1
|
Yuan X, Wang Y, Li X, Zhong S, Zhou D, Lin X, Fang H, Yang Y, Wang M. Loss-of-function mutation in DDX53 associated with hereditary spastic paraplegia-like disorder. J Mol Med (Berl) 2024; 102:913-926. [PMID: 38753040 DOI: 10.1007/s00109-024-02454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
DEAD-box helicase 53 (DDX53) is a member of the DEAD-box protein family of RNA helicases. Unlike other family members that are responsible for RNA metabolism, the biological function of DDX53 and its impact on the human condition are unclear. Herein, we found a full-length DDX53 deletion mutation in a hereditary spastic paraplegia-like (HSP-like) patient with lower extremity spasticity, walking disorder, visual impairment, and lateral ventricular white matter lesions. Bioinformatic analysis revealed that DDX53 was mainly expressed in the cerebellar cortex and may function as a tissue-specific RNA helicase. Transcriptome analysis showed that the expression of multiple brain-associated genes involved in synapse organization, neuron function, and neuromuscular junctions was affected by DDX53 depletion. Moreover, RNA immunoprecipitation sequencing (RIP-seq) analysis showed that DDX53 interacted with 176 genes, and 96 of these genes were associated with the execution of neurofunction, particularly in the regulation of cell projection organization and nervous system development. Collectively, although a more specified cell or animal model is required to fully understand the functional role of DDX53 in the human brain, we report for the first time that the patient with DDX53 defects exhibits HSP-like symptoms and that DDX53 is essential for maintaining neuronal function, with loss-of-function mutation in DDX53 potentially leading to HSP due to impaired RNA metabolism in the nervous system. KEY MESSAGES: DDX53 deficiency was first reported to be associated with HSP disorder. DDX53 exhibited minimal impact on mitochondrial function. DDX53 impaired RNA metabolism in the nervous system.
Collapse
Affiliation(s)
- Xiangshu Yuan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ya Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiyuan Li
- Baylor Genetics, Houston, TX, 77030, USA
| | - Sheng Zhong
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Danyi Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xianlong Lin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Maofeng Wang
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, Zhejiang, China.
| |
Collapse
|
2
|
Sotiriou S, Samara AA, Anastasakis E, Zikopoulos A, Papoulidis I, Manolakos E, Pavlidou E, Skentou C. Prenatal Identification of a Missense Mutation of the L1CAM Gene Associated With Hydrocephalus Using Next-Generation Sequencing. Cureus 2024; 16:e55142. [PMID: 38558627 PMCID: PMC10979761 DOI: 10.7759/cureus.55142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
We present the case of a 35-year-old pregnant woman who visited our department for a routine ultrasonography screening scan for fetus anatomy during the 22nd week of gestation. Our report revealed a male fetus with marked hydrocephalus and severe intrauterine growth retardation. After extensive counseling, the couple decided to proceed with an invasive diagnosis via amniocentesis. The cytogenetic analysis showed findings related to clinical history and ultrasound findings related to the presence of a nucleotide change in c.578T>C with an amino acid change in p.Leu198Pro of the L1CAM gene. The result was reported as a hemizygote missense L1CAM gene variant of unknown significance. After extensive parental counseling, the couple decided on pregnancy termination. We report the present case of L1CAM mutation in p.Leu198Pro to add to the limited knowledge regarding the clinical presentation of mutations of the L1CAM gene with emphasis on prenatal diagnosis.
Collapse
Affiliation(s)
| | - Athina A Samara
- Department of Embryology, University of Thessaly, Larissa, GRC
| | | | | | | | | | - Efterpi Pavlidou
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, GRC
| | - Chara Skentou
- Department of Obstetrics and Gynecology, University of Thessaly, Larissa, GRC
| |
Collapse
|
3
|
Yang YD, Li DZ. Adducted Thumb in the First Trimester of Pregnancy: An Early Clue to Prenatal Diagnosis of L1 Syndrome. J Med Ultrasound 2023; 31:331-333. [PMID: 38264596 PMCID: PMC10802866 DOI: 10.4103/jmu.jmu_43_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2024] Open
Abstract
A pregnant woman was revealed to have an unusual position of the fetal hand by a routine 12-week ultrasound. Bilateral adducted thumbs and a male phenotype were confirmed by another ultrasound at 14 weeks' gestation. A structural survey at 18 weeks revealed fetal hydrocephalus with severe bilateral ventriculomegaly. The pregnancy was terminated, and postnatal examination with trio exome sequencing detected a hemizygous deletion (1,511 bp in size) variant of L1CAM gene in the fetus, inherited from the mother. The fetus was diagnosed as L1 syndrome (X-linked hydrocephalus). A family study found that this was a familial mutant allele. This study demonstrates that fetal hand abnormalities can be identified in the first trimester. Adducted thumbs might indicate the maldevelopment of the fetal brain, and therefore, examination of fetal hands and fingers should be integrated into fetal anomaly scans.
Collapse
Affiliation(s)
- Yan-Dong Yang
- Department of Ultrasound, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Moseley-Alldredge M, Sheoran S, Yoo H, O’Keefe C, Richmond JE, Chen L. A role for the Erk MAPK pathway in modulating SAX-7/L1CAM-dependent locomotion in Caenorhabditis elegans. Genetics 2022; 220:iyab215. [PMID: 34849872 PMCID: PMC9097276 DOI: 10.1093/genetics/iyab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
L1CAMs are immunoglobulin cell adhesion molecules that function in nervous system development and function. Besides being associated with autism and schizophrenia spectrum disorders, impaired L1CAM function also underlies the X-linked L1 syndrome, which encompasses a group of neurological conditions, including spastic paraplegia and congenital hydrocephalus. Studies on vertebrate and invertebrate L1CAMs established conserved roles that include axon guidance, dendrite morphogenesis, synapse development, and maintenance of neural architecture. We previously identified a genetic interaction between the Caenorhabditis elegans L1CAM encoded by the sax-7 gene and RAB-3, a GTPase that functions in synaptic neurotransmission; rab-3; sax-7 mutant animals exhibit synthetic locomotion abnormalities and neuronal dysfunction. Here, we show that this synergism also occurs when loss of SAX-7 is combined with mutants of other genes encoding key players of the synaptic vesicle (SV) cycle. In contrast, sax-7 does not interact with genes that function in synaptogenesis. These findings suggest a postdevelopmental role for sax-7 in the regulation of synaptic activity. To assess this possibility, we conducted electrophysiological recordings and ultrastructural analyses at neuromuscular junctions; these analyses did not reveal obvious synaptic abnormalities. Lastly, based on a forward genetic screen for suppressors of the rab-3; sax-7 synthetic phenotypes, we determined that mutants in the ERK Mitogen-activated Protein Kinase (MAPK) pathway can suppress the rab-3; sax-7 locomotion defects. Moreover, we established that Erk signaling acts in a subset of cholinergic neurons in the head to promote coordinated locomotion. In combination, these results suggest a modulatory role for Erk MAPK in L1CAM-dependent locomotion in C. elegans.
