1
|
Xiao Y, Liu J, Ren P, Zhou X, Zhang S, Li Z, Gong J, Li R, Zhu M. Identification of potential candidate genes for the Huoyan trait in developing Wulong goose embryos by transcriptomic analysis. Br Poult Sci 2024; 65:273-286. [PMID: 38727584 DOI: 10.1080/00071668.2024.2328686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/16/2024] [Indexed: 07/02/2024]
Abstract
1. The Wulong goose is a Chinese breed and a source of high-quality meat and eggs. A characteristic of the Wulong goose is that a proportion of the birds do not have eyelids, known as the Huoyon trait.2. Wulong geese exhibiting the Huoyan trait at embryonic stages of 9 days (E9), 12 days (E12) and 14 days (E14) were selected alongside those with normal eyelids for comprehensive transcriptome sequencing. Differentially expressed gene (DEG) and functional enrichment analyses were performed and finally, eight DEG were chosen to verify the accuracy of qPCR sequencing.3. Overall, 466, 962 and 550 DEG were obtained from the three control groups, D9 vs. N9, D12 vs. N12 and D14 vs. N14, respectively, by differential analysis (p < 0.05). CDKN1C, CRH, CROCC and TYSND1 were significantly expressed in the three groups. Enrichment analysis revealed the enrichment of CROCC and TYSND1 in pathways of cell cycle process, endocytosis, microtubule-based process, microtubule organising centre organisation, protein processing and protein maturation. CDKN1C and CRH were enriched in the cell cycle and cAMP signalling pathway.4. Some collagen family genes were detected among the DEGs, including COL3A1, COL4A5, COL4A2 and COL4A1. FREM1 and FREM2 genes were detected in both Huoyan and normal eyelids. There was a significant difference (p < 0.01) in FREM1 expression between ED9 and ED14 in female embryos, but this difference was not observed in male embryos.
Collapse
Affiliation(s)
- Y Xiao
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - J Liu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - P Ren
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - X Zhou
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - S Zhang
- Shandong Animal Husbandry General Station, Jinan, China
| | - Z Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - J Gong
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - R Li
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - M Zhu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Mwipopo E, Massomo MM, Moshiro R, Manji KP. Bilateral cryptophthalmos with overlapping features of Manitoba oculo-tricho-anal (MOTA) syndrome and Fraser syndrome 2. BMJ Case Rep 2023; 16:e252618. [PMID: 37353237 PMCID: PMC10314527 DOI: 10.1136/bcr-2022-252618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
Abstract
A male baby with bilateral cryptophthalmos without eyebrows, distorted anterior hairline, bifid nasal tip, low-set ears, hypertelorism and low anorectal anomaly who was phenotypically diagnosed with Manitoba oculo-tricho-anal syndrome (mutation in FREM1 gene) had an overlapping genotypic diagnosis of autosomal recessive Fraser syndrome 2 because of the presence of a closely related mutation in FREM2 This heterozygous variant was likely to be sporadic. Another mutation was identified in the CEP85L gene indicating lissencephaly 10. This genetic condition has abnormal gyri pattern in the occiput area. This form of lissencephaly is characterised by phenotypic heterogeneity whereby some patients have only mild mental retardation, while others have a very complex clinical picture.In conclusion, this rare condition with the overlap of genetics between several conditions highlights the need for genetic testing even in an low middle income country (LMIC).
Collapse
Affiliation(s)
- Ernestina Mwipopo
- Pediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
| | - Mariam Mngoya Massomo
- Pediatrics and Child Health Neonatal Unit, Muhimbili National Hospital, Dar es Salaam, United Republic of Tanzania
| | - Robert Moshiro
- Pediatrics, Muhimbili National Hospital, Dar es Salaam, United Republic of Tanzania
| | - Karim Premji Manji
- Pediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
| |
Collapse
|
3
|
Dawson AJ, Hovanes K, Liu J, Marles S, Greenberg C, Mhanni A, Chudley A, Frosk P, Sahoo T, Schanze D, Zenker M. Heterozygous intragenic deletions of FREM1 are not associated with trigonocephaly. Clin Dysmorphol 2021; 30:83-88. [PMID: 33038106 DOI: 10.1097/mcd.0000000000000351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recessive mutations in FRAS1-related extracellular matrix 1 (FREM1) are associated with two rare genetic disorders, Manitoba-oculo-tricho-anal (MOTA) and bifid nose with or without anorectal and renal anomalies (BNAR). Fraser syndrome is a more severe disorder that shows phenotypic overlap with both MOTA and anorectal and renal anomalies and results from mutations in FRAS1, FREM2 and GRIP1. Heterozygous missense mutations in FREM1 were reported in association with isolated trigonocephaly with dominant inheritance and incomplete penetrance. Moreover, large deletions encompassing FREM1 have been reported in association with a syndromic form of trigonocephaly and were designated as trigonocephaly type 2. Trigonocephaly results from premature closure of the metopic suture and typically manifests as a form of nonsyndromic craniosynostosis. We report on 20 patients evaluated for developmental delay and without abnormal metopic suture. Chromosomal microarray analysis revealed heterozygous FREM1 deletions in 18 patients and in 4 phenotypically normal parents. Two patients were diagnosed with MOTA and had homozygous FREM1 deletions. Therefore, although our results are consistent with the previous reports of homozygous deletions causing MOTA, we report no association between heterozygous FREM1 deletions and trigonocephaly in this cohort.
