1
|
Kovaleva NV, Cotter PD. Factors affecting clinical manifestation of chromosomal imbalance in carriers of segmental autosomal mosaicism: differential impact of gender. J Appl Genet 2022; 63:281-291. [PMID: 34973130 PMCID: PMC8979927 DOI: 10.1007/s13353-021-00673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/03/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022]
Abstract
Mosaicism for unbalanced chromosomal rearrangements segmental mosaicism (SM) is rare, both in patients referred for cytogenetic testing and in prenatal diagnoses. In contrast, in preimplantation embryos SM is a frequent finding and, therefore, is even more challenging. However, there is no consistency among results of published studies on the clinical outcomes of embryos with SM, primarily due to the small number of reported cases. Moreover, there is the problem of predicting the potential for the optimal development of a mosaic embryo to a healthy individual. Therefore, we suggested comparing factors predisposing to favorable and poor prognoses, identified in postnatal and prenatal cohorts of SM carriers, with those obtained from studies on preimplantation embryos. We analyzed 580 published cases of SM including (i) postnatally diagnosed affected carriers, (ii) clinically asymptomatic carriers, (iii) prenatally diagnosed carriers, and (iv) miscarriages. We observed a concordance with preimplantation diagnoses regarding the clinical significance of the extent of mosaicism as well as a predominance of deletions over other types of rearrangements. However, there is no concordance regarding excessive involvement of chromosomes 1, 5, and 9 in unbalanced rearrangements and a preferential involvement of larger chromosomes compared to short ones. Paternal age was not found to be associated with SM in postnatally disease-defined individuals. We have identified maternal age and preferential involvement of chromosome 18 in rearrangements associated with clinical manifestations. Male predominance was found among normal pregnancy outcomes and among disease-defined carriers of rearrangements resulting in a gain of genomic material. Female predominance was found among abnormal pregnancy outcomes, among disease-defined carriers of loss and gain/loss rearrangements, and among transmitting carriers of gonadal SM, both affected and asymptomatic. According to data obtained from “post-embryo” studies, clinical manifestations of chromosomal imbalance are associated with a high proportion of abnormal cells, female gender, the type of rearrangement and involved chromosome(s), and maternal age. We believe these data are instructive in the challenging medical genetic counseling of parents faced with no option other than transfer of an embryo with segmental mosaicism.
Collapse
Affiliation(s)
- Natalia V Kovaleva
- Academy of Molecular Medicine, Mytninskaya str., 12/44, St. Petersburg, 191144, Russian Federation.
| | | |
Collapse
|
2
|
Jansen NA, Braden RO, Srivastava S, Otness EF, Lesca G, Rossi M, Nizon M, Bernier RA, Quelin C, van Haeringen A, Kleefstra T, Wong MMK, Whalen S, Fisher SE, Morgan AT, van Bon BW. Clinical delineation of SETBP1 haploinsufficiency disorder. Eur J Hum Genet 2021; 29:1198-1205. [PMID: 33867525 PMCID: PMC8385049 DOI: 10.1038/s41431-021-00888-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 02/02/2023] Open
Abstract
SETBP1 haploinsufficiency disorder (MIM#616078) is caused by haploinsufficiency of SETBP1 on chromosome 18q12.3, but there has not yet been any systematic evaluation of the major features of this monogenic syndrome, assessing penetrance and expressivity. We describe the first comprehensive study to delineate the associated clinical phenotype, with findings from 34 individuals, including 24 novel cases, all of whom have a SETBP1 loss-of-function variant or single (coding) gene deletion, confirmed by molecular diagnostics. The most commonly reported clinical features included mild motor developmental delay, speech impairment, intellectual disability, hypotonia, vision impairment, attention/concentration deficits, and hyperactivity. Although there is a mild overlap in certain facial features, the disorder does not lead to a distinctive recognizable facial gestalt. As well as providing insight into the clinical spectrum of SETBP1 haploinsufficiency disorder, this reports puts forward care recommendations for patient management.