Collapse
Affiliation(s)
- Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seema Sheoran
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Hayoung Yoo
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Calvin O’Keefe
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Hemizygous mutations in L1CAM in two unrelated male probands with childhood onset psychosis. Psychiatr Genet 2021; 30:73-82. [PMID: 32404617 DOI: 10.1097/ypg.0000000000000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To identify genes underlying childhood onset psychosis. METHODS Patients with onset of psychosis at age 13 or younger were identified from clinics across England, and they and their parents were exome sequenced and analysed for possible highly penetrant genetic contributors. RESULTS We report two male childhood onset psychosis patients of different ancestries carrying hemizygous very rare possibly damaging missense variants (p.Arg846His and p.Pro145Ser) in the L1CAM gene. L1CAM is an X-linked Mendelian disease gene in which both missense and loss of function variants are associated with syndromic forms of intellectual disability and developmental disorder. CONCLUSIONS This is the first study reporting a possible extension of the phenotype of L1CAM variant carriers to childhood onset psychosis. The family history and presence of other significant rare genetic variants in the patients suggest that there may be genetic interactions modulating the presentation.
Collapse
|
6
|
Etchegaray A, Juarez-Peñalva S, Petracchi F, Igarzabal L. Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus. Childs Nerv Syst 2020; 36:1645-1660. [PMID: 32006096 DOI: 10.1007/s00381-020-04526-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fetal ventriculomegaly (VM) is a frequent finding in prenatal ultrasound. Rather than a proper diagnosis, VM is a sonographic sign, making prenatal counseling a complex and challenging undertaking. VM can range from severe pathologic processes leading to severe neurodevelopmental delay to normal variants. DISCUSSION A growing number of genetic conditions with different pathophysiological mechanisms, inheritance patterns, and long-term prognosis have been associated both to isolated and complex fetal VM. These include chromosomal abnormalities, copy number variants, and several single gene diseases. In this review, we describe some of the most common genetic conditions associated with fetal VM and provide a simplified diagnostic workflow for the clinician.
Collapse
Affiliation(s)
- Adolfo Etchegaray
- Unidad de Medicina Fetal, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina.
| | - Sofia Juarez-Peñalva
- Unidad de Medicina Fetal, Hospital Universitario Austral, Pilar, Buenos Aires, Argentina
| | | | | |
Collapse
|
7
|
Slosarek EL, Schuh AL, Pustova I, Johnson A, Bird J, Johnson M, Frankel EB, Bhattacharya N, Hanna MG, Burke JE, Ruhl DA, Quinney K, Block S, Peotter JL, Chapman ER, Sheets MD, Butcher SE, Stagg SM, Audhya A. Pathogenic TFG Mutations Underlying Hereditary Spastic Paraplegia Impair Secretory Protein Trafficking and Axon Fasciculation. Cell Rep 2020; 24:2248-2260. [PMID: 30157421 PMCID: PMC6152936 DOI: 10.1016/j.celrep.2018.07.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/30/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Length-dependent axonopathy of the corticospinal tract causes lower limb spasticity and is characteristic of several neurological disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis. Mutations in Trk-fused gene (TFG) have been implicated in both diseases, but the pathomechanisms by which these alterations cause neuropathy remain unclear. Here, we biochemically and genetically define the impact of a mutation within the TFG coiled-coil domain, which underlies earlyonset forms of HSP. We find that the TFG (p.R106C) mutation alters compaction of TFG ring complexes, which play a critical role in the export of cargoes from the endoplasmic reticulum (ER). Using CRISPR-mediated genome editing, we engineered human stem cells that express the mutant form of TFG at endogenous levels and identified specific defects in secretion from the ER and axon fasciculation following neuronal differentiation. Together, our data highlight a key role for TFG-mediated protein transport in the pathogenesis of HSP. Slosarek et al. demonstrate that pathological mutations in TFG, which underlie various forms of neurodegenerative disease, impair secretory protein transport from the endoplasmic reticulum and compromise the ability of axons to self-associate. These findings highlight a critical function for the early secretory pathway in neuronal maintenance.
Collapse
Affiliation(s)
- Erin L Slosarek
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Adam Johnson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jennifer Bird
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Matthew Johnson
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - E B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Nilakshee Bhattacharya
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Michael G Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jordan E Burke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Ruhl
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kyle Quinney
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Samuel Block
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Jennifer L Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael D Sheets
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott M Stagg
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL 32306, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, 440 Henry Mall, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Hereditary myelopathies are very diverse genetic disorders, and many of them represent a widespread neurodegenerative process rather than isolated spinal cord dysfunction. This article reviews various types of inherited myelopathies, with emphasis on hereditary spastic paraplegias and spastic ataxias. RECENT FINDINGS The ever-growing number of myelopathy-causing genes and broadening of phenotype-genotype correlations makes the molecular diagnosis of inherited myelopathies a daunting task. This article emphasizes the main phenotypic clusters among inherited myelopathies that can facilitate the diagnostic process. This article focuses on newly identified genetic causes and the most important identifying clinical features that can aid the diagnosis, including the presence of a characteristic age of onset and additional neurologic signs such as leukodystrophy, thin corpus callosum, or amyotrophy. SUMMARY The exclusion of potentially treatable causes of myelopathy remains the most important diagnostic step. Syndromic diagnosis can be supported by molecular diagnosis, but the genetic diagnosis at present does not change the management. Moreover, a negative genetic test does not exclude the diagnosis of a hereditary myelopathy because comprehensive molecular testing is not yet available, and many disease-causing genes remain unknown.
