1
|
Feng Y, Sun L, Dang X, Liu D, Liao Z, Yao J, Zhang Y, Deng Z, Li J, Zhao M, Liu F. Aberrant glycosylation in schizophrenia: insights into pathophysiological mechanisms and therapeutic potentials. Front Pharmacol 2024; 15:1457811. [PMID: 39286629 PMCID: PMC11402814 DOI: 10.3389/fphar.2024.1457811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder characterized by cognitive, affective, and social dysfunction, resulting in hallucinations, delusions, emotional blunting, and disordered thinking. In recent years, proteomics has been increasingly influential in SCZ research. Glycosylation, a key post-translational modification, can alter neuronal stability and normal signaling in the nervous system by affecting protein folding, stability, and cellular signaling. Recent research evidence suggests that abnormal glycosylation patterns exist in different brain regions in autopsy samples from SCZ patients, and that there are significant differences in various glycosylation modification types and glycosylation modifying enzymes. Therefore, this review explores the mechanisms of aberrant modifications of N-glycosylation, O-glycosylation, glycosyltransferases, and polysialic acid in the brains of SCZ patients, emphasizing their roles in neurotransmitter receptor function, synaptic plasticity, and neural adhesion. Additionally, the effects of antipsychotic drugs on glycosylation processes and the potential for glycosylation-targeted therapies are discussed. By integrating these findings, this review aims to provide a comprehensive perspective to further understand the role of aberrant glycosylation modifications in the pathophysiology of SCZ.
Collapse
Affiliation(s)
- Yanchen Feng
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu Sun
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ziqi Deng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinyao Li
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Min Zhao
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Feixiang Liu
- The First Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. CEREBELLUM (LONDON, ENGLAND) 2024; 23:757-774. [PMID: 37155088 DOI: 10.1007/s12311-023-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076, Tubingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
3
|
Altassan R, Péanne R, Jaeken J, Barone R, Bidet M, Borgel D, Brasil S, Cassiman D, Cechova A, Coman D, Corral J, Correia J, de la Morena-Barrio ME, de Lonlay P, Dos Reis V, Ferreira CR, Fiumara A, Francisco R, Freeze H, Funke S, Gardeitchik T, Gert M, Girad M, Giros M, Grünewald S, Hernández-Caselles T, Honzik T, Hutter M, Krasnewich D, Lam C, Lee J, Lefeber D, Marques-de-Silva D, Martinez AF, Moravej H, Õunap K, Pascoal C, Pascreau T, Patterson M, Quelhas D, Raymond K, Sarkhail P, Schiff M, Seroczyńska M, Serrano M, Seta N, Sykut-Cegielska J, Thiel C, Tort F, Vals MA, Videira P, Witters P, Zeevaert R, Morava E. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: Diagnosis, treatment and follow up. J Inherit Metab Dis 2019; 42:5-28. [PMID: 30740725 DOI: 10.1002/jimd.12024] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phosphomannomutase 2 (PMM2-CDG) is the most common congenital disorder of N-glycosylation and is caused by a deficient PMM2 activity. The clinical presentation and the onset of PMM2-CDG vary among affected individuals ranging from a severe antenatal presentation with multisystem involvement to mild adulthood presentation limited to minor neurological involvement. Management of affected patients requires a multidisciplinary approach. In this article, a systematic review of the literature on PMM2-CDG was conducted by a group of international experts in different aspects of CDG. Our managment guidelines were initiated based on the available evidence-based data and experts' opinions. This guideline mainly addresses the clinical evaluation of each system/organ involved in PMM2-CDG, and the recommended management approach. It is the first systematic review of current practices in PMM2-CDG and the first guidelines aiming at establishing a practical approach to the recognition, diagnosis and management of PMM2-CDG patients.
Collapse
Affiliation(s)
- Ruqaiah Altassan
- Department of Medical Genetic, Montréal Children's Hospital, Montréal, Québec, Canada
- Department of Medical Genetic, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Romain Péanne
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- LIA GLYCOLAB4CDG (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation-from Cellular Mechanisms to Cure", France/ Belgium
| | - Jaak Jaeken
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Muad Bidet
- Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades Hospital, IMAGINE Institute affiliate, Paris, France
| | - Delphine Borgel
- INSERM U1176, Université Paris-Sud, CHU de Bicêtre, Le Kremlin Bicêtre, France
| | - Sandra Brasil
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
| | - Anna Cechova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - David Coman
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
- Schools of Medicine, University of Queensland Brisbane, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Joana Correia
- Centro de Referência Doenças Hereditárias do Metabolismo - Centro Hospitalar do Porto, Porto, Portugal
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematologíay Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
| | - Pascale de Lonlay
- Reference Center of Inherited Metabolic Diseases, University Paris Descartes, Hospital Necker Enfants Malades, Paris, France
| | - Vanessa Dos Reis
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Division of Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Agata Fiumara
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rita Francisco
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Hudson Freeze
- Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Simone Funke
- Department of Obstetrics and Gynecology, Division of Neonatology, University of Pécs, Pecs, Hungary
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Gert
- LIA GLYCOLAB4CDG (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation-from Cellular Mechanisms to Cure", France/ Belgium
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Muriel Girad
- AP-HP, Necker University Hospital, Hepatology and Gastroenterology Unit, French National Reference Centre for Biliary Atresia and Genetic Cholestasis, Paris, France
- Hepatologie prdiatrique department, Paris Descartes University, Paris, France
| | - Marisa Giros
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Stephanie Grünewald
- Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, NHS Trust, London, UK
| | - Trinidad Hernández-Caselles
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | - Tomas Honzik
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marlen Hutter
- Center for Child and Adolescent Medicine, Department, University of Heidelberg, Heidelberg, Germany
| | - Donna Krasnewich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Joy Lee