Collapse
Affiliation(s)
- Angelika J Dawson
- Genomics, Shared Health Manitoba, Winnipeg
- Department of Biochemistry and Medical Genetics, Program of Genetics and Metabolism, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Jing Liu
- Genomics, Shared Health Manitoba, Winnipeg
- Department of Biochemistry and Medical Genetics, Program of Genetics and Metabolism, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sandra Marles
- Department of Biochemistry and Medical Genetics, Program of Genetics and Metabolism, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cheryl Greenberg
- Department of Biochemistry and Medical Genetics, Program of Genetics and Metabolism, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aziz Mhanni
- Department of Biochemistry and Medical Genetics, Program of Genetics and Metabolism, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Albert Chudley
- Department of Biochemistry and Medical Genetics, Program of Genetics and Metabolism, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Program of Genetics and Metabolism, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg Leipziger Str. 44 39120 Magdeburg Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg Leipziger Str. 44 39120 Magdeburg Germany
| |
Collapse
|
4
|
Gu S, Khoong Y, Huang X, Zan T. Facial cleft? The first case of manitoba-oculo-tricho-anal syndrome with novel mutations in China: a case report. BMC Pediatr 2021; 21:46. [PMID: 33478401 PMCID: PMC7818766 DOI: 10.1186/s12887-021-02506-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background Manitoba-oculo-tricho-anal (MOTA) syndrome is a rare syndrome with only 27 cases reported worldwide so far, but none was reported in the population of Eastern Asia. Such extremely low prevalence might be contributed by misdiagnosis due to its similarities in ocular manifestations with facial cleft. In our study, we discovered the first case of MOTA syndrome in the population of China, with 2 novel FRAS1 related extracellular matrix 1 (FREM1) gene stop-gain mutations confirmed by whole exome sequencing. Case presentation A 12-year-old Chinese girl presented with facial cleft-like deformities including aberrant hairline, blepharon-coloboma and broad bifid nose since birth. Whole exome sequencing resulted in the identification of 2 novel stop-gain mutations in the FREM1 gene. Diagnosis of MOTA syndrome was then established. Conclusions We discovered the first sporadic case of MOTA syndrome according to clinical manifestations and genetic etiology in the Chinese population. We have identified 2 novel stop-gain mutations in FREM1 gene which further expands the spectrum of mutational seen in the MOTA syndrome. Further research should be conducted for better understanding of its mechanism, establishment of an accurate diagnosis, and eventually the exploitation of a more effective and comprehensive therapeutic intervention for MOTA syndrome.
Collapse
Affiliation(s)
- Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China.
| |
Collapse
|
5
|
Schraw JM, Benjamin RH, Scott DA, Brooks BP, Hufnagel RB, McLean SD, Northrup H, Langlois PH, Canfield MA, Scheuerle AE, Schaaf CP, Ray JW, Chen H, Swartz MD, Mitchell LE, Agopian AJ, Lupo PJ. A Comprehensive Assessment of Co-occurring Birth Defects among Infants with Non-Syndromic Anophthalmia or Microphthalmia. Ophthalmic Epidemiol 2020; 28:428-435. [PMID: 33345678 DOI: 10.1080/09286586.2020.1862244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Infants with anophthalmia or microphthalmia frequently have co-occurring birth defects. Nonetheless, there have been few investigations of birth defect patterns among these children. Such studies may identify novel multiple malformation syndromes, which could inform future research into the developmental processes that lead to anophthalmia/microphthalmia and assist physicians in determining whether further testing is appropriate. METHODS This study includes cases with anophthalmia/microphthalmia identified by the Texas Birth Defects Registry from 1999 to 2014 without clinical or chromosomal diagnoses of recognized syndromes. We calculated adjusted observed-to-expected ratios for two - through five-way birth defect combinations involving anophthalmia/microphthalmia to estimate whether these combinations co-occur more often than would be expected if they were independent. We report combinations observed in ≥5 cases. RESULTS We identified 653 eligible cases with anophthalmia/microphthalmia (514 [79%] with co-occurring birth defects), and 111 birth defect combinations, of which 44 were two-way combinations, 61 were three-way combinations, six were four-way combinations and none were five-way combinations. Combinations with the largest observed-to-expected ratios were those involving central nervous system (CNS) defects, head/neck defects, and orofacial clefts. We also observed multiple combinations involving cardiovascular and musculoskeletal defects. CONCLUSION Consistent with previous reports, we observed that a large proportion of children diagnosed with anophthalmia/microphthalmia have co-occurring birth defects. While some of these defects may be part of a sequence involving anophthalmia/microphthalmia (e.g., CNS defects), other combinations could point to as yet undescribed susceptibility patterns (e.g., musculoskeletal defects). Data from population-based birth defect registries may be useful for accelerating the discovery of previously uncharacterized malformation syndromes.
