting 7-28 years (median: 17 years). The clinical presentation was extremely variable; however, a continuum did exist between severe and less severe congenital forms, and later-onset forms, without genotype-phenotype correlation. We observed some unusual presentations, such as 3 cases of isolated club-feet during the neonatal period, and 7 patients (23%) with a completely isolated mental deficiency, language delay and school failure, who only completed the clinical picture several years later. Wechsler scale testing was performed in all cases, and repeated with 8 patients. It demonstrated a decrease in intellectual abilities in 5 patients, suggesting the possibility of a degenerative cerebral process occurring in these children. This decrease has also been reported in some adult cases. This study illustrates the extremely heterogeneous clinical presentation of myotonic dystrophy in childhood.
Collapse
Affiliation(s)
- Bernard Echenne
- Service de Neuropédiatrie, Centre hospitalier universitaire de Montpellier, France.
| | | | | | | | | | | |
Collapse
|
22
|
Upadhyay K, Thomson A, Luckas MJM. Congenital Myotonic Dystrophy. Fetal Diagn Ther 2005; 20:512-4. [PMID: 16260886 DOI: 10.1159/000088041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 10/15/2004] [Indexed: 11/19/2022]
Abstract
We describe a case of severe congenital myotonic dystrophy (CDM). A 38-year-old primigravida, who was known to suffer from mild myotonic dystrophy (DM), conceived spontaneously and booked for confinement at 11 weeks in our unit. The couple had been fully counseled about the risks of transmission of this condition to their offspring before embarking on this pregnancy. Despite being fully aware of the risks, they declined prenatal diagnosis. The pregnancy was monitored by serial ultrasound scans. The diagnosis of CDM was suspected by ultrasound markers of borderline ventriculomegaly, polyhydramnios, and reduced fetal movements. The pregnancy ended prematurely at 33 weeks in an emergency caesarean section because of severe fetal compromise. The neonate died almost immediately after birth. The genetic analysis of cord blood confirmed severe DM. This case highlights the importance of ultrasound markers for the diagnosis of CDM in the absence of definitive prenatal diagnosis.
Collapse
Affiliation(s)
- K Upadhyay
- Department of Obstetrics and Gynaecology, Leighton Hospital, Mid Cheshire NHS Trust, Crewe, UK.
| | | | | |
Collapse
|
23
|
García de Andoin N, Echeverría J, Cobo AM, Rey A, Paisán L, López de Munain A. A neonatal form of Steinert's myotonic dystrophy in twins after in vitro fertilization. Fertil Steril 2005; 84:756. [PMID: 16169416 DOI: 10.1016/j.fertnstert.2005.03.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To report a case of nonidentical twins affected with a congenital form of Steinert's myotonic dystrophy (DM1), conceived by IVF owing to parental sterility, in which the mother presented a paucisymptomatic form of DM1 which was diagnosed as a result of the condition inherited by the twins. DESIGN Case report. SETTING Neonatal intensive care unit of a tertiary hospital. PATIENT(S) Newborn twins affected with the congenital form of DM1 and a 35-year-old nulliparous mother. INTERVENTION(S) In vitro fertilization. MAIN OUTCOME MEASURE(S) Molecular study of the CTG triplet expansion related with DM1. RESULT(S) Molecular study evidenced a pathologic expansion in both twins as well as in their mother. CONCLUSION(S) This case should serve as a reminder to practitioners that assisted reproductive techniques have opened the possibility that asymptomatic or paucisymptomatic carriers of a genetic syndrome can inadvertently conceive fetuses affected with more serious forms of the illness.
Collapse
|
24
|
Cleary JD, Pearson CE. The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet Genome Res 2003; 100:25-55. [PMID: 14526163 DOI: 10.1159/000072837] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2002] [Accepted: 02/11/2003] [Indexed: 11/19/2022] Open
Abstract
Alterations in the length (instability) of gene-specific microsatellites and minisatellites are associated with at least 35 human diseases. This review will discuss the various cis-elements that contribute to repeat instability, primarily through examination of the most abundant disease-associated repetitive element, trinucleotide repeats. For the purpose of this review, we define cis-elements to include the sequence of the repeat units, the length and purity of the repeat tracts, the sequences flanking the repeat, as well as the surrounding epigenetic environment, including DNA methylation and chromatin structure. Gender-, tissue-, developmental- and locus-specific cis-elements in conjunction with trans-factors may facilitate instability through the processes of DNA replication, repair and/or recombination. Here we review the available human data that supports the involvement of cis-elements in repeat instability with limited reference to model systems. In diverse tissues at different developmental times and at specific loci, repetitive elements display variable levels of instability, suggesting vastly different mechanisms may be responsible for repeat instability amongst the disease loci and between various tissues.
Collapse
Affiliation(s)
- J D Cleary
- Program of Genetics and Genomic Biology, The Hospital for Sick Children, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To highlight recent advances in understanding the clinical manifestations and molecular genetics of myotonic syndromes, with particular emphasis on the myotonic dystrophies. RECENT FINDINGS Myotonic syndromes include the non-dystrophic myotonias, caused by mutations in genes encoding the chloride or sodium channels that are specific to skeletal muscle, and the myotonic dystrophies. Previous studies have shown that myotonic dystrophy type 1 is caused by the expansion of a CTG repeat in the gene. Recently, it was discovered that myotonic dystrophy type 2 (proximal myotonic myopathy) is also caused by a DNA expansion mutation. In both types of myotonic dystrophy the expanded repeat is transcribed and the RNA produced from the mutant allele is retained in nuclear inclusions. Recent studies suggest that the mutant RNA has a toxic effect on muscle fibers by interfering with the essential functions of the myonucleus, such as RNA processing. SUMMARY It now appears likely that myotonic dystrophy is the first instance of a genetic disease in which the harmful effect of a mutation involves the production of a pathogenic RNA. However, the exact mechanism is not understood, and it is unclear whether this RNA-mediated disease process is also responsible for the manifestations of myotonic dystrophy in non-muscle tissues.
Collapse
Affiliation(s)
- Ami Mankodi
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|