Collapse
Affiliation(s)
- Nadieh A. Jansen
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ruth O. Braden
- grid.1058.c0000 0000 9442 535XSpeech and Language, Murdoch Children’s Research Institute, Victoria, Australia
| | - Siddharth Srivastava
- grid.38142.3c000000041936754XTranslational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Erin F. Otness
- Deparment of Pediatrics, Texas Children’s Pediatrics Sugar Land, Sugar Land, USA
| | - Gaetan Lesca
- grid.413852.90000 0001 2163 3825Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Massimiliano Rossi
- grid.413852.90000 0001 2163 3825Service de Génétique, Hospices Civils de Lyon, Lyon, France
| | - Mathilde Nizon
- grid.277151.70000 0004 0472 0371CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Raphael A. Bernier
- grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
| | - Chloé Quelin
- grid.411154.40000 0001 2175 0984Service de Genetique Medicale, CLAD Ouest CHU Hôpital Sud, Rennes, France
| | - Arie van Haeringen
- grid.10419.3d0000000089452978Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tjitske Kleefstra
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maggie M. K. Wong
- grid.419550.c0000 0004 0501 3839Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sandra Whalen
- grid.413776.00000 0004 1937 1098Clinical and Medical Genetic Department, Armand Trousseau Hospital, APHP, Paris, France
| | - Simon E. Fisher
- grid.419550.c0000 0004 0501 3839Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Angela T. Morgan
- grid.1058.c0000 0000 9442 535XSpeech and Language, Murdoch Children’s Research Institute, Victoria, Australia ,grid.1008.90000 0001 2179 088XDepartment of Audiology and Speech Pathology, University of Melbourne, Melbourne, Australia
| | - Bregje W. van Bon
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Chen CP, Hsieh CH, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Yang CW, Lee CC, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3 encompassing DTNA, CELF4 and SETBP1. Taiwan J Obstet Gynecol 2017; 56:847-851. [PMID: 29241933 DOI: 10.1016/j.tjog.2017.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of an interstitial deletion of 18q12.1-q12.3. CASE REPORT A 35-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XX,del(18)(q12.1q12.3). The fetal ultrasound was unremarkable. The woman underwent repeat amniocentesis at 20 weeks of gestation. Array comparative genomic hybridization (aCGH) using uncultured amniocytes revealed a 10.76-Mb interstitial deletion 18q12.1-q12.3 or arr 18q12.1q12.3 (31,944,347-42,704,784) × 1.0 encompassing 19 Online Mendelian Inheritance of in Man (OMIM) genes including DTNA, CELF4 and SETBP1. Metaphase fluorescence in situ hybridization analysis on cultured amniocytes confirmed an 18q proximal interstitial deletion. The parental karyotypes were normal. Polymorphic DNA marker analysis determined a paternal origin of the deletion. The pregnancy was subsequently terminated at 24 weeks of gestation, and a 650-g fetus was delivered with characteristic facial dysmorphism. CONCLUSION aCGH analysis and polymorphic DNA marker analysis at amniocentesis are useful for determination of the deleted genes and the parental origin of the de novo deletion, and the acquired information is helpful for genetic counseling.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chih-Heng Hsieh
- Department of Obstetrics and Gynecology, BIN KUN Women's & Children's Hospital, Taoyuan, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Chi Lee
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
4
|
Kovaleva NV, Cotter PD. Mosaicism for structural non-centromeric autosomal rearrangements in disease-defined carriers: sex differences in the rearrangements profile and maternal age distributions. Mol Cytogenet 2017; 10:18. [PMID: 28533817 PMCID: PMC5438540 DOI: 10.1186/s13039-017-0321-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/13/2017] [Indexed: 02/08/2023] Open
Abstract
Background Mosaicism for an autosomal structural rearrangement (Rea) associated with clinical manifestation of chromosomal imbalance is rare. Consequently, there is a lack of basic epidemiological characterization of this kind of mosaicism, such as population rate, cytogenetic profile of Reas involved, maternal age distribution, and sex (male to female) ratio among Rea carriers. The objectives of the present study were: (i) determination of the Rea profile in clinically affected individuals, (ii) comparative analysis of the cytogenetic profile and involvement of single chromosomes to rearrangements in affected and previously reported asymptomatic carriers, (iii) analysis of the male/female ratio in carriers of various types of Rea, and, (iv) examination of parental ages distributions