Collapse
Affiliation(s)
- Jeremy M Schraw
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas
| | - Renata H Benjamin
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Scott D McLean
- Clinical Genetics Section, The Children's Hospital of San Antonio, San Antonio, Texas
| | - Hope Northrup
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Peter H Langlois
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Austin, TX.,Texas Department of State Health Services, Birth Defects Epidemiology and Surveillance Branch, Austin, Texas
| | - Mark A Canfield
- Texas Department of State Health Services, Birth Defects Epidemiology and Surveillance Branch, Austin, Texas
| | - Angela E Scheuerle
- Department of Pediatrics, Division of Genetics and Metabolism, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Joseph W Ray
- Department of Pediatrics, Division of Medical Genetics and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Han Chen
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas.,Center for Precision Health, UTHealth School of Biomedical Informatics, Houston, Texas
| | - Michael D Swartz
- Department of Biostatistics and Data Science, UTHealth School of Public Health, Houston, Texas
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - A J Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Center for Epidemiology and Population Health, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
George A, Cogliati T, Brooks BP. Genetics of syndromic ocular coloboma: CHARGE and COACH syndromes. Exp Eye Res 2020; 193:107940. [PMID: 32032630 DOI: 10.1016/j.exer.2020.107940] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Optic fissure closure defects result in uveal coloboma, a potentially blinding condition affecting between 0.5 and 2.6 per 10,000 births that may cause up to 10% of childhood blindness. Uveal coloboma is on a phenotypic continuum with microphthalmia (small eye) and anophthalmia (primordial/no ocular tissue), the so-called MAC spectrum. This review gives a brief overview of the developmental biology behind coloboma and its clinical presentation/spectrum. Special attention will be given to two prominent, syndromic forms of coloboma, namely, CHARGE (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies/deafness) and COACH (Cerebellar vermis hypoplasia, Oligophrenia, Ataxia, Coloboma, and Hepatic fibrosis) syndromes. Approaches employed to identify genes involved in optic fissure closure in animal models and recent advances in live imaging of zebrafish eye development are also discussed.
Collapse
Affiliation(s)
- Aman George
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA
| | - Tiziana Cogliati
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health. Bethesda, Maryland, 20892, USA.
| |
Collapse
|
7
|
Chacon-Camacho OF, Zenker M, Schanze D, Ledesma-Gil J, Zenteno JC. Novel FREM1 mutations in a patient with MOTA syndrome: Clinical findings, mutation update and review of FREM1-related disorders literature. Eur J Med Genet 2017; 60:190-194. [PMID: 28111185 DOI: 10.1016/j.ejmg.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Manitoba-oculo-tricho-anal (MOTA) syndrome is an uncommon condition arising from biallelic mutations of FREM1 gene and clinically characterized by a variable spectrum of eyelid malformations, aberrant hairline, bifid or broad nasal tip, and gastrointestinal anomalies. In this report, we describe a patient with a phenotype compatible with MOTA syndrome (aberrant anterior hair line, hypertelorism, unilateral anophthalmia, and bifid and broad nasal tip) in whom two novel FREM1 mutations (c.305 A > G, p.Asp102Gly; and c.2626delG, p.Val876Tyrfs*16) were identified in the compound heterozygous state, thus broadening the mutational spectrum of the disease. We performed a literature review of the clinical and genetic features of individuals carrying FREM1 mutations.