Collapse
|
9
|
Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol 2019; 18:1136-1146. [PMID: 31377012 DOI: 10.1016/s1474-4422(19)30235-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Hereditary spastic paraplegia (HSP) describes a heterogeneous group of genetic neurodegenerative diseases characterised by progressive spasticity of the lower limbs. The pathogenic mechanism, associated clinical features, and imaging abnormalities vary substantially according to the affected gene and differentiating HSP from other genetic diseases associated with spasticity can be challenging. Next generation sequencing-based gene panels are now widely available but have limitations and a molecular diagnosis is not made in most suspected cases. Symptomatic management continues to evolve but with a greater understanding of the pathophysiological basis of individual HSP subtypes there are emerging opportunities to provide targeted molecular therapies and personalised medicine.
Collapse
|
10
|
Otter M, Wevers M, Pisters M, Pfundt R, Vos Y, Nievelstein RJ, Stumpel C. A novel mutation in L1CAM causes a mild form of L1 syndrome: a case report. Clin Case Rep 2017; 5:1213-1217. [PMID: 28781826 PMCID: PMC5538050 DOI: 10.1002/ccr3.1038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/09/2017] [Accepted: 05/13/2017] [Indexed: 11/23/2022] Open
Abstract
Clinical geneticists, neurologists, psychiatrists, and other healthcare providers can learn from this case report that patients with a behavioral phenotype that includes a mild learning disability may also require a thorough examination, including brain MRI and whole‐exome sequencing.
Collapse
Affiliation(s)
- Maarten Otter
- Department of Community Mental Health in Learning Disabilities Trajectum Zutphen The Netherlands.,Forensic Psychiatric Department STEVIG/Dichterbij Oostrum The Netherlands
| | - Marijke Wevers
- Department of Clinical Genetics University Medical Center, Utrecht Utrecht The Netherlands.,Department of Clinical Genetics Radboud University Medical Center Nijmegen The Netherlands
| | - Marline Pisters
- Department of Community Mental Health in Learning Disabilities Trajectum Zutphen The Netherlands.,Present address: †Dr. Leo Kannerhuis Jonkheer Nedermeijer van Rosenthalweg 16 6862 ZV Oosterbeek The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands
| | - Yvonne Vos
- Department of Genetics University Medical Center, Groningen Groningen The Netherlands
| | - Rutger Jan Nievelstein
- Department of Radiology and Nuclear Medicine University Medical Center, Utrecht/Wilhelmina Children's Hospital Utrecht The Netherlands
| | - Constance Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology Maastricht University Medical Center Maastricht The Netherlands
| |
Collapse
|
11
|
McAllister JP, Williams MA, Walker ML, Kestle JRW, Relkin NR, Anderson AM, Gross PH, Browd SR. An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes". J Neurosurg 2015; 123:1427-38. [PMID: 26090833 DOI: 10.3171/2014.12.jns132352] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Building on previous National Institutes of Health-sponsored symposia on hydrocephalus research, "Opportunities for Hydrocephalus Research: Pathways to Better Outcomes" was held in Seattle, Washington, July 9-11, 2012. Plenary sessions were organized into four major themes, each with two subtopics: Causes of Hydrocephalus (Genetics and Pathophysiological Modifications); Diagnosis of Hydrocephalus (Biomarkers and Neuroimaging); Treatment of Hydrocephalus (Bioengineering Advances and Surgical Treatments); and Outcome in Hydrocephalus (Neuropsychological and Neurological). International experts gave plenary talks, and extensive group discussions were held for each of the major themes. The conference emphasized patient-centered care and translational research, with the main objective to arrive at a consensus on priorities in hydrocephalus that have the potential to impact patient care in the next 5 years. The current state of hydrocephalus research and treatment was presented, and the following priorities for research were recommended for each theme. 1) Causes of Hydrocephalus-CSF absorption, production, and related drug therapies; pathogenesis of human hydrocephalus; improved animal and in vitro models of hydrocephalus; developmental and macromolecular transport mechanisms; biomechanical changes in hydrocephalus; and age-dependent mechanisms in the development of hydrocephalus. 2) Diagnosis of Hydrocephalus-implementation of a standardized set of protocols and a shared repository of technical information; prospective studies of multimodal techniques including MRI and CSF biomarkers to test potential pharmacological treatments; and quantitative and cost-effective CSF assessment techniques. 3) Treatment of Hydrocephalus-improved bioengineering efforts to reduce proximal catheter and overall shunt failure; external or implantable diagnostics and support for the biological infrastructure research that informs these efforts; and evidence-based surgical standardization with longitudinal metrics to validate or refute implemented practices, procedures, or tests. 4) Outcome in Hydrocephalus-development of specific, reliable batteries with metrics focused on the hydrocephalic patient; measurements of neurocognitive outcome and quality-of-life measures that are adaptable, trackable across the growth spectrum, and applicable cross-culturally; development of comparison metrics against normal aging and sensitive screening tools to diagnose idiopathic normal pressure hydrocephalus against appropriate normative age-based data; better understanding of the incidence and prevalence of hydrocephalus within both pediatric and adult populations; and comparisons of aging patterns in adults with hydrocephalus against normal aging patterns.
