1
|
A novel partial duplication in OPHN1, associated with vermis cerebellar hypoplasia, seizures and developmental delay. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Oligophrenin-1 moderates behavioral responses to stress by regulating parvalbumin interneuron activity in the medial prefrontal cortex. Neuron 2021; 109:1636-1656.e8. [PMID: 33831348 DOI: 10.1016/j.neuron.2021.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022]
Abstract
Ample evidence indicates that individuals with intellectual disability (ID) are at increased risk of developing stress-related behavioral problems and mood disorders, yet a mechanistic explanation for such a link remains largely elusive. Here, we focused on characterizing the syndromic ID gene oligophrenin-1 (OPHN1). We find that Ophn1 deficiency in mice markedly enhances helpless/depressive-like behavior in the face of repeated/uncontrollable stress. Strikingly, Ophn1 deletion exclusively in parvalbumin (PV) interneurons in the prelimbic medial prefrontal cortex (PL-mPFC) is sufficient to induce helplessness. This behavioral phenotype is mediated by a diminished excitatory drive onto Ophn1-deficient PL-mPFC PV interneurons, leading to hyperactivity in this region. Importantly, suppressing neuronal activity or RhoA/Rho-kinase signaling in the PL-mPFC reverses helpless behavior. Our results identify OPHN1 as a critical regulator of adaptive behavioral responses to stress and shed light onto the mechanistic links among OPHN1 genetic deficits, mPFC circuit dysfunction, and abnormalities in stress-related behaviors.
Collapse
|
3
|
Bogliş A, Cosma AS, Tripon F, Bãnescu C. Exon 21 deletion in the OPHN1 gene in a family with syndromic X-linked intellectual disability: Case report. Medicine (Baltimore) 2020; 99:e21632. [PMID: 32872024 PMCID: PMC7437857 DOI: 10.1097/md.0000000000021632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The oligophrenin-1 (OPHN1) gene, localized on the X chromosome, is a Rho-GTPase activating protein that is related to syndromic X-linked intellectual disability (XLID). XLID, characterized by brain anomalies, namely cerebellar hypoplasia, specific facial features, and intellectual disability, is produced by different mutations in the OPHN1 gene. PATIENT CONCERNS In this report, we present the clinical and molecular findings of a family affected by a mild XLID due to a deletion in the OPHN1 gene, exon 21, Xq12 region using Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. The clinical features present in the family are a mild developmental delay, behavioral disturbances, facial dysmorphism, pes planus, nystagmus, strabismus, epilepsy, and occipital arachnoid cyst. INTERVENTIONS The MLPA analysis was performed for investigation of the copy number variations within the X chromosome for the family. DIAGNOSIS AND OUTCOME The MLPA analysis detected a deletion in the OPHN1 gene, exon 21 for the proband, and a heterozygous deletion for the probands mother. The deletion of the Xq12 region of maternal origin, including the exon 21 of the OPHN1 gene, confirmed for the probands nephew. LESSONS Our findings emphasize the utility of the MLPA analysis to identify deletions in the OPHN1 gene responsible for syndromic XLID. Therefore, we suggest that MLPA analysis should be performed as an alternative diagnostic test for all patients with a mild intellectual disability associated or not with behavioral disturbances, facial dysmorphism, and brain anomalies.
Collapse
Affiliation(s)
- Alina Bogliş
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Adriana S. Cosma
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
| | - Florin Tripon
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Claudia Bãnescu
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|
4
|
Schwartz TS, Wojcik MH, Pelletier RC, Edward HL, Picker JD, Holm IA, Towne MC, Beggs AH, Agrawal PB. Expanding the phenotypic spectrum associated with OPHN1 variants. Eur J Med Genet 2018; 62:137-143. [PMID: 29960046 DOI: 10.1016/j.ejmg.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Genomic sequencing has allowed for the characterization of new gene-to-disease relationships, as well as the identification of variants in established disease genes in patients who do not fit the classically-described phenotype. This is especially true in rare syndromes where the clinical spectrum is not fully known. After a lengthy and costly diagnostic odyssey, patients with atypical presentations may be left with many questions even after a genetic diagnosis is identified. We present a 22-year old male with hypotonia, developmental delay, seizure disorder, and dysmorphic facial features who enrolled in our rare disease research center at 18 years of age, where exome sequencing revealed a novel, likely pathogenic variant in the OPHN1 gene. Through efforts by the study team and collaborations with the larger genetics community, contacts with other families with OPHN1 variants were eventually made, and outreach by these families expanded the patient network. This partnership between families and researchers facilitated the gathering of phenotypic information, allowing for comparison of clinical presentations among three new patients and those previously reported in the literature. These comparisons found previously unreported commonalities between the newly identified patients, such as the presence of otitis media and the lack of genitourinary abnormalities (i.e. hypoplastic scrotum, microphallus, cryptorchidism), which had been noted to be classic features of patients with OPHN1 variants. As genomic sequencing becomes more common, connecting patients with novel variants in the same gene will facilitate phenotypic analysis and continue to refine the clinical spectrum associated with that gene.