Collapse
Affiliation(s)
- Oscar F Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Martin Zenker
- Institute of Human Genetics, University Hospital of Magdeburg, Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital of Magdeburg, Magdeburg, Germany
| | - Jasbeth Ledesma-Gil
- Department of Glaucoma, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico; Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
8
|
Abstract
Anorectal malformation (ARM) is a congenital anomaly commonly encountered in pediatric surgery practice. Although surgical procedures correct the anatomical anomalies, the post-operative bowel function is not universally satisfactory. The etiology of ARM remains unclear. In this review, we summarize the current understanding of the genetic and epigenetic factors contributing to the pathogenesis of ARM, based on published animal models, human genetics and epidemiological researches. Appreciation of these factors may be helpful in the management of ARM in the future.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pediatric Surgery, Capital Institute of Pediatrics, No.2 Ya Bao Road, Beijing, 100020, People's Republic of China
| | | | | |
Collapse
|
9
|
Congenital upper eyelid coloboma: embryologic, nomenclatorial, nosologic, etiologic, pathogenetic, epidemiologic, clinical, and management perspectives. Ophthalmic Plast Reconstr Surg 2015; 31:1-12. [PMID: 25419956 PMCID: PMC4334304 DOI: 10.1097/iop.0000000000000347] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose: To review the recent literature and describe the authors’ experience with congenital upper eyelid coloboma. Methods: In this review, we will summarize the embryologic and etiopathogenetic bases of congenital upper eyelid coloboma, and study the published clinical reports. We will also attempt to briefly shed some light on the rarer syndromic curiosities associated with upper eyelid coloboma. Results: Congenital upper eyelid colobomas are one of the few nontraumatic oculoplastic emergencies that may occasionally present in the first few days of life with a corneal ulcer and may even present with impending perforation. They can present with or without corneopalpebral adhesions, may be isolated findings or a part of a larger spectrum of congenital anomalies as in the case of Fraser syndrome or Goldenhar syndrome, or could be associated with other rare curiosities that could challenge the clinician with a huge diagnostic dilemma. Conclusions: Existing literature dealing with congenital colobomas of the upper eyelid is fraught with nosologic problems, confusing etiologies, and overlapping clinical features. We attempted to clarify the salient clinical features, outline the management principles, and until a time in the not-so-distant future where advances in molecular genetic testing would help redefine the etiology and the diverse clinical spectrum of genetic diseases associated with upper eyelid colobomas, we propose a simplified classification scheme based on the relation of the coloboma to the cornea, the presence or absence of systemic features, and all the syndromic and nonsyndromic associations of congenital coloboma of the upper eyelid known today. In this review, the authors will describe the pathogenesis of upper eyelid coloboma, suggest a new simplified classification system, describe the clinical picture in detail, clarify the various syndromic associations of upper eyelid coloboma, and lay out the basic surgical principles of management.
Collapse
|
10
|
Chacon-Camacho OF, Lopez-Martinez MS, Vázquez J, Nava-Castañeda A, Martin-Biasotti F, Piña-Aguilar RE, Iñiguez-Soto M, Acosta-García J, Zenteno JC. Nasopalpebral Lipoma-Coloboma syndrome: Clinical, radiological, and histopathological description of a novel sporadic case. Am J Med Genet A 2013; 161A:1470-4. [DOI: 10.1002/ajmg.a.35916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/01/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Oscar F. Chacon-Camacho
- Department of Genetics; Institute of Ophthalmology “Conde de Valenciana,”; Mexico City; Mexico
| | | | - Johanna Vázquez
- Departamento de Estomatologia Pediatrica; Hospital de Especialidades Pediatricas; Tuxtla Gutierrez-Chiapas; Mexico
| | - Angel Nava-Castañeda
- Department of Oculoplastics; Institute of Ophthalmology “Conde de Valenciana,”; Mexico City; Mexico
| | - Fernando Martin-Biasotti
- Department of Radiology and Imaging; Institute of Ophthalmology “Conde de Valenciana,”; Mexico City; Mexico
| | - Raul E. Piña-Aguilar
- Department of Genetics; Centro Médico Nacional “20 de Noviembre,” ISSSTE; Mexico City; Mexico
| | - Marisol Iñiguez-Soto
- Department of Oculoplastics; Institute of Ophthalmology “Conde de Valenciana,”; Mexico City; Mexico
| | - Job Acosta-García
- Department of Radiology and Imaging; Institute of Ophthalmology “Conde de Valenciana,”; Mexico City; Mexico
| | | |
Collapse
|
11
|
Beck TF, Shchelochkov OA, Yu Z, Kim BJ, Hernández-García A, Zaveri HP, Bishop C, Overbeek PA, Stockton DW, Justice MJ, Scott DA. Novel frem1-related mouse phenotypes and evidence of genetic interactions with gata4 and slit3. PLoS One 2013; 8:e58830. [PMID: 23536828 PMCID: PMC3594180 DOI: 10.1371/journal.pone.0058830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/07/2013] [Indexed: 11/27/2022] Open
Abstract
The FRAS1-related extracellular matrix 1 (FREM1) gene encodes an extracellular matrix protein that plays a critical role in the development of multiple organ systems. In humans, recessive mutations in FREM1 cause eye defects, congenital diaphragmatic hernia, renal anomalies and anorectal malformations including anteriorly placed anus. A similar constellation of findings-microphthalmia, cryptophthalmos, congenital diaphragmatic hernia, renal agenesis and rectal prolapse-have been described in FREM1-deficient mice. In this paper, we identify a homozygous Frem1 missense mutation (c.1687A>T, p.Ile563Phe) in an N-ethyl-N-nitrosourea (ENU)-derived mouse strain, crf11, with microphthalmia, cryptophthalmos, renal agenesis and rectal prolapse. This mutation affects a highly conserved residue in FREM1's third CSPG domain. The p.Ile563Phe change is predicted to be deleterious and to cause decreased FREM1 protein stability. The crf11 allele also fails to complement the previously described eyes2 allele of Frem1 (p.Lys826*) providing further evidence that the crf11 phenotype is due to changes affecting Frem1 function. We then use mice bearing the crf11 and eyes2 alleles to identify lung lobulation defects and decreased anogenital distance in males as novel phenotypes associated with FREM1 deficiency in mice. Due to phenotypic overlaps between FREM1-deficient mice and mice that are deficient for the retinoic acid-responsive transcription factor GATA4 and the extracellular matrix protein SLIT3, we also perform experiments to look for in vivo genetic interactions between the genes that encode these proteins. These experiments reveal that Frem1 interacts genetically with Gata4 in the development of lung lobulation defects and with Slit3 in the development of renal agenesis. These results demonstrate that FREM1-deficient mice faithfully recapitulate many of the phenotypes seen in individuals with FREM1 deficiency and that variations in GATA4 and SLIT3 expression modulate some FREM1-related phenotypes in mice.