Collapse
Affiliation(s)
- James P McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri
| | - Michael A Williams
- Department of Neurology, The Sandra and Malcolm Berman Brain & Spine Institute and Adult Hydrocephalus Center, Sinai Hospital, Baltimore, Maryland
| | - Marion L Walker
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Medical Center, Salt Lake City, Utah
| | - John R W Kestle
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Medical Center, Salt Lake City, Utah
| | - Norman R Relkin
- Department of Neurology, Weill Cornell Medical College, New York, New York
| | - Amy M Anderson
- Department of Neurosurgery, Seattle Children's Hospital, Seattle, Washington; and
| | | | - Samuel R Browd
- Departments of Neurosurgery and Bioengineering, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | | |
Collapse
|
12
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
13
|
Opperman K, Moseley-Alldredge M, Yochem J, Bell L, Kanayinkal T, Chen L. A novel nondevelopmental role of the sax-7/L1CAM cell adhesion molecule in synaptic regulation in Caenorhabditis elegans. Genetics 2015; 199:497-509. [PMID: 25488979 PMCID: PMC4317657 DOI: 10.1534/genetics.114.169581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023] Open
Abstract
The L1CAM family of cell adhesion molecules is a conserved set of single-pass transmembrane proteins that play diverse roles required for proper nervous system development and function. Mutations in L1CAMs can cause the neurological L1 syndrome and are associated with autism and neuropsychiatric disorders. L1CAM expression in the mature nervous system suggests additional functions besides the well-characterized developmental roles. In this study, we demonstrate that the gene encoding the Caenorhabditis elegans L1CAM, sax-7, genetically interacts with gtl-2, as well as with unc-13 and rab-3, genes that function in neurotransmission. These sax-7 genetic interactions result in synthetic phenotypes that are consistent with abnormal synaptic function. Using an inducible sax-7 expression system and pharmacological reagents that interfere with cholinergic transmission, we uncovered a previously uncharacterized nondevelopmental role for sax-7 that impinges on synaptic function.
Collapse
Affiliation(s)
- Karla Opperman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - John Yochem
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Leslie Bell
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tony Kanayinkal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lihsia Chen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
14
|
Stevenson RE, Schwartz CE, Rogers RC. Malformations among the X-linked intellectual disability syndromes. Am J Med Genet A 2013; 161A:2741-9. [PMID: 24166814 DOI: 10.1002/ajmg.a.36179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/15/2013] [Indexed: 11/08/2022]
Abstract
Malformations are significant contributions to childhood mortality and disability. Their co-occurrence with intellectual disability may compound the health burden, requiring additional evaluation and management measures. Overall, malformations of greater or lesser severity occur in at least some cases of almost half of the 153 XLID syndromes. Genitourinary abnormalities are most common, but tend to contribute little or no health burden and occur in only a minority of cases of a given XLID syndrome. Some malformations (e.g., lissencephaly, hydranencephaly, long bone deficiency, renal agenesis/dysplasia) are not amenable to medical or surgical intervention; others (e.g., hydrocephaly, facial clefting, cardiac malformations, hypospadias) may be substantially corrected.
Collapse
|
15
|
Verhagen J, Schrander-Stumpel C, Blezer M, Weber J, Schrander J, Rubio-Gozalbo M, Bakker J, Stegmann A, Vos Y, Frints S. Adducted thumbs: A clinical clue to genetic diagnosis. Eur J Med Genet 2013; 56:153-8. [PMID: 23220544 DOI: 10.1016/j.ejmg.2012.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
|
16
|
Tapanes-Castillo A, Weaver EJ, Smith RP, Kamei Y, Caspary T, Hamilton-Nelson KL, Slifer SH, Martin ER, Bixby JL, Lemmon VP. A modifier locus on chromosome 5 contributes to L1 cell adhesion molecule X-linked hydrocephalus in mice. Neurogenetics 2010; 11:53-71. [PMID: 19565280 PMCID: PMC2863031 DOI: 10.1007/s10048-009-0203-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/08/2009] [Indexed: 12/25/2022]
Abstract
Humans with L1 cell adhesion molecule (L1CAM) mutations exhibit X-linked hydrocephalus, as well as other severe neurological disorders. L1-6D mutant mice, which are homozygous for a deletion that removes the sixth immunoglobulin-like domain of L1cam, seldom display hydrocephalus on the 129/Sv background. However, the same L1-6D mutation produces severe hydrocephalus on the C57BL/6J background. To begin to understand how L1cam deficiencies result in hydrocephalus and to identify modifier loci that contribute to X-linked hydrocephalus by genetically interacting with L1cam, we conducted a genome-wide scan on F2 L1-6D mice, bred from L1-6D 129S2/SvPasCrlf and C57BL/6J mice. Linkage studies, utilizing chi-square tests and quantitative trait loci mapping techniques, were performed. Candidate modifier loci were further investigated in an extension study. Linkage was confirmed for a locus on chromosome 5, which we named L1cam hydrocephalus modifier 1 (L1hydro1), p = 4.04 X 10(-11).
Collapse
Affiliation(s)
- Alexis Tapanes-Castillo
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Eli J. Weaver
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA, Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
| | - Robin P. Smith
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA, Neuroscience Program, University of Miami, Miami, FL, USA
| | - Yoshimasa Kamei
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Kara L. Hamilton-Nelson
- Dr. John T. MacDonald Foundation, Department of Human Genetics, Miami Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Susan H. Slifer
- Dr. John T. MacDonald Foundation, Department of Human Genetics, Miami Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Eden R. Martin
- Dr. John T. MacDonald Foundation, Department of Human Genetics, Miami Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - John L. Bixby
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA, Neuroscience Program, University of Miami, Miami, FL, USA, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA, Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vance P. Lemmon
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Lois Pope LIFE Center, Room 4-16, 1095 NW 14th Terrace, Miami, FL 33136, USA, Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA, Neuroscience Program, University of Miami, Miami, FL, USA, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
17
|
Akute Verhaltensstörung bei einem Patienten mit Verdacht auf X-chromosomal hereditären Normaldruckhydrozephalus. Wien Med Wochenschr 2009; 159:62-4. [DOI: 10.1007/s10354-008-0584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
|
18
|
Saillour Y, Zanni G, Des Portes V, Heron D, Guibaud L, Iba-Zizen MT, Pedespan JL, Poirier K, Castelnau L, Julien C, Franconnet C, Bonthron D, Porteous ME, Chelly J, Bienvenu T. Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. J Med Genet 2007; 44:739-44. [PMID: 17617514 PMCID: PMC2752185 DOI: 10.1136/jmg.2007.051334] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fried syndrome, first described in 1972, is a rare X-linked mental retardation that has been mapped by linkage to Xp22. Clinical characteristics include mental retardation, mild facial dysmorphism, calcifications of basal ganglia and hydrocephalus. A large four-generation family in which the affected males have striking clinical features of Fried syndrome were investigated for linkage to X-chromosome markers; the results showed that the gene for this condition lies within the interval DXS7109-DXS7593 in Xp22.2. In total, 60 candidate genes located in this region, including AP1S2, which was recently shown to be involved in mental retardation, were screened for mutations. A mutation in the third intron of AP1S2 was found in all affected male subjects in this large French family. The mutation resulted in skipping of exon 3, predicting a protein with three novel amino-acids and with termination at codon 64. In addition, the first known large Scottish family affected by Fried syndrome was reinvestigated, and a new nonsense mutation, p.Gln66X, was found in exon 3. Using CT, both affected patients from the French family who were analysed had marked calcifications of the basal ganglia, as previously observed in the first Scottish family, suggesting that the presence of distinctive basal ganglia calcification is an essential parameter to recognise this syndromic disorder. It may be possible to use this feature to identify families with X-linked mental retardation that should be screened for mutations in AP1S2.