Collapse
Affiliation(s)
- Talia S Schwartz
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Monica H Wojcik
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Renee C Pelletier
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Center for Cancer Risk Assessment, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heather L Edward
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Jonathan D Picker
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Ingrid A Holm
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Meghan C Towne
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Ambry Genetics, Aliso Viejo, CA, USA
| | - Alan H Beggs
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Moortgat S, Lederer D, Deprez M, Buzatu M, Clapuyt P, Boulanger S, Benoit V, Mary S, Guichet A, Ziegler A, Colin E, Bonneau D, Maystadt I. Expanding the phenotypic spectrum associated with OPHN1 mutations: Report of 17 individuals with intellectual disability but no cerebellar hypoplasia. Eur J Med Genet 2018; 61:442-450. [PMID: 29510240 DOI: 10.1016/j.ejmg.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 01/20/2023]
Abstract
Mutations in the oligophrenin 1 gene (OPHN1) have been identified in patients with X-linked intellectual disability (XLID) associated with cerebellar hypoplasia and ventriculomegaly, suggesting it could be a recognizable syndromic intellectual disability (ID). Affected individuals share additional clinical features including speech delay, seizures, strabismus, behavioral difficulties, and slight facial dysmorphism. OPHN1 is located in Xq12 and encodes a Rho-GTPase-activating protein involved in the regulation of the G-protein cycle. Rho protein members play an important role in dendritic growth and in plasticity of excitatory synapses. Here we report on 17 individuals from four unrelated families affected by mild to severe intellectual disability due to OPHN1 mutations without cerebellar anomaly on brain MRI. We describe clinical, genetic and neuroimaging data of affected patients. Among the identified OPHN1 mutations, we report for the first time a missense mutation occurring in a mosaic state. We discuss the intrafamilial clinical variability of the disease and compare our patients with those previously reported. We emphasize the power of next generation techniques (X-exome sequencing, whole-exome sequencing and targeted multi-gene panel) to expand the phenotypic and mutational spectrum of OPHN1-related ID.
Collapse
Affiliation(s)
- Stéphanie Moortgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium.
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Marie Deprez
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium; Département de Neuro-pédiatrie, Clinique Sainte-Elisabeth, Namur, Belgium
| | - Marga Buzatu
- Département de Neuro-pédiatrie, Hôpital Civil Marie Curie, Charleroi, Belgium
| | - Philippe Clapuyt
- Department of Radiology, Pediatric Imaging Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Sébastien Boulanger
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Sandrine Mary
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Agnès Guichet
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Alban Ziegler
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Estelle Colin
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Dominique Bonneau
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| |
Collapse
|
6
|
Abstract
X-linked cerebellar ataxias (XLCA) are an expanding group of genetically heterogeneous and clinically variable conditions characterized by cerebellar dysgenesis (hypoplasia, atrophy, or dysplasia) caused by gene mutations or genomic imbalances on the X chromosome. The neurologic features of XLCA include hypotonia, developmental delay, intellectual disability, ataxia, and other cerebellar signs. Normal cognitive development has also been reported. Cerebellar defects may be isolated or associated with other brain malformations or extraneurologic involvement. More than 20 genes on the X chromosome, mainly encoding for proteins involved in brain development and synaptic function that have been constantly or occasionally associated with a pathologic cerebellar phenotype, and several families with X-linked inheritance have been reported. Given the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiologic and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| |
Collapse
|
7
|
Large in-frame intragenic deletion of OPHN1 in a male patient with a normal intelligence quotient score. Clin Dysmorphol 2017; 26:47-49. [PMID: 27390894 DOI: 10.1097/mcd.0000000000000139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Couser NL, Masood MM, Aylsworth AS, Stevenson RE. Ocular manifestations in the X-linked intellectual disability syndromes. Ophthalmic Genet 2017; 38:401-412. [PMID: 28112979 DOI: 10.1080/13816810.2016.1247459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intellectual disability (ID), a common neurodevelopmental disorder characterized by limitations of both intellectual functioning and adaptive behavior, affects an estimated 1-2% of children. Genetic causes of ID are often accompanied by recognizable syndromal patterns. The vision apparatus is a sensory extension of the brain, and individuals with intellectual disabilities frequently have coexisting abnormalities of ocular structures and the visual pathway system. About one-third of the X-linked intellectual disability (XLID) syndromes have significant eye or ocular adnexa abnormalities that provide important diagnostic clues. Some XLID syndromes (e.g. Aicardi, cerebrooculogenital, Graham anophthalmia, Lenz, Lowe, MIDAS) are widely known for their characteristic ocular manifestations. Nystagmus, optic atrophy, and strabismus are among the more common, nonspecific, ocular manifestations that contribute to neuro-ophthalmological morbidity. Common dysmorphic oculofacial findings include anophthalmia, microphthalmia, hypertelorism, and abnormalities in the configuration or orientation of the palpebral fissures. Four XLID syndromes with major ocular manifestations (incontinentia pigmenti, Goltz, MIDAS, and Aicardi syndromes) are notable because of male lethality and expression occurring predominantly in females. The majority of the genes associated with XLID and ocular manifestations have now been identified.