- Department of Metabolic Medicine, The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Dirk Lefeber
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dorinda Marques-de-Silva
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Antonio F Martinez
- Genetics and Molecular Medicine and Rare Disease Paediatric Unit, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Hossein Moravej
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katrin Õunap
- Department of Pediatrics, University of Tartu, Tartu, Estonia
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Carlota Pascoal
- Portuguese Association for Congenital Disorders of Glycosylation (CDG), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- Professionals and Patient Associations International Network (CDG & Allies-PPAIN), Departament o Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiffany Pascreau
- AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Paris, France
| | - Marc Patterson
- Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic Children's Center, Rochester, New York
- Division of Child and Adolescent Neurology, Department of Pediatrics, Mayo Clinic Children's Center, Rochester, New York
- Division of Child and Adolescent Neurology, Department of Medical Genetics, Mayo Clinic Children's Center, Rochester, New York
| | - Dulce Quelhas
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBERER, Murcia, Spain
- Centro de Genética Médica Doutor Jacinto Magalhães, Unidade de Bioquímica Genética, Porto, Portugal
| | - Kimiyo Raymond
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Peymaneh Sarkhail
- Metabolic and Genetic department, Sarem Woman's Hospital, Tehrān, Iran
| | - Manuel Schiff
- Neurologie pédiatrique et maladies métaboliques, (C. Farnoux) - Pôle de pédiatrie médicale CHU, Hôpital Robert Debré, Paris, France
| | - Małgorzata Seroczyńska
- Departamento de Bioquímica, Biología Molecular B e Inmunología, Faculty of Medicine, IMIB-University of Murcia, Murcia, Spain
| | - Mercedes Serrano
- Neurology Department, Hospital Sant Joan de Déu, U-703 Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Nathalie Seta
- AP-HP, Bichat Hospital, Université Paris Descartes, Paris, France
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, the Institute of Mother and Child, Warsaw, Poland
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department, University of Heidelberg, Heidelberg, Germany
| | - Federic Tort
- Secció d'Errors Congènits del Metabolisme -IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Mari-Anne Vals
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paula Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa Caparica, Caparica, Portugal
| | - Peter Witters
- Department of Paediatrics and Metabolic Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Renate Zeevaert
- Department of Paediatric Endocrinology and Diabetology, Jessa Hospital, Hasselt, Belgium
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, New York
- Department of Pediatrics, Tulane University, New Orleans, Louisiana
| |
Collapse
|
4
|
Schiff M, Roda C, Monin ML, Arion A, Barth M, Bednarek N, Bidet M, Bloch C, Boddaert N, Borgel D, Brassier A, Brice A, Bruneel A, Buissonnière R, Chabrol B, Chevalier MC, Cormier-Daire V, De Barace C, De Maistre E, De Saint-Martin A, Dorison N, Drouin-Garraud V, Dupré T, Echenne B, Edery P, Feillet F, Fontan I, Francannet C, Labarthe F, Gitiaux C, Héron D, Hully M, Lamoureux S, Martin-Coignard D, Mignot C, Morin G, Pascreau T, Pincemaille O, Polak M, Roubertie A, Thauvin-Robinet C, Toutain A, Viot G, Vuillaumier-Barrot S, Seta N, De Lonlay P. Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. J Med Genet 2017; 54:843-851. [DOI: 10.1136/jmedgenet-2017-104903] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 11/04/2022]
|
5
|
Qin Y, Chen Y, Yang J, Wu F, Zhao L, Yang F, Xue P, Shi Z, Song T, Huang C. Serum glycopattern and Maackia amurensis lectin-II binding glycoproteins in autism spectrum disorder. Sci Rep 2017; 7:46041. [PMID: 28485374 PMCID: PMC5423032 DOI: 10.1038/srep46041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Glycosylation modified as many as 70% of all human proteins can sensitively reflect various pathological changes. However, little is known about the alterations of glycosylation and glycoproteins in ASD. In this study, serum glycopattern and the maackia amurensis lectin-II binding glycoproteins (MBGs) in 65 children with ASD and 65 age-matched typically developing (TD) children were compared by using lectin microarrays and lectin-magnetic particle conjugate-assisted LC-MS/MS analyses. Expression of Siaα2-3 Gal/GalNAc was significantly increased in pooled (fold change = 3.33, p < 0.001) and individual (p = 0.009) serum samples from ASD versus TD children. A total of 194 and 217 MGBs were identified from TD and ASD sera respectively, of which 74 proteins were specially identified or up-regulated in ASD. Bioinformatic analysis revealed abnormal complement cascade and aberrant regulation of response-to-stimulus that might be novel makers or markers for ASD. Moreover, increase of APOD α2-3 sialoglycosylation could sensitively and specifically distinguish ASD samples from TD samples (AUC is 0.88). In conclusion, alteration of MBGs expression and their sialoglycosylation may serve as potential biomarkers for diagnosis of ASD, and provide useful information for investigations into the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yannan Qin
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Yanni Chen
- Xi'an Child's Hospital of Medical College of Xi'an Jiaotong University, Xi'an Child's Hospital, Xi'an 710002, P. R. China
| | - Juan Yang
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Fei Wu
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Peng Xue
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Zhuoyue Shi
- The Department of Biology, College of Liberal Arts and Science, The University of Iowa, Iowa 430015, USA
| | - Tusheng Song
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| | - Chen Huang
- Department of Cell Biology and Genetics, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P. R. China
| |
Collapse
|
6
|
The Pediatric Cerebellum in Inherited Neurodegenerative Disorders: A Pattern-recognition Approach. Neuroimaging Clin N Am 2017; 26:373-416. [PMID: 27423800 DOI: 10.1016/j.nic.2016.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of imaging studies of the cerebellum in inherited neurodegenerative disorders is aided by attention to neuroimaging patterns based on anatomic determinants, including biometric analysis, hyperintense signal of structures, including the cerebellar cortex, white matter, dentate nuclei, brainstem tracts, and nuclei, the presence of cysts, brain iron, or calcifications, change over time, the use of diffusion-weighted/diffusion tensor imaging and T2*-weighted sequences, magnetic resonance spectroscopy; and, in rare occurrences, the administration of contrast material.