Collapse
|
19
|
Tegay DH, Lane AH, Roohi J, Hatchwell E. Contiguous gene deletion involvingL1CAM andAVPR2 causes X-linked hydrocephalus with nephrogenic diabetes insipidus. Am J Med Genet A 2007; 143A:594-8. [PMID: 17318848 DOI: 10.1002/ajmg.a.31536] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
X-linked hydrocephalus with aqueductal stenosis (HSAS) is caused by mutation or deletion of the L1 cell adhesion molecule gene (L1CAM) at Xq28. Central diabetes insipidus (CDI) can arise as a consequence of resultant hypothalamic dysfunction from hydrocephalus and must be distinguished from nephrogenic diabetes insipidus (NDI) by exogenous vasopressin response. Causes of NDI are heterogeneous and include mutation or deletion of the arginine vasopressin receptor 2 gene (AVPR2), which is located approximately 29 kb telomeric to L1CAM. We identified a patient with both HSAS and NDI where DNA sequencing failure suggested the possibility of a contiguous gene deletion. A 32.7 kb deletion mapping from L1CAM intron1 to AVPR2 exon2 was confirmed. A 90 bp junctional insertion fragment sharing short direct repeat homology with flanking sequences was identified. To our knowledge this is the first reported case of an Xq28 microdeletion involving both L1CAM and AVPR2, defining a new contiguous gene syndrome comprised of HSAS and NDI. Contiguous gene deletion should be considered as a mechanism for all patients presenting with hydrocephalus and NDI.
Collapse
Affiliation(s)
- David H Tegay
- Stony Brook University Hospital, Stony Brook, New York, USA.
| | | | | | | |
Collapse
|
20
|
Sarnat HB. Embryology and malformations of the forebrain commissures. MALFORMATIONS OF THE NERVOUS SYSTEM 2007; 87:67-87. [DOI: 10.1016/s0072-9752(07)87005-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Richards LJ, Plachez C, Ren T. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human. Clin Genet 2005; 66:276-89. [PMID: 15355427 DOI: 10.1111/j.1399-0004.2004.00354.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The development of the corpus callosum depends on a large number of different cellular and molecular mechanisms. These include the formation of midline glial populations, and the expression of specific molecules required to guide callosal axons as they cross the midline. An additional mechanism used by callosal axons from neurons in the neocortex is to grow within the pathway formed by pioneering axons derived from neurons in the cingulate cortex. Data in humans and in mice suggest the possibility that different mechanisms may regulate the development of the corpus callosum across its rostrocaudal and dorsoventral axes. The complex developmental processes required for formation of the corpus callosum may provide some insight into why such a large number of human congenital syndromes are associated with agenesis of this structure.
Collapse
Affiliation(s)
- L J Richards
- The University of Maryland School of Medicine, Department of Anatomy and Neurobiology and Programs in Neuroscience and Membrane Biology, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
22
|
Privitera O, Vessecchia G, Bernasconi B, Bettio D, Stioui S, Giordano G. Prenatal diagnosis of del(9)(p24): a sex reverse case. Prenat Diagn 2005; 25:945-8. [PMID: 16086437 DOI: 10.1002/pd.1250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND We report on a fetus with sex reversal and del(9)(p24) consequent to a malsegregation of a maternal balanced complex translocation involving chromosomes 7, 9 and 11. METHODS Fluorescence in situ hybridization (FISH) was performed in order to verify the presence of the SRY gene and the absence of DMRT1 and DMRT2 genes located in 9p24.3 region and frequently associated with sex reversal. RESULTS AND CONCLUSIONS The prenatal karyotype revealed an unbalanced male fetus. The postmortem examination showed a malformed fetus with female external genitalia. Lack of DMRT1-2 genes established by FISH.
Collapse
Affiliation(s)
- Orsola Privitera
- AO Ospedale Civile di Legnano, Stabilimento di Legnano, UO Laboratorio Analisi-Sezione di Citogenetica
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The retinocollicular projection is a preferred axon guidance pathway for investigating molecular mechanisms of synaptic targeting in the mammalian CNS. Here we identify a previously unrecognized role of the L1 cell adhesion molecule in topographic mapping of retinal ganglion cell (RGC) axons to their targets in the mouse superior colliculus (SC). L1 was transiently expressed on RGC axons during axon growth and targeting. DiI labeling of retinal axons revealed that temporal axons of L1-minus mice bypassed correct target locations in the anterior SC, forming termination zones at incorrect posterior sites, which were often skewed along the mediolateral axis. During development of the retinotopic map L1-minus temporal axons extended across the anteroposterior axis of the SC like wild-type axons but failed to arborize at normal anterior target sites. L1-minus RGC axons exhibited normal crossing at the optic chiasm and fasciculation of the optic nerve. Results suggest that retinal axons require the function of L1 in addition to repellent EphA guidance receptors to achieve proper topographic mapping.