according to carriers’ sex. Results Two hundred and forty six disease-defined cases of mosaicism for autosomal non-centromeric Rea with a normal cell line of known sex were identified from the literature. There was a significant difference in single chromosome involvements compared to structural rearrangements between affected and asymptomatic carriers of unbalanced Rea, p =0.0030. In affected carriers, chromosome 18 was most frequently involved in structural rearrangements (12.6% of 246 instances). The least frequently rearranged were chromosomes 16 and 21 (0.8% and 1.2%, respectively). In asymptomatic carriers, the most frequently rearranged were chromosomes 5 and 21 (13% of 51 instances each). Among carriers of “loss” or “gain/loss” of genomic material, a female predominance was observed (50 M/89 F, different from population ratio of 1.06 at p = 0.0002). Carriers of either “gain” or balanced Rea demonstrated typical male predominance (41 M/30 F and 18 M/16 F), not different from 1.06. Maternal and paternal ages were reported in 129 and in 109 cases, respectively. There was a significant difference in maternal age distribution between male and female carriers, with mean maternal age of 25.2 years vs 28.3 years (p = 0.032). However, there was no difference in paternal age, with mean paternal age of 29.4 in both groups. Conclusion The data suggested that structural rearrangements of certain chromosomes involved in mosaicism may not be tolerated by the embryo, while others have higher survival prospects. Maternal age appears to be a risk factor for somatic mosaicism of structural Rea in female offspring or might cause an adverse effect on male embryo viability. Electronic supplementary material The online version of this article (doi:10.1186/s13039-017-0321-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia V Kovaleva
- Academy of Molecular Medicine, Mytniskaya str. 12/44, St. Petersburg, 191144 Russian Federation
| | - Philip D Cotter
- Department of Pediatrics, University of California San Francisco, San Francisco, CA USA.,ResearchDx Inc., Irvine, CA USA
| |
Collapse
|
5
|
Chen CP, Huang MC, Chen YY, Chern SR, Wu PS, Chen YT, Su JW, Wang W. Prenatal diagnosis of de novo interstitial deletions involving 5q23.1-q23.3 and 18q12.1-q12.3 by array CGH using uncultured amniocytes in a pregnancy with fetal interrupted aortic arch and atrial septal defect. Gene 2013; 531:496-501. [PMID: 24036431 DOI: 10.1016/j.gene.2013.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
We present prenatal diagnosis of de novo interstitial deletions involving 5q23.1-q23.3 and 18q12.1-q12.3 by aCGH using uncultured amniocytes in pregnancy with interrupted aortic arch and atrial septal defect in a fetus. The fetus postnatally manifested facial dysmorphisms and long slender fingers. We discuss the genotype-phenotype correlation and the consequence of haploinsufficiency of FBN2, DTNA and CELF4 in this case.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bui PH, Dorrani N, Wong D, Perens G, Dipple KM, Quintero-Rivera F. First report of a de novo 18q11.2 microdeletion including GATA6 associated with complex congenital heart disease and renal abnormalities. Am J Med Genet A 2013; 161A:1773-8. [PMID: 23696469 DOI: 10.1002/ajmg.a.35974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/19/2013] [Indexed: 11/11/2022]
Abstract
Deletions of the long arm of chromosome 18 have been previously reported in many patients. Most cases involve the more distal regions of the long arm (18q21.1->qter). However, proximal interstitial deletions involving 18q11.2 are extremely rare. Here we report on a 14-month-old female with a 4.7 Mb (19,667,062-24,401,876 hg19) de novo interstitial deletion within chromosomal band 18q11.2, which includes GATA6 and 24 other RefSeq genes. The clinical features of our patient include complex congenital heart defects, a double outlet right ventricle, a subaortic ventricular septal defect, D-malposed great arteries, an atrial septal defect, a dysplastic aortic valve and patent ductus arteriosus. In addition, she had renal anomalies-a duplicated collecting system on the left and mild right hydronephrosis. These heart and renal defects are not reported in other patients with 18q proximal interstitial deletions. Heterozygous point mutations in GATA6, encoding for a zinc finger transcription factor, have been shown to cause congenital heart defects. Given the well-established biological role of GATA6 in cardiac development, a deletion of GATA6 is very likely responsible for our patient's complex congenital heart defects. This is the smallest and most proximal 18q11.2 deletion involving GATA6 that is associated with complex congenital heart disease and renal anomalies.