Collapse
|
7
|
Maratha A, Colhoun HO, Knerr I, Coss KP, Doran P, Treacy EP. Classical Galactosaemia and CDG, the N-Glycosylation Interface. A Review. JIMD Rep 2016; 34:33-42. [PMID: 27502837 PMCID: PMC5509556 DOI: 10.1007/8904_2016_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022] Open
Abstract
Classical galactosaemia is a rare disorder of carbohydrate metabolism caused by galactose-1-phosphate uridyltransferase (GALT) deficiency (EC 2.7.7.12). The disease is life threatening if left untreated in neonates and the only available treatment option is a long-term galactose restricted diet. While this is lifesaving in the neonate, complications persist in treated individuals, and the cause of these, despite early initiation of treatment, and shared GALT genotypes remain poorly understood. Systemic abnormal glycosylation has been proposed to contribute substantially to the ongoing pathophysiology. The gross N-glycosylation assembly defects observed in the untreated neonate correct over time with treatment. However, N-glycosylation processing defects persist in treated children and adults.Congenital disorders of glycosylation (CDG) are a large group of over 100 inherited disorders affecting largely N- and O-glycosylation.In this review, we compare the clinical features observed in galactosaemia with a number of predominant CDG conditions.We also summarize the N-glycosylation abnormalities, which we have described in galactosaemia adult and paediatric patients, using an automated high-throughput HILIC-UPLC analysis of galactose incorporation into serum IgG with analysis of the corresponding N-glycan gene expression patterns and the affected pathways.
Collapse
Affiliation(s)
- Ashwini Maratha
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland
| | | | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland
| | - Karen P Coss
- Faculty of Life Sciences and Medicine, Department of Infectious Diseases, King's College London, Guy's Hospital, London, UK
| | - Peter Doran
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland
| | - Eileen P Treacy
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple Street, Dublin, Ireland.
- University College Dublin Clinical Research Centre, Eccles Street, Dublin, Ireland.
- Trinity College, Dublin, Ireland.
- Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland.
| |
Collapse
|
8
|
Monin ML, Mignot C, De Lonlay P, Héron B, Masurel A, Mathieu-Dramard M, Lenaerts C, Thauvin C, Gérard M, Roze E, Jacquette A, Charles P, de Baracé C, Drouin-Garraud V, Khau Van Kien P, Cormier-Daire V, Mayer M, Ogier H, Brice A, Seta N, Héron D. 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype. Orphanet J Rare Dis 2014; 9:207. [PMID: 25497157 PMCID: PMC4266234 DOI: 10.1186/s13023-014-0207-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/02/2014] [Indexed: 11/20/2022] Open
Abstract
PMM2-CDG (formerly known as CDG Ia) a deficiency in phosphomannomutase, is the most frequent congenital disorder of glycosylation. The phenotype encompasses a wide range of neurological and non-neurological manifestations comprising cerebellar atrophy and intellectual deficiency. The phenotype of the disorder is well characterized in children but the long term course of the disease is unknown and the phenotype of late onset forms has not been comprehensively described. We thus retrospectively collected the clinical, biological and radiological data of 29 French PMM2-CDG patients aged 15 years or more with a proven molecular diagnosis (16 females and 13 males). In addition, thirteen of these patients were reexamined at the time of the study to obtain detailed information. 27 of the 29 patients had a typical PMM2-CDG phenotype, with infantile hypotonia, strabismus, developmental delay followed by intellectual deficiency, epilepsy, retinitis pigmentosa and/or visceral manifestations. The main health problems for these patients as teenagers and in adulthood were primary ovarian insufficiency, growth retardation, coagulation anomalies and thrombotic events, skeletal deformities and osteopenia/osteoporosis, retinitis pigmentosa, as well as peripheral neuropathy. Three patients had never walked and three lost their ability to walk. The two remaining patients had a late-onset phenotype unreported to date. All patients (n = 29) had stable cerebellar atrophy. Our findings are in line with those of previous adult PMM2-CDG cohorts and points to the need for a multidisciplinary approach to the follow up of PMM2-CDG patients to prevent late complications. Additionally, our findings add weight to the view that PMM2-CDG may be diagnosed in teenage/adult patients with cerebellar atrophy, even in the absence of intellectual deficiency or non-neurological involvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Delphine Héron
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique, Unité Fonctionnelle de Neurogénétique moléculaire et cellulaire et Centre de Référence des Déficiences Intellectuelles de Causes Rares, 47-83 boulevard de l'hôpital, Paris, 75013, France.
