1
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Molecular basis and restoration of function deficiencies of Kv7.4 variants associated with inherited hearing loss. Hear Res 2020; 388:107884. [PMID: 31995783 DOI: 10.1016/j.heares.2020.107884] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 11/20/2022]
Abstract
Deafness non-syndromic autosomal dominant 2 (DFNA2) is characterized by symmetric, predominantly high-frequency sensorineural hearing loss that is progressive across all frequencies. The disease is associated with variants of a potassium voltage-gated channel subfamily Q member 4 gene, KCNQ4 (Kv7.4). Here, we studied nine recently identified Kv7.4 variants in DFNA2 pedigrees, including V230E, E260K, D262V, Y270H, W275R, G287R, P291L, P291S and S680F. We proved that the variant S680F did not alter the channel function while the other eight variants resulted in function deficiencies. We further proved that the two variants E260K and P291S showed reduced cell membrane expressions while the other seven variants showed moderate cell surface expressions. Thus, trafficking deficiency is not a common mechanism underlying channel dysfunction. Next, we studied two variants, V230E and G287R, using molecular dynamics simulation. We showed that V230E stabilized Kv7.4 channel in the closed state by forming an additional hydrogen bond with a basic residue K325, while G287R distorted the selectivity filter and blocked the pore region of Kv7.4 channel. Moreover, by co-expressing wild-type (WT) and variant proteins in vitro, we demonstrated that the heterogeneous Kv7.4 channel currents were reduced compared to the WT channel currents and the reduction could be rescued by a Kv7.4 opener retigabine. Our study provided the underlying mechanisms and suggested a potential alternative therapeutic approach for DFNA2.
Collapse
|
3
|
Al-Sebeih K, Al-Kandari M, Al-Awadi SA, Hegazy FF, Al-Khamees GA, Naguib KK, Al-Dabbous RM. Connexin 26 gene mutations in non-syndromic hearing loss among Kuwaiti patients. Med Princ Pract 2014; 23:74-9. [PMID: 24080506 PMCID: PMC5586821 DOI: 10.1159/000348304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To study connexin 26 (Cx26) gene mutations among autosomal recessive non-syndromal hearing loss in Kuwaiti patients and evaluate their effect on phenotypes. SUBJECTS AND METHODS This cross sectional study included 100 patients aged between 6 months and 18 years, who were referred to the Sheikh Salem Al-Ali Centre for audiology and speech evaluation of autosomal recessive non-syndromic sensorineural hearing loss confirmed by clinico-genetic evaluation and a battery of diagnostic tests. Gene profiling and sequencing were performed to detect the presence and nature of Cx26 mutation. RESULTS Of the 100 patients, mutation of Cx26 gene was detected in 15 patients (15%) of which 9 (60%) cases were heterozygous and 6 cases (40%) were homozygous. Eighty per cent of the 15 Cx26 positive cases resulted from the 35delG mutation. Among the heterozygous cases, 6 (66.6%) were positive for 35delG. All 6 homozygous patients were positive for the 35delG mutation. A significant correlation was found between genetic findings (p = 0.013) and family history (p = 0.029), as well as the onset (p = 0.015), course (p = 0.033), degree and configuration of hearing loss (p = 0.001). CONCLUSION Among the selected Kuwaiti population sample, the Cx26 gene mutation was responsible for 15% of autosomal recessive non-syndromic sensorineural hearing loss. We recommend that screening for Cx26 gene mutation be considered in the screening strategy of patients with non-syndromic childhood hearing loss for counselling and management purposes. .