Collapse
Affiliation(s)
- Peter H Bui
- Department of Pathology, Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
7
|
Sun W, Wagnon JL, Mahaffey CL, Briese M, Ule J, Frankel WN. Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J Physiol 2012; 591:241-55. [PMID: 23090952 DOI: 10.1113/jphysiol.2012.240168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mice deficient for CELF4, a neuronal RNA-binding protein, have a complex seizure disorder that includes both convulsive and non-convulsive seizures, and is dependent upon Celf4 gene dosage and mouse strain background. It was previously shown that Celf4 is expressed predominantly in excitatory neurons, and that deficiency results in abnormal excitatory synaptic neurotransmission. To examine the physiological and molecular basis of this, we studied Celf4-deficient neurons in brain slices. Assessment of intrinsic properties of layer V cortical pyramidal neurons showed that neurons from mutant heterozygotes and homozygotes have a lower action potential (AP) initiation threshold and a larger AP gain when compared with wild-type neurons. Celf4 mutant neurons also demonstrate an increase in persistent sodium current (I(NaP)) and a hyperpolarizing shift in the voltage dependence of activation. As part of a related study, we find that CELF4 directly binds Scn8a mRNA, encoding sodium channel Na(v)1.6, the primary instigator of AP at the axon initial segment (AIS) and the main carrier of I(NaP). In the present study we find that CELF4 deficiency results in a dramatic elevation in the expression of Na(v)1.6 protein at the AIS in both null and heterozygous neurons. Together these results suggest that activation of Na(v)1.6 plays a crucial role in seizure generation in this complex model of neurological disease.
Collapse
Affiliation(s)
- Wenzhi Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA
| | | | | | | | | | | |
Collapse
|
8
|
Bouquillon S, Andrieux J, Landais E, Duban-Bedu B, Boidein F, Lenne B, Vallée L, Leal T, Doco-Fenzy M, Delobel B. A 5.3Mb deletion in chromosome 18q12.3 as the smallest region of overlap in two patients with expressive speech delay. Eur J Med Genet 2011; 54:194-7. [DOI: 10.1016/j.ejmg.2010.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/24/2010] [Indexed: 11/16/2022]
|
9
|
Buysse K, Menten B, Oostra A, Tavernier S, Mortier GR, Speleman F. Delineation of a critical region on chromosome 18 for the del(18)(q12.2q21.1) syndrome. Am J Med Genet A 2008; 146A:1330-4. [DOI: 10.1002/ajmg.a.32267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Cody JD, Sebold C, Malik A, Heard P, Carter E, Crandall A, Soileau B, Semrud-Clikeman M, Cody CM, Hardies LJ, Li J, Lancaster J, Fox PT, Stratton RF, Perry B, Hale DE. Recurrent interstitial deletions of proximal 18q: a new syndrome involving expressive speech delay. Am J Med Genet A 2007; 143A:1181-90. [PMID: 17486614 DOI: 10.1002/ajmg.a.31729] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Most deletions of the long arm of chromosome 18 involve some part of the most distal 30 Mb. We have identified five individuals with cytogenetically diagnosed interstitial deletions that are all proximal to this commonly deleted region. The extent of their deletions was characterized using molecular and molecular cytogenetic techniques. Each participant was assessed under the comprehensive clinical evaluation protocol of the Chromosome 18 Clinical Research Center. Three of the five individuals were found to have apparently identical interstitial deletions between positions of 37.5 and 42.5 Mb (18q12.3-->18q21.1). One individual's deletion was much larger and extended from a more proximal breakpoint position of 23 Mb (18q11.2) to a more distal breakpoint at 43 Mb (18q21.1). The fifth individual had a proximal breakpoint identical to the other three, but a distal breakpoint at 43.5 Mb (18q21.1). The clinical findings were of interest because the three individuals with the smaller deletions lacked major anomalies. All five individuals were developmentally delayed; however, the discrepancy between their expressive and receptive language abilities was striking, with expressive language being much more severely affected. This leads us to hypothesize that there are genes in this region of chromosome 18 that are specific to the neural and motor planning domains necessary for speech. Additionally, this may represent a previously underappreciated syndrome since these children do not have the typical clinical abnormalities that would lead to a chromosome analysis.
Collapse
Affiliation(s)
- Jannine D Cody
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|