| |
Collapse
|
9
|
Barone R, Carrozzi M, Parini R, Battini R, Martinelli D, Elia M, Spada M, Lilliu F, Ciana G, Burlina A, Leuzzi V, Leoni M, Sturiale L, Matthijs G, Jaeken J, Di Rocco M, Garozzo D, Fiumara A. A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. J Neurol 2014; 262:154-64. [DOI: 10.1007/s00415-014-7549-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 12/25/2022]
|
10
|
Ultrasound detection of posterior fossa abnormalities in full-term neonates. Early Hum Dev 2012; 88:233-9. [PMID: 21924565 DOI: 10.1016/j.earlhumdev.2011.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/11/2011] [Accepted: 08/23/2011] [Indexed: 11/20/2022]
Abstract
Routine cranial ultrasonography, using the anterior fontanelle as acoustic window enables visualization of the supratentorial brain structures in neonates and young infants. The mastoid fontanelle enables a better view of the infratentorial structures, especially cerebellar hemorrhage in preterm infants. Reports on the usefulness and reliability of cranial ultrasonography using the mastoid fontanelle approach for the detection of posterior fossa abnormalities, focusing only on full-term neonates are limited. This article describes the technique of mastoid fontanelle ultrasonography in full-term neonates and the features of posterior fossa abnormalities that may be encountered in various neonatal disorders and conditions, combined with subsequent MRI in the same patients. Cranial ultrasound through the mastoid fontanelle plays a pivotal role in the early detection of posterior fossa pathology and selection of neonates with an indication for MRI.
Collapse
|
11
|
Mild Clinical and Biochemical Phenotype in Two Patients with PMM2-CDG (Congenital Disorder of Glycosylation Ia). THE CEREBELLUM 2011; 11:557-63. [DOI: 10.1007/s12311-011-0313-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain 2009; 132:3199-230. [PMID: 19933510 PMCID: PMC2792369 DOI: 10.1093/brain/awp247] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/04/2009] [Accepted: 08/21/2009] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, developmental biology and molecular genetics have increased the understanding of developmental disorders affecting the midbrain and hindbrain, both as isolated anomalies and as part of larger malformation syndromes. However, the understanding of these malformations and their relationships with other malformations, within the central nervous system and in the rest of the body, remains limited. A new classification system is proposed, based wherever possible, upon embryology and genetics. Proposed categories include: (i) malformations secondary to early anteroposterior and dorsoventral patterning defects, or to misspecification of mid-hindbrain germinal zones; (ii) malformations associated with later generalized developmental disorders that significantly affect the brainstem and cerebellum (and have a pathogenesis that is at least partly understood); (iii) localized brain malformations that significantly affect the brain stem and cerebellum (pathogenesis partly or largely understood, includes local proliferation, cell specification, migration and axonal guidance); and (iv) combined hypoplasia and atrophy of putative prenatal onset degenerative disorders. Pertinent embryology is discussed and the classification is justified. This classification will prove useful for both physicians who diagnose and treat patients with these disorders and for clinical scientists who wish to understand better the perturbations of developmental processes that produce them. Importantly, both the classification and its framework remain flexible enough to be easily modified when new embryologic processes are described or new malformations discovered.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology Room L371, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0628, USA.
| | | | | |
Collapse
|
13
|
Brum JM, Rizzo IMPDO, Mello WDD, Speck-Martins CE. Congenital disorder of glycosylation type Ia: a non-progressive encephalopathy associated with multisystemic involvement. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 66:545-8. [PMID: 18813717 DOI: 10.1590/s0004-282x2008000400021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Grünewald S. The clinical spectrum of phosphomannomutase 2 deficiency (CDG-Ia). Biochim Biophys Acta Mol Basis Dis 2009; 1792:827-34. [PMID: 19272306 DOI: 10.1016/j.bbadis.2009.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 02/05/2023]
Abstract
Congenital disorders of glycosylation are a clinically and genetically heterogeneous group of disorders resulting from abnormal glycosylation of various glycoconjugates. The first description of congenital disorders of glycosylation was published in the early 80s and once screening tests for glycosylation disorders (CDGs) became readily available, CDG-Ia became the most frequently diagnosed CDG subtype. CDG-Ia is pan-ethnic and the spectrum of the clinical manifestations is still evolving: it spans from severe hydrops fetalis and fetal loss to a (nearly) normal phenotype. However, the most common presentation in infancy is of a multisystem disorder with central nervous system involvement.