Collapse
Affiliation(s)
- Tyler F. Beck
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Oleg A. Shchelochkov
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Zhiyin Yu
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bum Jun Kim
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrés Hernández-García
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hitisha P. Zaveri
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Colin Bishop
- The Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina, United States of America
| | - Paul A. Overbeek
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David W. Stockton
- Departments of Pediatrics and Internal Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Monica J. Justice
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
12
|
Nathanson J, Swarr DT, Singer A, Liu M, Chinn A, Jones W, Hurst J, Khalek N, Zackai E, Slavotinek A. Novel FREM1 mutations expand the phenotypic spectrum associated with Manitoba-oculo-tricho-anal (MOTA) syndrome and bifid nose renal agenesis anorectal malformations (BNAR) syndrome. Am J Med Genet A 2013; 161A:473-8. [PMID: 23401257 DOI: 10.1002/ajmg.a.35736] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/16/2012] [Indexed: 11/10/2022]
Abstract
Loss of function mutations in FREM1 have been demonstrated in Manitoba-oculo-tricho-anal (MOTA) syndrome and Bifid Nose Renal Agenesis and Anorectal malformations (BNAR) syndrome, but the wider phenotypic spectrum that is associated with FREM1 mutations remains to be defined. We screened three probands with phenotypic features of MOTA syndrome. In one severely affected infant who was diagnosed with MOTA syndrome because of bilateral eyelid colobomas, a bifid nasal tip, hydrometrocolpos and vaginal atresia, we found two nonsense mutations that likely result in complete loss of FREM1 function. This infant also had renal dysplasia, a finding more consistent with BNAR syndrome. Another male who was homozygous for a novel stop mutation had an extensive eyelid colobomas, corneopalpebral synechiae, and unilateral renal agenesis. A third male child diagnosed with MOTA syndrome because of corneopalpebral synechiae and eyelid colobomas had a homozygous splice site mutation in FREM1. These cases illustrate that disruption of the FREM1 gene can produce a spectrum of clinical manifestations encompassing the previously described MOTA and BNAR syndromes, and that features of both syndromes may be seen in the same individual. The phenotype of FREM1-related disorders is thus more pleiotropic than for MOTA and BNAR syndrome alone and more closely resembles the widespread clinical involvement seen with Fraser syndrome. Moreover, our first case demonstrates that vaginal atresia may be a feature of FREM1-related disorders.