Collapse
|
24
|
Senat MV, Bernard JP, Delezoide A, Saugier-Veber P, Hillion Y, Roume J, Ville Y. Prenatal diagnosis of hydrocephalus-stenosis of the aqueduct of Sylvius by ultrasound in the first trimester of pregnancy. Report of two cases. Prenat Diagn 2001; 21:1129-32. [PMID: 11787037 DOI: 10.1002/pd.184] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrocephalus-stenosis of the acqueduct of Sylvius sequence (HSAS) is characterized by hydrocephalus, macrocephaly, adducted thumbs, spasticity, agenesis of the corpus callosum and mental retardation. X-linked hydrocephalus is known to be due to mutations in the gene coding for the neural cell adhesion molecule L1 (L1-CAM) and diagnosis is made by identification of a mutation in the L1-CAM gene. Prenatal diagnosis of HSAS is usually suggested on ultrasound examination showing hydrocephalus in a male fetus associated with bilateral adducted thumbs. Mutation screening of the L1-CAM gene is indicated when neuropathological examination shows hypoplasia of the corticospinal tract associated with aqueductal stenosis. We report here two cases of HSAS diagnosed within the same family by ultrasound examination in the first trimester of pregnancy when bilateral adducted thumbs were the only early ultrasound marker.
Collapse
Affiliation(s)
- M V Senat
- Department of Obstetric and Gynecology, CHI Poissy, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Courtens W, Vroman S, Vandenhove J, Wiedemann U, Schinzel A. Pre- and perinatal findings in partial trisomy 7q resulting from balanced parental translocations t(7;21) and t(4;7). Prenat Diagn 2001; 21:642-8. [PMID: 11536263 DOI: 10.1002/pd.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on a fetus and a newborn, both with partial trisomy 7q21-->qter due to different familial translocations, t(7;21)(q21.2;p12) and t(4;7)(q35;q21.2). Postmortem examination of the 19-week-old female fetus disclosed dysmorphic features, cleft palate, anomalies of the great vessels, intestinal malrotation and uterus bicornis. The newborn girl revealed a pattern of minor anomalies, cleft palate, cerebellar hypoplasia, and anomalies of pancreas, gall bladder and appendix. The clinical findings in three other reported fetuses with partial trisomy 7q described so far are reviewed. A duplication 7q21-->qter, as found in the propositi, has only been described in 11 patients who all had a concurrent partial monosomy. Patient 1 is particularly interesting since she is, to our knowledge, the first reported case with pure trisomy 7q21/22-->qter. We reviewed the phenotype of the previously described patients, compared it with the propositae, and summarized the clinical features of pure trisomy 7q21/22-->qter.
Collapse
Affiliation(s)
- W Courtens
- Department of Medical Genetics, University Hospital Brugmann, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
26
|
Tinsley CJ, Bennett GW, Mayhew TM, Parker TL. Stereological analysis of regional brain volumes and neuron numbers in rats displaying a spontaneous hydrocephalic condition. Exp Neurol 2001; 168:88-95. [PMID: 11170723 DOI: 10.1006/exnr.2000.7578] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stereological methods were employed to investigate a novel spontaneously occurring brain mutation in an inbred colony of Wistar rats. These mutants displayed changes (enlarged cerebral ventricles and malformed hippocampi) similar to those seen in H-Tx hydrocephalic rats. Mutant and control rats were studied at three postnatal ages: 4, 7, and 13 weeks. Brain weight in the mutant animals was significantly (P < 0.05) increased when compared to age-matched controls. Using systematic random sampling and the Cavalieri principle we estimated the volumes of various brain compartments, including the cerebral ventricles, forebrain, and cerebral cortex. We found that ventricular volume (P < 0.001) and forebrain volume (P < 0.05) were significantly increased in mutant rats when compared to control rats. Total numbers of nucleoli, estimated using the physical fractionator, were obtained for neurons in the cerebral cortex and granule cells in the dentate gyrus. Numbers were not altered significantly in mutant rats. Nor were mean soma volumes as estimated from total volumes and numbers. The changes in brain and ventricle volumes provide quantitative evidence that these animals display a hydrocephalic condition. This condition appears not to compromise cell number or mean soma size in the brain regions examined.
Collapse
Affiliation(s)
- C J Tinsley
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
27
|
Pomili G, Venti Donti G, Alunni Carrozza L, Ardisia C, Servidio F, Hofstra RM, Gilardi G, Donti E. MASA syndrome: ultrasonographic evidence in a male fetus. Prenat Diagn 2000; 20:1012-4. [PMID: 11113917 DOI: 10.1002/1097-0223(200012)20:12<1012::aid-pd963>3.0.co;2-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recent identification of a common etiology among MASA syndrome (McKusick 303300), X-linked hydrocephalus (HSAS) (McKusick 307000) and other related neurological disorders, which had previously been considered distinct nosological entities, allowed us to diagnose MASA syndrome in a male fetus in a primigravida at the 29th week of gestation by sonographic signs of the MASA spectrum such as hydrocephalus and hypoplasia of corpus callosum. Indeed, the evidence of an X-linked neurological disease in the brother and the maternal uncle of the pregnant women enabled us to estimate a 25% risk of a male fetus being an affected hemizygote. The way in which a prenatal diagnosis, based on instrumental procedures, was reached is described since the authors were unable to perform, at the time of the observation, a molecular confirmation which was carried out only after birth.