Collapse
Affiliation(s)
- Khalid Al-Sebeih
- Department of Surgery, Faculty of Medicine, Health Science Center, Kuwait University, Kuwait City, Kuwait
- Department of Otolaryngology, Zain Hospital, Kuwait City, Kuwait
- *Khalid H. Al-Sebeih, MD, FRCSC, FACS, Department of Surgery – Otolaryngology Division, Faculty of Medicine, Kuwait University, PO Box 17228 Khalidiya, 72453 Kuwait City (Kuwait), E-Mail
| | | | | | - Fatma F. Hegazy
- Kuwait Medical Genetics Centre, Sabah Hospital, Kuwait City, Kuwait
| | | | | | | |
Collapse
|
4
|
Zong L, Lu C, Zhao Y, Li Q, Han D, Yang W, Shen Y, Zheng Q, Wang Q. Clue to a new deafness gene: a large Chinese nonsyndromic hearing loss family linked to DFNA4. J Genet Genomics 2012; 39:653-7. [PMID: 23273769 DOI: 10.1016/j.jgg.2012.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 01/06/2023]
|
5
|
Jiang L, Liu Y, Feng Y, Hu Z, Mei L, Long L, Chen H, Xue J, Xia K, He C. Gene localization in a Chinese family with autosomal dominant non-syndromic deafness. Acta Otolaryngol 2011; 131:1061-8. [PMID: 21651318 DOI: 10.3109/00016489.2011.591822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS There could be another candidate gene in DFNA2, which could be responsible for the hearing loss phenotype. OBJECTIVE We collected a four-generation family from the southern part of China with autosomal dominant sensorineural hearing impairment. In order to identify the responsible pathogenic mutations in this family, we set out to identify the locus and to sequentially analyze the candidate genes in the identified region. METHODS After family ascertainment and clinical analysis, exclusive analysis was performed. Then a genome-wide scan was performed using an Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM). Fine-mapping markers were genotyped to identify the locus. Finally, we performed haplotype analyses and candidate gene DNA sequencing for the family. RESULTS The known genetic loci and genes were not associated with our family. The genome-wide scan and haplotype analyses traced the disease to chromosome 1p34.2-p34.3 with maximum multi-point LOD score of 3.2, which overlaps with DFNA2. We failed to identify any of the known or novel variants within KCNQ4, a voltage-gated potassium channel gene, and GJB3, a gene that encodes the gap junction protein connexin 31, which were the cloned deafness genes in DFNA2.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Otolaryngology, Xiangya Hospital, Central South University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss. Curr Opin Otolaryngol Head Neck Surg 2009; 16:441-4. [PMID: 18797286 DOI: 10.1097/moo.0b013e32830f4aa3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This article provides an update on the current progress in identification of KCNQ4 mutations responsible for DFNA2, a subtype of autosomal dominant nonsyndromic progressive hearing loss. RECENT FINDINGS Hearing loss in pateints with DFNA2 usually start at high frequencies in their 20s and 30s, and then progress to more than 60 dB in less than 10 years, with middle and low frequencies often affected as well. To date, eight missense mutations and two deletions of the KCNQ4 gene have been identified in patients with DFNA2 with various clinical phenotypes. In general, missense mutations are associated with younger-onset and all-frequency hearing loss, whereas deletion mutations are underlying later-onset and pure high-frequency hearing loss. The etiology of DFNA2 remains largely unknown at this point, even though the degeneration of cochlear outer hair cells, caused by dysfunction of KCNQ4 channels, might be one of the underlying mechanisms. SUMMARY During the last decade, significant progress has been made in identifying KCNQ4 mutations in patients with DFNA2. Elucidation of the pathogenic effect of these mutations will help to gain insights into the molecular mechanisms of hearing and hearing loss, which, in turn, will facilitate informative genetic counseling, early diagnosis, and even treatment of hearing loss.
Collapse
|
7
|
Finsterer J, Fellinger J. Nuclear and mitochondrial genes mutated in nonsyndromic impaired hearing. Int J Pediatr Otorhinolaryngol 2005; 69:621-47. [PMID: 15850684 DOI: 10.1016/j.ijporl.2004.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 12/06/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Half of the cases with congenital impaired hearing are hereditary (HIH). HIH may occur as part of a multisystem disease (syndromic HIH) or as disorder restricted to the ear and vestibular system (nonsyndromic HIH). Since nonsyndromic HIH is almost exclusively caused by cochlear defects, affected patients suffer from sensorineural hearing loss. One percent of the total human genes, i.e. 300-500, are estimated to cause syndromic and nonsyndromic HIH. Of these, approximately 120 genes have been cloned thus far, approximately 80 for syndromic HIH and 42 for nonsyndromic HIH. In the majority of the cases, HIH manifests before (prelingual), and rarely after (postlingual) development of speech. Prelingual, nonsyndromic HIH follows an autosomal recessive trait (75-80%), an autosomal dominant trait (10-20%), an X-chromosomal, recessive trait (1-5%), or is maternally inherited (0-20%). Postlingual nonsyndromic HIH usually follows an autosomal dominant trait. Of the 41 mutated genes that cause nonsyndromic HIH, 15 cause autosomal dominant HIH, 15 autosomal recessive HIH, 6 both autosomal dominant and recessive HIH, 2 X-linked HIH, and 3 maternally inherited HIH. Mutations in a single gene may not only cause autosomal dominant, nonsyndromic HIH, but also autosomal recessive, nonsyndromic HIH (GJB2, GJB6, MYO6, MYO7A, TECTA, TMC1), and even syndromic HIH (CDH23, COL11A2, DPP1, DSPP, GJB2, GJB3, GJB6, MYO7A, MYH9, PCDH15, POU3F4, SLC26A4, USH1C, WFS1). Different mutations in the same gene may cause variable phenotypes within a family and between families. Most cases of recessive HIH result from mutations in a single locus, but an increasing number of disorders is recognized, in which mutations in two different genes (GJB2/GJB6, TECTA/KCNQ4), or two different mutations in a single allele (GJB2) are involved. This overview focuses on recent advances in the genetic background of nonsyndromic HIH.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Krankenanstalt Rudolfstiftung, Vienna, Austria.
| | | |
Collapse
|