Collapse
Affiliation(s)
- Jared Nathanson
- Division of Genetics, Department of Pediatrics, University of California, San Francisco, California 94143-0748, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Beck TF, Veenma D, Shchelochkov OA, Yu Z, Kim BJ, Zaveri HP, van Bever Y, Choi S, Douben H, Bertin TK, Patel PI, Lee B, Tibboel D, de Klein A, Stockton DW, Justice MJ, Scott DA. Deficiency of FRAS1-related extracellular matrix 1 (FREM1) causes congenital diaphragmatic hernia in humans and mice. Hum Mol Genet 2012; 22:1026-38. [PMID: 23221805 DOI: 10.1093/hmg/dds507] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common life-threatening birth defect. Recessive mutations in the FRAS1-related extracellular matrix 1 (FREM1) gene have been shown to cause bifid nose with or without anorectal and renal anomalies (BNAR) syndrome and Manitoba oculotrichoanal (MOTA) syndrome, but have not been previously implicated in the development of CDH. We have identified a female child with an isolated left-sided posterolateral CDH covered by a membranous sac who had no features suggestive of BNAR or MOTA syndromes. This child carries a maternally-inherited ~86 kb FREM1 deletion that affects the expression of FREM1's full-length transcripts and a paternally-inherited splice site mutation that causes activation of a cryptic splice site, leading to a shift in the reading frame and premature termination of all forms of the FREM1 protein. This suggests that recessive FREM1 mutations can cause isolated CDH in humans. Further evidence for the role of FREM1 in the development of CDH comes from an N-ethyl-N-nitrosourea -derived mouse strain, eyes2, which has a homozygous truncating mutation in Frem1. Frem1(eyes2) mice have eye defects, renal agenesis and develop retrosternal diaphragmatic hernias which are covered by a membranous sac. We confirmed that Frem1 is expressed in the anterior portion of the developing diaphragm and found that Frem1(eyes2) embryos had decreased levels of cell proliferation in their developing diaphragms when compared to wild-type embryos. We conclude that FREM1 plays a critical role in the development of the diaphragm and that FREM1 deficiency can cause CDH in both humans and mice.
Collapse
Affiliation(s)
- Tyler F Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee HM, Noh TK, Yoo HW, Kim SB, Won CH, Chang SE, Lee MW, Choi JH, Moon KC. A wedge-shaped anterior hairline extension associated with a tessier number 10 cleft. Ann Dermatol 2012. [PMID: 23197915 PMCID: PMC3505780 DOI: 10.5021/ad.2012.24.4.464] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A wedge-shaped anterior hairline extension is a very rare skin manifestation usually associated with congenital anomalies including a Tessier number 10 cleft. Other associated conditions are the Tessier number 9 cleft, the Fraser syndrome, and the Manitoba oculotrichoanal syndrome (MOTA syndrome). The Tessier number 10 cleft features include a coloboma of the middle third of the upper eyelid, and an eyebrow divided into two portions. The medial eyebrow portion may be absent and the lateral portion is angulated vertically, joining the hairline of the scalp. This creates a wedge-shaped anterior hairline extension. Herein we report on a case of a wedge-shaped anterior hairline extension associated with the Tessier number 10 cleft.
Collapse
Affiliation(s)
- Hyung Min Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Slavotinek AM, Baranzini SE, Schanze D, Labelle-Dumais C, Short KM, Chao R, Yahyavi M, Bijlsma EK, Chu C, Musone S, Wheatley A, Kwok PY, Marles S, Fryns JP, Maga AM, Hassan MG, Gould DB, Madireddy L, Li C, Cox TC, Smyth I, Chudley AE, Zenker M. Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. J Med Genet 2011; 48:375-82. [PMID: 21507892 DOI: 10.1136/jmg.2011.089631] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Manitoba-oculo-tricho-anal (MOTA) syndrome is a rare condition defined by eyelid colobomas, cryptophthalmos and anophthalmia/microphthalmia, an aberrant hairline, a bifid or broad nasal tip, and gastrointestinal anomalies such as omphalocele and anal stenosis. Autosomal recessive inheritance had been assumed because of consanguinity in the Oji-Cre population of Manitoba and reports of affected siblings, but no locus or cytogenetic aberration had previously been described. METHODS AND RESULTS This study shows that MOTA syndrome is caused by mutations in FREM1, a gene previously mutated in bifid nose, renal agenesis, and anorectal malformations (BNAR) syndrome. MOTA syndrome and BNAR syndrome can therefore be considered as part of a phenotypic spectrum that is similar to, but distinct from and less severe than, Fraser syndrome. Re-examination of Frem1(bat/bat) mutant mice found new evidence that Frem1 is involved in anal and craniofacial development, with anal prolapse, eyelid colobomas, telecanthus, a shortened snout and reduced philtral height present in the mutant mice, similar to the human phenotype in MOTA syndrome. CONCLUSIONS The milder phenotypes associated with FREM1 deficiency in humans (MOTA syndrome and BNAR syndrome) compared to that resulting from FRAS1 and FREM2 loss of function (Fraser syndrome) are also consistent with the less severe phenotypes resulting from Frem1 loss of function in mice. Together, Fraser, BNAR and MOTA syndromes constitute a clinically overlapping group of FRAS-FREM complex diseases.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, 533 Parnassus Street, Room U585P, San Francisco, CA 94143-0748, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yeung A, Amor D, Savarirayan R. Familial upper eyelid coloboma with ipsilateral anterior hairline abnormality: two new reports of MOTA syndrome. Am J Med Genet A 2009; 149A:767-9. [PMID: 19291776 DOI: 10.1002/ajmg.a.32743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe two patients with upper eyelid coloboma, hypertelorism, disruption of the eyebrow, and anterior hairline anomaly. The phenotype in our patients is consistent with Manitoba Oculotrichoanal syndrome (MOTA syndrome, OMIM 248450), which comprises a variable spectrum of eyelid malformations ranging from cryptophthalmos to upper eyelid colobomas; aberrant ipsilateral anterior hairline, and anal anomalies. It was first described in members of the indigenous population of the Island Lake region of Northern Manitoba, Canada. Autosomal recessive inheritance is demonstrated in these families and single-gene etiology has been proposed. This constellation of anomalies also corresponds to those arising from the Number 10 cleft in Tessier's anatomical classification of clefting malformations. Tessier Number 10 clefts are the rarest of the 15 craniofacial clefting malformations first described by Tessier [Tessier (1976); J Maxillofac Surg 4:69-92]. They have only ever been reported as sporadic occurrences and the underlying etiology is thought to be environmental. We believe the phenotype in our patients and in those previously described with MOTA syndrome represents a disorder of craniofacial clefting; specifically, one that occurs along the tissue planes of the Tessier Number 10 cleft. The familial clustering of these facial features and their variable association with other congenital anomalies supports a genetic rather than environmental cause. The mapping of the gene for this syndrome is likely to involve a combined functional and positional approach with a focus on candidate genes involved in craniofacial development.