Collapse
Affiliation(s)
- G Pomili
- Division of Obstetrics and Gynecology, University Hospital, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Katsuragi S, Teraoka K, Ikegami K, Amano K, Yamashita K, Ishizuka K, Miyakawa T. Late onset X-linked hydrocephalus with normal cerebrospinal fluid pressure. Psychiatry Clin Neurosci 2000; 54:487-92. [PMID: 10997867 DOI: 10.1046/j.1440-1819.2000.00740.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A family with X-linked hydrocephalus with normal cerebrospinal fluid (CSF) pressure and in which three brothers and a grandson of case 1, a proband, were affected is reported. The symptoms at onset were epileptic attacks that started in adulthood in the three brothers and at the age of 6 years in the grandson. In the three brothers, from 10 to 27 years after the onset of epileptic episodes, disorganization of intelligence and psychiatric deterioration were gradually noticed by their families. At the same time, they showed occasional urinary incontinence. Brain computed tomography (CT) scans revealed dilatation of the ventricular systems. Based on the results of the measurement of CSF pressure and radioactive-iodinated human serum albumin (RISA)-cysternography, two of the brothers were diagnosed as having normal pressure hydrocephalus (NPH), and they were treated neurosurgically. However, no obvious improvement in clinical symptoms was observed. Although the grandson had shown normal psychomotor development during his early childhood, temporal epilepsy and temper tantrums started at the age of 6 years. Computed tomography-scanning revealed dilatation of the ventricular system similar to the other three cases at the age of 8 years. With the diagnosis of NPH, the patient underwent a shunt operation, which resulted in no obvious effects. As it is reasonable to surmise that the pathological gene would have been transferred via the daughter of the proband to the grandson, it is suggested that the inheritance manner might be X-linked recessive. The cases presented here are different from the cases of hydrocephalus due to stenosis of the aqueduct Sylvius (HSAS) and other types of X-linked hydrocephalus reported previously in terms of the age of onset, course, symptoms, and CT findings. Thus, it is suggested that the present cases might be a new type of X-linked hydrocephalus.
Collapse
Affiliation(s)
- S Katsuragi
- Division of Clinical Research, National Kikuchi Hospital, Kumamoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Goodman BK, Stone K, Coddett JM, Cargile CB, Gurewitsch ED, Blakemore KJ, Stetten G. Molecular cytogenetic analysis and clinical findings in a newborn with prenatally diagnosed rec(7)dup(7q)inv(7)(p22q31.3)pat. Prenat Diagn 1999; 19:1150-6. [PMID: 10590434 DOI: 10.1002/(sici)1097-0223(199912)19:12<1150::aid-pd733>3.0.co;2-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report prenatal and early postnatal findings in a newborn with a partial trisomy of chromosome 7 (7q31.3-qter), arising from meiotic recombination of a paternal pericentric inversion, inv(7)(p22q31.3). The inversion breakpoints were localized and the regions of duplication and deletion were defined by fluorescence in situ hybridization (FISH) analysis using a series of locus-specific and subtelomeric probes. To our knowledge, only three cases involving a recombinant 7 with duplication of 7q have been reported, two of these being first cousins. The clinical findings in our patient included skeletal abnormalities, facial dysmorphism, dilated cerebral ventricles, microretrognathia and short neck. These findings and some aspects of the neonatal course were consistent with the phenotype previously reported for duplication of distal 7q, without associated monosomy for sequences from another chromosome.
Collapse
Affiliation(s)
- B K Goodman
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2501, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice. J Neurosci 1999. [PMID: 10366625 DOI: 10.1523/jneurosci.19-12-04907.1999] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In humans, mutations in the L1 cell adhesion molecule are associated with a neurological syndrome termed CRASH, which includes corpus callosum agenesis, mental retardation, adducted thumbs, spasticity, and hydrocephalus. A mouse model with a null mutation in the L1 gene (Cohen et al., 1997) was analyzed for brain abnormalities by Nissl and Golgi staining and immunocytochemistry. In the motor, somatosensory, and visual cortex, many pyramidal neurons in layer V exhibited undulating apical dendrites that did not reach layer I. The hippocampus of L1 mutant mice was smaller than normal, with fewer pyramidal and granule cells. The corpus callosum of L1-minus mice was reduced in size because of the failure of many callosal axons to cross the midline. Enlarged ventricles and septal abnormalities were also features of the mutant mouse brain. Immunoperoxidase staining showed that L1 was abundant in developing neurons at embryonic day 18 (E18) in wild-type cerebral cortex, hippocampus, and corpus callosum and then declined to low levels with maturation. In the E18 cortex, L1 colocalized with microtubule-associated protein 2, a marker of dendrites and somata. These new findings suggest new roles for L1 in the mechanism of cortical dendrite differentiation, as well as in guidance of callosal axons and regulation of hippocampal development. The phenotype of the L1 mutant mouse indicates that it is a potentially valuable model for the human CRASH syndrome.
Collapse
|
31
|
Fransen E, Van Camp G, D'Hooge R, Vits L, Willems PJ. Genotype-phenotype correlation in L1 associated diseases. J Med Genet 1998; 35:399-404. [PMID: 9610803 PMCID: PMC1051314 DOI: 10.1136/jmg.35.5.399] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The neural cell adhesion molecule L1 (L1CAM) plays a key role during embryonic development of the nervous system and is involved in memory and learning. Mutations in the L1 gene are responsible for four X linked neurological conditions: X linked hydrocephalus (HSAS), MASA syndrome, complicated spastic paraplegia type 1 (SP-1), and X linked agenesis of the corpus callosum. As the clinical picture of these four L1 associated diseases shows considerable overlap and is characterised by Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia, and Hydrocephalus, these conditions have recently been lumped together into the CRASH syndrome. We investigate here whether a genotype-phenotype correlation exists in CRASH syndrome since its clinical spectrum is highly variable and numerous L1 mutations have been described. We found that (1) mutations in the extracellular part of L1 leading to truncation or absence of L1 cause a severe phenotype, (2) mutations in the cytoplasmic domain of L1 give rise to a milder phenotype than extracellular mutations, and (3) extracellular missense mutations affecting amino acids situated on the surface of a domain cause a milder phenotype than those affecting amino acids buried in the core of the domain.