Collapse
Affiliation(s)
- Natario L Couser
- a Department of Ophthalmology , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA.,b Division of Genetics and Metabolism, Department of Pediatrics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Maheer M Masood
- c University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Arthur S Aylsworth
- b Division of Genetics and Metabolism, Department of Pediatrics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA.,d Department of Genetics , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Roger E Stevenson
- e Greenwood Genetic Center, JC Self Research Institute of Human Genetics , Greenwood , South Carolina , USA
| |
Collapse
|
9
|
Meziane H, Khelfaoui M, Morello N, Hiba B, Calcagno E, Reibel-Foisset S, Selloum M, Chelly J, Humeau Y, Riet F, Zanni G, Herault Y, Bienvenu T, Giustetto M, Billuart P. Fasudil treatment in adult reverses behavioural changes and brain ventricular enlargement in Oligophrenin-1 mouse model of intellectual disability. Hum Mol Genet 2016; 25:2314-2323. [PMID: 27146843 DOI: 10.1093/hmg/ddw102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/17/2016] [Indexed: 01/09/2023] Open
Abstract
Loss of function mutations in human Oligophrenin1 (OPHN1) gene are responsible for syndromic intellectual disability (ID) associated with cerebellar hypoplasia and cerebral ventricles enlargement. Functional studies in rodent models suggest that OPHN1 linked ID is a consequence of abnormal synaptic transmission and shares common pathophysiological mechanisms with other cognitive disorders. Variants of this gene have been also identified in autism spectrum disorder and schizophrenia. The advanced understanding of the mechanisms underlying OPHN1-related ID, allowed us to develop a therapeutic approach targeting the Ras homolog gene family, member A (RHOA) signalling pathway and repurpose Fasudil- a well-tolerated Rho Kinase (ROCK) and Protein Kinase A (PKA) inhibitor- as a treatment of ID. We have previously shown ex-vivo its beneficial effect on synaptic transmission and plasticity in a mouse model of the OPHN1 loss of function. Here, we report that chronic treatment in adult mouse with Fasudil, is able to counteract vertical and horizontal hyperactivities, restores recognition memory and limits the brain ventricular dilatation observed in Ophn1-/y However, deficits in working and spatial memories are partially or not rescued by the treatment. These results highlight the potential of Fasudil treatment in synaptopathies and also the need for multiple therapeutic approaches especially in adult where brain plasticity is reduced.