Collapse
Affiliation(s)
- Alison Yeung
- Genetic Health Services Victoria, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.
| | | | | |
Collapse
|
17
|
van Haelst MM, Scambler PJ, Hennekam RCM. Fraser syndrome: a clinical study of 59 cases and evaluation of diagnostic criteria. Am J Med Genet A 2008; 143A:3194-203. [PMID: 18000968 DOI: 10.1002/ajmg.a.31951] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fraser syndrome is an autosomal recessive congenital malformation syndrome characterized by cryptophthalmos, syndactyly, and urogenital defects. We studied the clinical features in 59 affected individuals from 40 families (25 consanguineous), and compared our findings to data from previous reviews. We found a higher frequency of abnormalities of the skull, larynx, umbilicus, urinary tract, and anus in our series of patients, and mental retardation and cleft lip with or without cleft palate were observed less frequently than previously reported. Clinical features in probands and sibs were remarkably similar. As can be expected prenatally diagnosed patients had more manifestations that gave rise to a pathological amount of amniotic fluid. Otherwise patients diagnosed before and after birth had similar frequencies of symptoms. Based on the present results we suggest an adaptation of diagnostic criteria for FS, including adding airway tract and urinary tract anomalies as major criteria. The specificity of the proposed diagnostic criteria was evaluated using the London Medical Database as a search tool.
Collapse
Affiliation(s)
- Mieke M van Haelst
- Molecular Medicine Unit, Institute of Child Health, London, United Kingdom
| | | | | | | |
Collapse
|
18
|
Li C, Marles SL, Greenberg CR, Chodirker BN, van de Kamp J, Slavotinek A, Chudley AE. Manitoba Oculotrichoanal (MOTA) syndrome: report of eight new cases. Am J Med Genet A 2007; 143A:853-7. [PMID: 17352387 DOI: 10.1002/ajmg.a.31446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Manitoba Oculotrichoanal (MOTA) syndrome was initially described by Marles et al. [1992; Am J Med Genet 42: 793-799] in Aboriginal patients of the Island Lake region of Northern Manitoba. Characteristic findings in affected patients included unilateral upper eyelid coloboma or cryptophthalmus with ipsilateral aberrant anterior hairline pattern and anal anomalies. We describe here seven new patients of the same extended kindred of Cree/Ojibway ethnicity of the Island Lake region and an eighth patient of Caucasian Dutch parents with clinical findings consistent with the diagnosis of MOTA syndrome. Two of the patients have bilateral, instead of unilateral, abnormal anterior hairline patterns. Omphalocele, a feature previously not identified, is present in three of them. The most consistent features appear to be hypertelorism and a broad or notched tip of the nose. Due to the obvious clinical overlap with Fraser syndrome, FRAS1 gene was screened in two of the affected and no mutation was found [Slavotinek et al., submitted].