Collapse
Affiliation(s)
- E Fransen
- Department of Medical Genetics, University of Antwerp, Belgium
| | | | | | | | | |
Collapse
|
32
|
Dahme M, Bartsch U, Martini R, Anliker B, Schachner M, Mantei N. Disruption of the mouse L1 gene leads to malformations of the nervous system. Nat Genet 1997; 17:346-9. [PMID: 9354804 DOI: 10.1038/ng1197-346] [Citation(s) in RCA: 352] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The adhesion molecule L1 is a member of the immunoglobulin superfamily. L1 is involved in various recognition processes in the CNS and PNS, and binding to L1 can activate signal transduction pathways. Mutations in the human L1 gene are associated with a variable phenotype, including mental retardation and anomalous development of the nervous system, referred to as 'CRASH' (corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraplegia, and hydrocephalus). We generated an animal model of these conditions by gene targetting. Mutant mice were smaller than wild-type and were less sensitive to touch and pain, and their hind-legs appeared weak and uncoordinated. The size of the corticospinal tract was reduced and, depending on genetic background, the lateral ventricles were often enlarged. Non-myelinating Schwann cells formed processes not associated with axons and showed reduced association with axons. In vitro, neurite outgrowth on an L1 substrate and fasciculation were impaired. The mutant mouse described here will help to elucidate the functions of L1 in the nervous system and how these depend on genetic influences.
Collapse
Affiliation(s)
- M Dahme
- Department of Neurobiology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Gu SM, Orth U, Zankl M, Schröder J, Gal A. Molecular analysis of the L1CAM gene in patients with X-linked hydrocephalus demonstrates eight novel mutations and suggests non-allelic heterogeneity of the trait. AMERICAN JOURNAL OF MEDICAL GENETICS 1997; 71:336-40. [PMID: 9268105 DOI: 10.1002/(sici)1096-8628(19970822)71:3<336::aid-ajmg15>3.0.co;2-l] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eight novel mutations were identified in the gene encoding L1CAM, a neural cell adhesion protein, in patients/families with X-linked hydrocephalus (XHC) providing additional evidence for extreme allelic heterogeneity of the trait. The two nonsense mutations (Gln440Ter and Gln1042Ter) result most likely in functional null-alleles and complete absence of L1CAM at the cell surface. The four missense mutations (Leu482Pro, Ser542Pro, Met741Thr, and Val752Met) as well as delSer526 may considerably alter the structure of L1CAM. Interestingly, a missense mutation in an XHC family predicting the Val768Ile change in the second fibronectin type III domain of L1CAM was found not only in the two affected cousins and their obligate carrier mothers but also in two unaffected male relatives of the patients. Several possible explanations of this finding are discussed; the most likely being that Val768Ile is a rare non-pathogenic variant. If this were indeed the case, our data suggest that the XHC in this family is not due to a mutation of the L1CAM gene, i.e., that, in addition to the extreme allelic heterogeneity of XHC, a non-allelic form of genetic heterogeneity may also exist in this trait.
Collapse
Affiliation(s)
- S M Gu
- Institut für Humangenetik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | | | |
Collapse
|
34
|
Fink JM, Dobyns WB, Guerrini R, Hirsch BA. Identification of a duplication of Xq28 associated with bilateral periventricular nodular heterotopia. Am J Hum Genet 1997; 61:379-87. [PMID: 9311743 PMCID: PMC1715887 DOI: 10.1086/514863] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bilateral periventricular nodular heterotopia (BPNH) is a malformation of neuronal migration and is characterized by nodules of heterotopic gray matter lining the lateral ventricles of the brain. The majority of BPNH patients are female and have epilepsy as a sole clinical manifestation of their disease. Familial BPNH has been mapped to Xq28 by linkage analysis. A multiple congenital anomaly-mental retardation syndrome (BPNH/MR) was recently delineated in three unrelated boys with BPNH, cerebellar hypoplasia, severe mental retardation, epilepsy, and syndactyly. High-resolution chromosome analysis revealed a subtle abnormality of Xq28 in one of the boys with BPNH/MR syndrome. FISH with cosmids and YACs from Xq28 further characterized this abnormality as a 2.25-3.25-Mb inverted duplication. No abnormality of Xq28 was detected by G-banding or FISH in the other two boys. These data support the linkage assignment of BPNH to band Xq28 and narrow the critical region to the distal 2.25-3.25 Mb of Xq28.
Collapse
Affiliation(s)
- J M Fink
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
35
|
Strain L, Wright AF, Bonthron DT. Fried syndrome is a distinct X linked mental retardation syndrome mapping to Xp22. J Med Genet 1997; 34:535-40. [PMID: 9222959 PMCID: PMC1050991 DOI: 10.1136/jmg.34.7.535] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In 1972, Fried described a large Scottish family affected by X linked mental retardation (XLMR), hydrocephalus, and mild facial dysmorphism. The phenotype has considerable similarity to the MASA syndrome, which results from mutations of the L1CAM gene in Xq28, and this family has since been assumed to be an example of this condition. We have reinvestigated the family for linkage to X chromosome markers, and obtained additional clinical information on surviving affected subjects. The phenotype in these patients has evolved into a distinctive syndrome, with severe mental retardation (MR), spastic diplegia, ventricular dilatation, and calcification of the basal ganglia. Linkage to Xq28 markers has been excluded, suggesting that Fried syndrome is not allelic with MASA syndrome. Two point and multipoint linkage analysis indicates that the gene for this condition lies within the interval KAL-DXS989 in Xp22. We propose the designation Fried syndrome to emphasise the disorder's distinctive phenotype.
Collapse
Affiliation(s)
- L Strain
- University of Edinburgh Human Genetics Unit, Western General Hospital, UK
| | | | | |
Collapse
|
36
|
Okamoto N, Wada Y, Kawabata H, Ishikiriyama S, Takahashi S. A novel mutation in L1CAM gene in a Japanese patient with X-linked hydrocephalus. THE JAPANESE JOURNAL OF HUMAN GENETICS 1996; 41:431-7. [PMID: 9088116 DOI: 10.1007/bf01876336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
L1CAM is a member of the immunoglobulin gene superfamily of neural adhesion molecule. Abnormality of the L1CAM gene is associated with X-linked recessive form of congenital hydrocephalus (HSAS; hydrocephalus due to congenital stenosis of aqueduct of Sylvius) and some allelic disorders. Four new patients with congenital hydrocephalus consistent with the X-linked type were described. One of them had a novel mutation in the L1CAM gene.
Collapse
Affiliation(s)
- N Okamoto
- Department of Planning and Research, Osaka Medical Center, Japan
| | | | | | | | | |
Collapse
|