Collapse
Affiliation(s)
- Stephanie Grünewald
- Metabolic Medicine Unit, Great Ormond Street Hospital for Children NHS Trust with the UCL Institute of Child Health, London WC1N 3JH, UK.
| |
Collapse
|
15
|
Vermeer S, Kremer HPH, Leijten QH, Scheffer H, Matthijs G, Wevers RA, Knoers NAVM, Morava E, Lefeber DJ. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol 2007; 254:1356-8. [PMID: 17694350 DOI: 10.1007/s00415-007-0546-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/19/2006] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
Cerebellar ataxia can have many genetic causes among which are the congenital disorders of glycosylation type I (CDG-I). In this group of disorders, a multisystem phenotype is generally observed including the involvement of many organs, the endocrine, hematologic and central nervous systems. A few cases of CDG-Ia have been reported with a milder presentation, namely cerebellar hypoplasia as an isolated abnormality. To identify patients with a glycosylation disorder, isofocusing of plasma transferrin is routinely performed. Here, we describe two CDG-Ia patients,who presented with mainly ataxia and cerebellar hypoplasia and with a normal or only slightly abnormal transferrin isofocusing result. Surprisingly, the activity of the corresponding enzyme phosphomannomutase was clearly deficient in both leucocytes and fibroblasts. Therefore, in patients presenting with apparently recessive inherited ataxia caused by cerebellar hypoplasia and an unknown genetic aetiology after proper diagnostic work-up, we recommend the measurement of phosphomannomutase activity when transferrin isofocusing is normal or inconclusive.
Collapse
Affiliation(s)
- S Vermeer
- Dept. of Human Genetics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Marklová E, Albahri Z. Screening and diagnosis of congenital disorders of glycosylation. Clin Chim Acta 2007; 385:6-20. [PMID: 17716641 DOI: 10.1016/j.cca.2007.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 06/22/2007] [Accepted: 07/02/2007] [Indexed: 02/07/2023]
Abstract
The aim of this paper is to review the diagnostics of congenital disorders of glycosylation (CDG), an ever expanding group of diseases. Development delay, neurological, and other clinical abnormalities as well as various non-specific laboratory changes can lead to the first suspicion of the disease. Still common screening test for most CDG types, including CDG Ia, is isoelectric focusing/polyacrylamide gel electrophoresis (IEF). IEF demonstrates the hypoglycosylation of various glycoproteins, usually serum transferrin. Other methods, such as agarose electrophoresis, capillary electrophoresis, high-performance liquid chromatography, micro-column separation combined with turbidimetry, enzyme-(EIA) and radioimmunoassay (RIA) have also been used for screening. However, these methods do not recognize all CDG defects, so other approaches including analysis of membrane-linked markers and urine oligosaccharides should be taken. Confirmation of diagnosis and detailed CDG subtyping starts with thorough structure analysis of the affected lipid-linked oligosaccharide or protein-(peptide)-linked-glycan using metabolic labeling and various (possibly mass-spectrometry combined) techniques. Decreased enzyme activity in peripheral leukocytes/cultured fibroblasts or analysis of affected transporters and other functional proteins combined with identification of specific gene mutations confirm the diagnosis. Prenatal diagnosis, based on enzyme assay or mutation analysis, is also available. Peri-/post-mortem investigations of fatal cases are important for genetic counseling. Evaluation of various analytical approaches and proposed algorithms for investigation complete the review.
Collapse
Affiliation(s)
- Eliska Marklová
- Charles University, Faculty of Medicine, Department of Pediatrics, Hradec Králové, Czech Republic.
| | | |
Collapse
|
17
|
Coman D, McGill J, MacDonald R, Morris D, Klingberg S, Jaeken J, Appleton D. Congenital disorder of glycosylation type 1a: Three siblings with a mild neurological phenotype. J Clin Neurosci 2007; 14:668-72. [PMID: 17451957 DOI: 10.1016/j.jocn.2006.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 04/11/2006] [Accepted: 04/12/2006] [Indexed: 11/16/2022]
Abstract
We report 3 siblings (1 male and 2 female) recently diagnosed with congenital disorder of glycosylation type Ia (CDG-Ia) in their mid-20s. They experience mild mental retardation but manage to function independently in society. Their professions are library assistant, professional artistic painter and secretarial work. All three siblings have cerebellar hypoplasia and ataxia, but are able to ambulate easily. Two of the siblings have required strabismus surgical repairs. All have antithrombin III deficiency, osteoporosis, and mild dysmorphic features. Hypergonadotrophic hypogonadism was a feature of the two female siblings. A type 1 sialotransferrin pattern and phosphomannomutase (PMM) deficiency have been demonstrated. They are compound heterozygotes for R141H and L32R mutations in the PMM2 gene. While there is clinical heterogeneity in CDG-Ia, we believe that our patients are among the mildest of intellectually affected CDG-Ia patients reported to date.
Collapse
Affiliation(s)
- D Coman
- Department of Metabolic Medicine, The Royal Children's Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Dinopoulos A, Mohamed I, Jones B, Rao S, Franz D, deGrauw T. Radiologic and neurophysiologic aspects of stroke-like episodes in children with congenital disorder of glycosylation type Ia. Pediatrics 2007; 119:e768-72. [PMID: 17308246 DOI: 10.1542/peds.2006-0763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In an effort to shed light on the mechanism of hemiparetic stroke-like events experienced by patients with congenital disorder of glycosylation type Ia, we evaluated 3 children with this disorder by brain imaging studies and continuous electroencephalogram monitoring during such events. No evidence of ischemia or infarction was revealed on imaging studies and electrographic seizures or intermittent epileptiform activity was demonstrated on electrographic recordings. All 3 patients showed clinical and electrographic improvement after administration of antiepileptic medication. Epileptic phenomena can complicate the stroke-like events of patients with congenital disorder of glycosylation type Ia, and the cause of the hemiparesis may indeed be an active epileptic inhibitory process. As such, electroencephalogram monitoring is warranted, and treatment with anticonvulsant agents is indicated.