Collapse
Affiliation(s)
- Hamid Meziane
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Malik Khelfaoui
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, 75014, France Institut interdisciplinaire de neuroscience, CNRS UMR5297, University of Bordeaux, Bordeaux, 33077, France
| | - Noemi Morello
- University of Torino, Department of Neuroscience « Rita Levi Montalcini », National Institute of Neuroscience-Italy, Torino, 10126, Italy
| | - Bassem Hiba
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS, Université de Bordeaux, 33077, Bordeaux, France
| | - Eleonora Calcagno
- University of Torino, Department of Neuroscience « Rita Levi Montalcini », National Institute of Neuroscience-Italy, Torino, 10126, Italy
| | | | - Mohammed Selloum
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Jamel Chelly
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, 75014, France
| | - Yann Humeau
- Institut interdisciplinaire de neuroscience, CNRS UMR5297, University of Bordeaux, Bordeaux, 33077, France
| | - Fabrice Riet
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Ginevra Zanni
- Department of Neurosciences, Laboratory of Molecular Medicine, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Yann Herault
- PHENOMIN, Institut Clinique de la Souris, ICS; GIE CERBM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, UMR7104, INSERM, U964, University of Strasbourg, F-67404 Illkirch-Graffenstaden, France
| | - Thierry Bienvenu
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, 75014, France
| | - Maurizio Giustetto
- University of Torino, Department of Neuroscience « Rita Levi Montalcini », National Institute of Neuroscience-Italy, Torino, 10126, Italy
| | - Pierre Billuart
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris Descartes University, Paris, 75014, France
| |
Collapse
|
10
|
Sousa SB, Ramos F, Garcia P, Pais RP, Paiva C, Beales PL, Moore GE, Saraiva JM, Hennekam RCM. Intellectual disability, coarse face, relative macrocephaly, and cerebellar hypotrophy in two sisters. Am J Med Genet A 2015; 164A:10-4. [PMID: 24501761 DOI: 10.1002/ajmg.a.36235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We report on two Portuguese sisters with a very similar phenotype characterized by severe intellectual disability, absent speech, relative macrocephaly, coarse face, cerebellar hypotrophy, and severe ataxia. Additional common features include increased thickness of the cranial vault, delayed dental eruption, talipes equino-varus, clinodactyly, and camptodactyly of the fifth finger. The older sister has retinal dystrophy and the younger sister has short stature. Their parents are consanguineous. We suggest this condition constitutes a previously unreported autosomal recessive entity.
Collapse
|
11
|
A novel in-frame deletion affecting the BAR domain of OPHN1 in a family with intellectual disability and hippocampal alterations. Eur J Hum Genet 2013; 22:644-51. [PMID: 24105372 DOI: 10.1038/ejhg.2013.216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/13/2022] Open
Abstract
Oligophrenin-1 (OPHN1) is one of at least seven genes located on chromosome X that take part in Rho GTPase-dependent signaling pathways involved in X-linked intellectual disability (XLID). Mutations in OPHN1 were primarily described as an exclusive cause of non-syndromic XLID, but the re-evaluation of the affected individuals using brain imaging displayed fronto-temporal atrophy and cerebellar hypoplasia as neuroanatomical marks. In this study, we describe clinical, genetic and neuroimaging data of a three generation Brazilian XLID family co-segregating a novel intragenic deletion in OPHN1. This deletion results in an in-frame loss of exon 7 at transcription level (c.781_891del; r.487_597del), which is predicted to abolish 37 amino acids from the highly conserved N-terminal BAR domain of OPHN1. cDNA expression analysis demonstrated that the mutant OPHN1 transcript is stable and no abnormal splicing was observed. Features shared by the affected males of this family include neonatal hypotonia, strabismus, prominent root of the nose, deep set eyes, hyperactivity and instability/intolerance to frustration. Cranial MRI scans showed large lateral ventricles, vermis hypoplasia and cystic dilatation of the cisterna magna in all affected males. Interestingly, hippocampal alterations that have not been reported in patients with loss-of-function OPHN1 mutations were found in three affected individuals, suggesting an important function for the BAR domain in the hippocampus. This is the first description of an in-frame deletion within the BAR domain of OPHN1 and could provide new insights into the role of this domain in relation to brain and cognitive development or function.
Collapse
|
12
|
Neuropathological features in a female fetus with OPHN1 deletion and cerebellar hypoplasia. Eur J Med Genet 2013; 56:270-3. [DOI: 10.1016/j.ejmg.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/27/2013] [Indexed: 11/19/2022]
|
13
|
Manto M, Habas C. Ataxies cérébelleuses liées au choromosome X (ACX). LE CERVELET 2013:201-202. [DOI: 10.1007/978-2-8178-0447-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Abstract
Genetic causes of intellectual disability (ID) include mutations in proteins with various functions. However, many of these proteins are enriched in synapses and recent investigations point out their crucial role in the subtle regulation of synaptic activity and dendritic spine morphogenesis. Moreover, in addition to genetic data, functional and animal model studies are providing compelling evidence that supports the emerging unifying synapse-based theory for cognitive deficit. In this review, we highlight ID-related gene products involved in synaptic morphogenesis and function, with a particular focus on the emergent signaling pathways involved in synaptic plasticity whose disruption results in cognitive deficit.