Collapse
Affiliation(s)
- Chumei Li
- Genetics and Metabolism Program, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Slavotinek A, Li C, Sherr EH, Chudley AE. Mutation analysis of theFRAS1 gene demonstrates new mutations in a propositus with Fraser syndrome. Am J Med Genet A 2006; 140:1909-14. [PMID: 16894541 DOI: 10.1002/ajmg.a.31399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fraser syndrome (OMIM 219000) is a rare, autosomal recessive condition with classical features of cryptophthalmos, syndactyly, ambiguous genitalia, laryngeal, and genitourinary malformations, oral clefting and mental retardation. Mutations causing loss of function of the FRAS1 gene have been demonstrated in five patients with Fraser syndrome. However, no phenotype-genotype correlation was established and there was evidence for genetic heterogeneity. Fraser syndrome is rare and the FRAS1 gene has 75 exons, complicating mutation screening in affected patients. We have screened two patients who fulfilled the diagnostic criteria for Fraser syndrome and three patients with related phenotypes (two patients with Manitoba oculotrichoanal syndrome and one patient with unilateral cryptophthalmos and labial fusion) for mutations in FRAS1 to increase the molecular genetic data in patients with Fraser syndrome and related conditions. We report two new mutations in a patient with Fraser syndrome, a frameshift mutation and a deletion of two amino acids that we consider pathogenic as both alter the NG2-like domain of the protein. Although we are still unable to clarify a phenotype-genotype relationship in Fraser syndrome, our data add to the list of mutations associated with this syndrome.
Collapse
Affiliation(s)
- A Slavotinek
- Department of Pediatrics, Division of Clinical Genetics, University of California, San Francisco, California 94143-0748, USA.
| | | | | | | |
Collapse
|
20
|
Slavotinek AM, Tifft CJ. Fraser syndrome and cryptophthalmos: review of the diagnostic criteria and evidence for phenotypic modules in complex malformation syndromes. J Med Genet 2002; 39:623-33. [PMID: 12205104 PMCID: PMC1735240 DOI: 10.1136/jmg.39.9.623] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fraser syndrome is characterised by cryptophthalmos, cutaneous syndactyly, malformations of the larynx and genitourinary tract, craniofacial dysmorphism, orofacial clefting, mental retardation, and musculoskeletal anomalies. The inheritance is autosomal recessive. No diagnostic cytogenetic abnormalities have been documented in affected patients, and no molecular genetic studies have been reported. We have reviewed 117 cases diagnosed as Fraser syndrome or cryptophthalmos published since the comprehensive review of Thomas et al in 1986 in order to validate the published diagnostic criteria and to delineate the phenotype associated with this syndrome. Our series showed more females (57/117) than males and consanguinity was present in 29/119 (24.8%). Eighty-eight patients satisfied the diagnostic criteria for Fraser syndrome (75%). Cryptophthalmos was present in 103/117 (88%), syndactyly in 72/117 (61.5%), and ambiguous genitalia in 20/117 (17.1%). Ear malformations were recorded in 69/117 (59%), and renal agenesis in 53/117 (45.3%). Use of the published diagnostic criteria excluded several patients with cryptophthalmos and one or more physical feature(s) consistent with Fraser syndrome. The frequency of additional anomalies in our series was also higher than previously reported (for example, imperforate anus or anal stenosis were found in 34/117 (29%) compared with 2/124 (2%) in the series of Thomas et al (1986) and choanal stenosis or atresia was present in 7/117 (6%) compared to 0/124. These findings emphasise the clinical variability associated with Fraser syndrome and support genetic heterogeneity of the syndrome. We also noted patterns of anomalies (for example, bicornuate uterus with imperforate anus or anal stenosis and renal malformations) that are found in other syndromes and associations without cryptophthalmos, suggesting that common modifier genes may explain some of the phenotypic variation in Fraser syndrome.
Collapse
Affiliation(s)
- A M Slavotinek
- National Human Genome Research Institute, National Institutes of Health, Bldg 49, Room 4B75, 49 Convent Drive, Bethesda, MD 20892-4472, USA.
| | | |
Collapse
|
21
|
Al-Gazali LI, Bakir M, Hamud OA, Gerami S. An autosomal recessive syndrome of nasal anomalies associated with renal and anorectal malformations. Clin Dysmorphol 2002; 11:33-8. [PMID: 11822703 DOI: 10.1097/00019605-200201000-00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report a consanguineous Arab family with four children affected with bifid nose associated with renal agenesis and variable degree of anorectal malformations. We suggest that the combination of abnormalities in these children represent a previously undescribed autosomal recessive syndrome.
Collapse
Affiliation(s)
- L I Al-Gazali
- Department of Paediatrics, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| | | | | | | |
Collapse
|
22
|
Abstract
Ocular colobomata present diagnostic and therapeutic challenges in patients of all ages, but especially in young children. The "typical" coloboma, caused by defective closure of the fetal fissure, is located in the inferonasal quadrant, and it may affect any part of the globe traversed by the fissure from the iris to the optic nerve. Ocular colobomata are often associated with microphthalmia, and they may be idiopathic or associated with various syndromes. Types and severity of complications vary depending on the location and size of the colobomata. This article reviews the pathogeneses, categorization, genetic bases, differential diagnoses and management of ocular coloboma.
Collapse
Affiliation(s)
- B C Onwochei
- Family Practice Departments of Schenectady Family Health Services and St. Clare's Hospital, Schenectady, NY, USA
| | | | | | | | | |
Collapse
|