Collapse
Affiliation(s)
- Argirios Dinopoulos
- Cincinnati Children's Hospital Medical Center, Division of Neurology, 3333 Burnet Ave, MLC11006, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Schoffer KL, O'Sullivan JD, McGill J. Congenital disorder of glycosylation type Ia presenting as early-onset cerebellar ataxia in an adult. Mov Disord 2006; 21:869-72. [PMID: 16482534 DOI: 10.1002/mds.20804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a recently described, underrecognized group of syndromes characterized biochemically by abnormal glycosylation of serum and cellular glycoproteins. We report a previously undiagnosed adult male who presented with early-onset cerebellar ataxia in the context of mental impairment, peripheral neuropathy, retinopathy, body dysmorphism, cardiomyopathy, and hypogonadism. Newly available screening and genetic testing confirmed the diagnosis as CDG type Ia. This case emphasizes that CDG should be considered as a differential diagnosis for adults with early-onset cerebellar ataxia, particularly in those persons with the aforementioned features, and that undiagnosed cases of childhood ataxia may require reassessment now that testing is available.
Collapse
Affiliation(s)
- Kerrie L Schoffer
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | | | | |
Collapse
|
20
|
Cromphout K, Vleugels W, Heykants L, Schollen E, Keldermans L, Sciot R, D'Hooge R, De Deyn PP, von Figura K, Hartmann D, Körner C, Matthijs G. The normal phenotype of Pmm1-deficient mice suggests that Pmm1 is not essential for normal mouse development. Mol Cell Biol 2006; 26:5621-35. [PMID: 16847318 PMCID: PMC1592770 DOI: 10.1128/mcb.02357-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphomannomutases (PMMs) are crucial for the glycosylation of glycoproteins. In humans, two highly conserved PMMs exist: PMM1 and PMM2. In vitro both enzymes are able to convert mannose-6-phosphate (mannose-6-P) into mannose-1-P, the key starting compound for glycan biosynthesis. However, only mutations causing a deficiency in PMM2 cause hypoglycosylation, leading to the most frequent type of the congenital disorders of glycosylation (CDG): CDG-Ia. PMM1 is as yet not associated with any disease, and its physiological role has remained unclear. We generated a mouse deficient in Pmm1 activity and documented the expression pattern of murine Pmm1 to unravel its biological role. The expression pattern suggested an involvement of Pmm1 in (neural) development and endocrine regulation. Surprisingly, Pmm1 knockout mice were viable, developed normally, and did not reveal any obvious phenotypic alteration up to adulthood. The macroscopic and microscopic anatomy of all major organs, as well as animal behavior, appeared to be normal. Likewise, lectin histochemistry did not demonstrate an altered glycosylation pattern in tissues. It is especially striking that Pmm1, despite an almost complete overlap of its expression with Pmm2, e.g., in the developing brain, is apparently unable to compensate for deficient Pmm2 activity in CDG-Ia patients. Together, these data point to a (developmental) function independent of mannose-1-P synthesis, whereby the normal knockout phenotype, despite the stringent conservation in phylogeny, could be explained by a critical function under as-yet-unidentified challenge conditions.
Collapse
Affiliation(s)
- K Cromphout
- Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic syndromes with a wide symptomatology and severity. They all stem from deficient N-glycosylation of proteins. To date the group contains 18 different subtypes: 12 of Type I (disrupted synthesis of the lipid-linked oligosaccharide precursor) and 6 of Type II (malfunctioning trimming/processing of the protein-bound oligosaccharide). Main features of CDG involve psychomotor retardation; ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features, including inverted nipples and subcutaneous fat pads; and strabismus. No treatment currently is available for the vast majority of these syndromes (CDG-Ib and CDG-IIc are exceptions), even though attempts to synthesize drugs for the most common subtype, CDG-Ia, have been made. In this review we will discuss the individual syndromes, with focus on their neuronal involvement, available and possible treatments, and future directions.
Collapse
Affiliation(s)
- Erik A. Eklund
- />Department of Cell and Molecular Biology, Lund University, Lund, Sweden
- />Program for Glycobiology and Carbohydrate Chemistry, Burnham Institute for Medical Research, 92037 La Jolla, California
| | - Hudson H. Freeze
- />Program for Glycobiology and Carbohydrate Chemistry, Burnham Institute for Medical Research, 92037 La Jolla, California
| |
Collapse
|
22
|
Schade van Westrum SM, Nederkoorn PJ, Schuurman PR, Vulsma T, Duran M, Poll-The BT. Skeletal dysplasia and myelopathy in congenital disorder of glycosylation type IA. J Pediatr 2006; 148:115-7. [PMID: 16423609 DOI: 10.1016/j.jpeds.2005.08.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 08/03/2005] [Accepted: 08/11/2005] [Indexed: 11/24/2022]
Abstract
We report on a boy with a congenital disorder of glycosylation (CDG) Ia and a severe narrowing of the spinal canal caused by atlantoaxial subluxation with anterior displacement of C1. C1-laminectomy improved the progressive paresis. Progressive paresis caused by spinal cord compression is a hitherto unrecognized complication in patients with CDG-Ia.