Collapse
|
15
|
Sel S, Kaiser M, Nass N, Trau S, Roepke A, Storsberg J, Hampel U, Paulsen F, Kalinski T. Oligophrenin-1 (Ophn1) is expressed in mouse retinal vessels. Gene Expr Patterns 2012; 12:63-7. [DOI: 10.1016/j.gep.2011.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/18/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
|
16
|
Pirozzi F, Di Raimo FR, Zanni G, Bertini E, Billuart P, Tartaglione T, Tabolacci E, Brancaccio A, Neri G, Chiurazzi P. Insertion of 16 amino acids in the BAR domain of the oligophrenin 1 protein causes mental retardation and cerebellar hypoplasia in an Italian family. Hum Mutat 2011; 32:E2294-307. [PMID: 21796728 DOI: 10.1002/humu.21567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 07/07/2011] [Indexed: 11/10/2022]
Abstract
We observed a three-generation family with two maternal cousins and an uncle affected by mental retardation (MR) with cerebellar hypoplasia. X-linked inheritance and the presence of cerebellar malformation suggested a mutation in the OPHN1 gene. In fact, mutational screening revealed a 2-bp deletion that abolishes a donor splicing site, resulting in the inclusion of the initial 48 nucleotides of intron 7 in the mRNA. This mutation determines the production of a mutant oligophrenin 1 protein with 16 extra amino acids inserted in-frame in the N-terminal BAR (Bin1/amphiphysin/Rvs167) domain. This is the first case of a mutation in OPHN1 that does not result in the production of a truncated protein or in its complete loss. OPHN1 (ARHGAP41) encodes a GTPase-activating (GAP) protein belonging to the GRAF subfamily characterized by an N-terminal BAR domain, followed by a pleckstrin-homology (PH) domain and the GAP domain. GRAF proteins play a role in endocytosis and are supposed to dimerize via their BAR domain, that induces membrane curvature. The extra 16 amino acids cause the insertion of 4.4 turns in the third alpha-helix of the BAR domain and apparently impair the protein function. In fact, the clinical phenotype of these patients is identical to that of patients with loss-of-function mutations.
Collapse
|
17
|
Zanni G, Bertini ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011; 6:24. [PMID: 21569638 PMCID: PMC3115841 DOI: 10.1186/1750-1172-6-24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/15/2011] [Indexed: 12/15/2022] Open
Abstract
X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Molecular Medicine, Departement of Neurosciences, Bambino Gesù ediatric Research Hospital, 4 Piazza S. Onofrio, 00165 Rome, Italy.
| | | |
Collapse
|
18
|
Al-Owain M, Kaya N, Al-Zaidan H, Al-Hashmi N, Al-Bakheet A, Al-Muhaizea M, Chedrawi A, Basran RK, Milunsky A. Novel intragenic deletion in OPHN1 in a family causing XLMR with cerebellar hypoplasia and distinctive facial appearance. Clin Genet 2011; 79:363-70. [DOI: 10.1111/j.1399-0004.2010.01462.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Abstract
How genes contribute to cognition is a perennial question for psychologists and geneticists. In the early 21st century, familial studies, including twin studies, supported the theory that genetic variations contribute to differences in cognition, but have been of little practical use to clinical and educational practitioners as no individual predictions can be made using such data; heritability cannot predict the impact of environmental factors or intervention programs. With the sequencing of animal genomes and the development of molecular genetics, new methodologies have been developed: gene targeting (replacing a functional gene with a neutral gene by homologous recombination), transgenesis (overexpressing one gene or a set of genes from one species in another species), and genome-wide scans and quantitative trait loci mapping (a strategy for identifying chromosomal regions involved in complex traits). Association studies can be performed to find associations between allelic forms and variations in IQ. Genes linked to “normal” variations in cognition have been detected but for the moment such discoveries have had no direct applications in a clinical setting; the number of genes identified as being linked to intellectual impairment has increased rapidly. Links have been reported between chromosomal deletions and triplications and behavioral phenotypes. The identification of mechanisms involved in genetic diseases should have long-term consequences on educational and/or psychological support programs as well as on health care. Psychologists need to keep up to date on advances in research establishing relationships between genetics and intellectual disability and will thus be able to refer children with cognitive impairments to specialized care services.