Collapse
Affiliation(s)
- Steven M Schade van Westrum
- Division of Pediatric Neurology, Department of Pediatrics, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Cromphout K, Keldermans L, Snellinx A, Collet JF, Grünewald S, De Geest N, Sciot R, Vanschaftingen E, Jaeken J, Matthijs G, Hartmann D. Tissue distribution of the murine phosphomannomutases Pmm1 and Pmm2 during brain development. Eur J Neurosci 2005; 22:991-6. [PMID: 16115222 DOI: 10.1111/j.1460-9568.2005.04266.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The most common type of the congenital disorders of glycosylation, CDG-Ia, is caused by mutations in the human PMM2 gene, reducing phosphomannomutase (PMM) activity. The PMM2 mutations mainly lead to neurological symptoms, while other tissues are only variably affected. Another phosphomannomutase, PMM1, is present at high levels in the brain. This raises the question why PMM1 does not compensate for the reduced PMM2 activity during CDG-Ia pathogenesis. We compared the expression profile of the murine Pmm1 and Pmm2 mRNA and protein in prenatal and postnatal mouse brain at the histological level. We observed a considerable expression of both Pmms in different regions of the embryonic and adult mouse brain. Surprisingly, the expression patterns were largely overlapping. This data indicates that expression differences on the cellular and tissue level are an unlikely explanation for the absence of functional compensation. These results suggest that Pmm1 in vivo does not exert the phosphomannomutase-like activity seen in biochemical assays, but either acts on as yet unidentified specific substrates or fulfils entirely different functions.
Collapse
Affiliation(s)
- K Cromphout
- Division of Clinical Genetics, Center for Human Genetics, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wopereis S, Morava E, Grünewald S, Mills PB, Winchester BG, Clayton P, Coucke P, Huijben KMLC, Wevers RA. A combined defect in the biosynthesis of N- and O-glycans in patients with cutis laxa and neurological involvement: the biochemical characteristics. Biochim Biophys Acta Mol Basis Dis 2005; 1741:156-64. [PMID: 15955459 DOI: 10.1016/j.bbadis.2004.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/17/2004] [Accepted: 11/19/2004] [Indexed: 11/23/2022]
Abstract
Based on our preliminary observation of abnormal glycosylation in a cutis laxa patient, nine cutis laxa patients were analyzed for congenital defects of glycosylation (CDG). Isoelectric focusing of plasma transferrin and apolipoproteinC-III showed that three out of nine patients had a defect in the biosynthesis of N-glycans and core 1 mucin type O-glycans, respectively. Mass spectrometric N-glycan analyses revealed a relative increase of glycans lacking sialic acid and glycans lacking sialic acid and galactose residues. Mutation analysis of the fibulin-5 gene (FBLN5), which has been reported in cases of autosomal recessive cutis laxa, revealed no mutations in the patients' DNA. Evidence is presented that extracellular matrix (ECM) proteins of skin are likely to be highly glycosylated with N- and/or mucin type O-glycans by using algorithms for predicting glycosylation. The conclusions in this study were that the clinical phenotype of autosomal recessive cutis laxa seen in three patients is not caused by mutations in the FBLN5 gene. Our findings define a novel form of CDG with cutis laxa and neurological involvement due to a defect in the sialylation and/or galactosylation of N- and O-glycans. Improper glycosylation of ECM proteins of skin may form the pathophysiological basis for the cutis laxa phenotype.
Collapse
Affiliation(s)
- Suzan Wopereis
- Radboud University Nijmegen Medical Center, Laboratory of Pediatrics and Neurology, Institute of Neurology, Reinier Postlaan 4, 6525 GC Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Aronica E, van Kempen AAMW, van der Heide M, Poll-The BT, van Slooten HJ, Troost D, Rozemuller-Kwakkel JM. Congenital disorder of glycosylation type Ia: a clinicopathological report of a newborn infant with cerebellar pathology. Acta Neuropathol 2005; 109:433-42. [PMID: 15714316 DOI: 10.1007/s00401-004-0975-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/06/2004] [Accepted: 12/06/2004] [Indexed: 12/11/2022]
Abstract
Congenital disorders of glycosylation (CDG) represent a newly delineated group of inherited multisystem disorders characterized by defective glycoprotein biosynthesis. In the present study we report and discuss the clinical and neuropathological findings in a newborn with CDG type Ia (CDG-Ia). The patient presented mild dysmorphic facial features, inverted nipples, progressive generalized edema, hypertrophic cardiomyopathy, hepatosplenomegaly, muscular hypotonia and had severe hypoalbuminemia. Deficiency of phosphomannomutase (PMM)-2 activity was detected. Molecular analysis showed V231M/T237R mutations of the PMM2 gene. Muscular biopsy, disclosed myopathic alterations with myofibrillar disarray by electron microscopy. The patient died at 1 month of age of circulatory and respiratory failure. Autopsy showed liver fibrosis and renal abnormalities. Neuropathological abnormalities were mainly confined to the cerebellum. Histological and immunocytochemical examination of cerebellar tissue showed partial atrophy of cerebellar folia with severe loss of Purkinje cells, granular cell depletion and various morphological changes in the remaining Purkinje cells and their dendritic arborization. Autopsy findings confirm the complexity of the CDG-Ia syndrome, and indicate that CDG-Ia is a distinct disease entity, which can be differentiated from other neurological disorders and other types of CDG, not only clinically, but also based on unique pathological findings. The data proved useful in determining the underlying disease process associated with a defective N-glycosylation pathway.
Collapse
Affiliation(s)
- E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ , Amsterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
26
|
Battaglia A, Carey JC. Diagnostic evaluation of developmental delay/mental retardation: An overview. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2003; 117C:3-14. [PMID: 12561053 DOI: 10.1002/ajmg.c.10015] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Mental retardation (MR) is one of the few clinically important disorders for which the etiopathogenesis is still poorly understood. It is a condition of great concern for public health and society. MR is currently defined as a significant impairment of cognitive and adaptive functions, with onset before age 18 years. It may become evident during infancy or early childhood as developmental delay (DD), but it is best diagnosed during the school years. MR is estimated to occur in 1-10% of the population, and research on its etiology has always been a challenge in medicine. The etiopathogenesis encompasses so many different entities that the attending physician can sometimes feel a "virtual panic," starting a wide-range diagnostic evaluation. The Consensus Conference of the American College of Medical Genetics has recently established guidelines regarding the evaluation of patients with MR [Curry et al., 1997], emphasizing the high diagnostic utility of cytogenetic studies and neuroimaging in certain clinical settings. However, since then there has been substantial progress in molecular cytogenetics and neuroimaging techniques, the use of which has allowed recognition and definition of new disorders, thus increasing the diagnostic yield. This review will focus on the most appropriate investigations shown to be, at present, necessary to define the etiology of DD/MR, in the context of recommendations for the clinical evaluation of the patient with undiagnosed MR.
Collapse
Affiliation(s)
- Agatino Battaglia
- Division of Pediatric Neurology and Psychiatry, Department of Procreative Medicine and Pediatrics, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
27
|
Battaglia A. Neuroimaging studies in the evaluation of developmental delay/mental retardation. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2003; 117C:25-30. [PMID: 12561055 DOI: 10.1002/ajmg.c.10017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The employment of neuroimaging studies in the evaluation of individuals with developmental delay/mental retardation (DD/MR) is still highly debated. The Consensus Conference of the American College of Medical Genetics has suggested that "neuroimaging appears to have an especially important role in patients with microcephaly or macrocephaly, seizures, loss of psychomotor skills and neurologic signs," whereas the value of neuroimaging investigations "in the normocephalic patient without focal neurological signs is unclear" [Curry et al., 1997]. However, recent literature reports show how the latest neuroimaging techniques (in vivo proton magnetic resonance spectroscopy [H-MRS]) may prove to be useful in the diagnostic process of those individuals with DD/MR and no neurological signs/symptoms. The use of these techniques can, in addition, help in monitoring treatment in distinct metabolic disorders. This review will focus on the usefulness of neuroimaging studies in some of the newer metabolic disorders. This paper will also cover those recognizable patterns of human malformation where neuroimaging findings seem to be relevant both toward diagnosis and management, and add to our understanding of the related behavior phenotype. The essential role of magnetic resonance imaging (MRI) on the progress in the diagnostic recognition of malformations of cerebral cortical development is stressed.
Collapse
Affiliation(s)
- Agatino Battaglia
- Division of Pediatric Neurology and Psychiatry, Department of Procreative Medicine and Pediatrics, University of Pisa, Pisa, Italy.
| |
Collapse
|
28
|
Sala G, Dupré T, Seta N, Codogno P, Ghidoni R. Increased biosynthesis of glycosphingolipids in congenital disorder of glycosylation Ia (CDG-Ia) fibroblasts. Pediatr Res 2002; 52:645-51. [PMID: 12409508 DOI: 10.1203/00006450-200211000-00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congenital disorder of glycosylation Ia (CDG-Ia) is an autosomal recessive disease, characterized by the impaired biosynthesis of the N-linked oligosaccharide chains of proteins due to a deficiency of phosphomannomutase (PMM), the enzyme converting mannose-6-phosphate into mannose-1-phosphate. We investigated the consequences of the altered N-linked glycoprotein (GP) biosynthesis on the quantity and quality of glycosphingolipids (GSLs) in fibroblasts of CDG-Ia patients. First, we found that CDG-Ia fibroblasts contain an increased amount of total GSLs when compared with normal fibroblasts. Further, we assessed by metabolic labeling of CDG-Ia fibroblasts with radioactive sugar precursors, including galactose and N-acetylmannosamine, that a diminished biosynthesis of cellular GPs is antagonized by an increased biosynthesis of GSLs. An increased GSL biosynthesis was also observed by means of radiolabeled lipid precursors including sphingosine and lactosylceramide. Notably, also the degradation of GLSs is slowed down in CDG-Ia fibroblasts. Finally, when we labeled normal human fibroblasts and CHO cells with radioactive galactose in the presence and absence of deoxymannojirimycin (dMM), an inhibitor of N-glycan processing, we found that this cellular model mimics what occurs in CDG-Ia fibroblasts. Since an inverse relationship between GP expression and GSL content does exist, we assume that increased glycosphingolipid biosynthesis is secondary to protein hypoglycosylation. Altogether, our data suggest that the cell metabolic machinery may be able to partially re-equilibrate protein hypoglycosylation with increased biosynthesis of glycosphingolipids, possibly to preserve the overall physico-chemical equilibrium of the outer layer of the plasma membrane.
Collapse
Affiliation(s)
- Giusy Sala
- San Paolo University Hospital, University of Milan, Milano, Italy
| | | | | | | | | |
Collapse
|