Collapse
Affiliation(s)
- Michèle Carlier
- Aix Marseille University, France
- CNRS and Institut Universitaire de France, France
| | | |
Collapse
|
20
|
Crespi B, Summers K, Dorus S. Evolutionary genomics of human intellectual disability. Evol Appl 2010; 3:52-63. [PMID: 25567903 PMCID: PMC3352458 DOI: 10.1111/j.1752-4571.2009.00098.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/28/2009] [Indexed: 01/28/2023] Open
Abstract
Previous studies have postulated that X-linked and autosomal genes underlying human intellectual disability may have also mediated the evolution of human cognition. We have conducted the first comprehensive assessment of the extent and patterns of positive Darwinian selection on intellectual disability genes in humans. We report three main findings. First, as noted in some previous reports, intellectual disability genes with primary functions in the central nervous system exhibit a significant concentration to the X chromosome. Second, there was no evidence for a higher incidence of recent positive selection on X-linked than autosomal intellectual disability genes, nor was there a higher incidence of selection on such genes overall, compared to sets of control genes. However, the X-linked intellectual disability genes inferred to be subject to recent positive selection were concentrated in the Rho GTP-ase pathway, a key signaling pathway in neural development and function. Third, among all intellectual disability genes, there was evidence for a higher incidence of recent positive selection on genes involved in DNA repair, but not for genes involved in other functions. These results provide evidence that alterations to genes in the Rho GTP-ase and DNA-repair pathways may play especially-important roles in the evolution of human cognition and vulnerability to genetically-based intellectual disability.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biosciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Kyle Summers
- Department of Biology, East Carolina UniversityGreenville, NC, USA
| | - Steve Dorus
- Department of Biology and Biochemistry, University of BathBath, UK
| |
Collapse
|
21
|
Girard N, Chaumoitre K, Chapon F, Pineau S, Barberet M, Brunel H. Fetal magnetic resonance imaging of acquired and developmental brain anomalies. Semin Perinatol 2009; 33:234-50. [PMID: 19631084 DOI: 10.1053/j.semperi.2009.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During the last decade, increasing interest in magnetic resonance imaging has emerged for the evaluation of fetal abnormalities detected on ultrasound. The advent of single-shot rapid acquisition sequences has greatly facilitated our ability to obtain detailed imaging information of the fetal brain. To date, fetal magnetic resonance imaging has shown to have an important role in the investigation of cerebral abnormalities suspected by sonography, and in the detection of subtle brain anomalies associated with high-risk pregnancies. Magnetic resonance imaging has proved to be a useful adjunct to sonography during the prenatal period of development, especially for the detection of acquired disorders.
Collapse
Affiliation(s)
- Nadine Girard
- Department of Diagnostic and Interventional Neuroradiology, Timone Hospital, Marseille Cedex, France.
| | | | | | | | | | | |
Collapse
|
22
|
Bedeschi MF, Novelli A, Bernardini L, Parazzini C, Bianchi V, Torres B, Natacci F, Giuffrida MG, Ficarazzi P, Dallapiccola B, Lalatta F. Association of syndromic mental retardation with an Xq12q13.1 duplication encompassing the oligophrenin 1 gene. Am J Med Genet A 2008; 146A:1718-24. [PMID: 18512229 DOI: 10.1002/ajmg.a.32365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OPHN1 mutations cause a syndromic form of mental retardation (MR) characterized by cerebellar hypoplasia, early hypotonia, motor and speech delay, with occasional seizures and strabismus. Here we report on a familial chromosome duplication spanning about 800 Kb of Xq12q13.1, associated with MR and a distinctive phenotype in the affected male, but not in his heterozygous mother. The parents were healthy and non-consanguineous with a history of three pregnancies. The first resulted in the birth of a boy with MR, motor impairment and seizures. The second pregnancy was terminated because of trisomy 18. At the time of the third, the first affected boy was analyzed by array-CGH, which revealed a 800 Kb duplication at Xq12q13.1, encompassing three genes, including OPHN1. This mutation was inherited from his healthy mother and was not present in any of the three maternal brothers. To our knowledge this is the first report of a clinical phenotype associated with duplication of Xq12q13.
Collapse
Affiliation(s)
- Maria Francesca Bedeschi
- Clinical Genetics Unit, Fondazione IRCCS, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Madrigal I, Rodríguez-Revenga L, Badenas C, Sánchez A, Milà M. Deletion of the OPHN1 gene detected by aCGH. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2008; 52:190-194. [PMID: 18261018 DOI: 10.1111/j.1365-2788.2007.00997.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
BACKGROUND The oligophrenin 1 gene (OPHN1) is an Rho-GTPase-activating protein involved in the regulation of the G-protein cycle required for dendritic spine morphogenesis. Mutations in this gene are implicated in X-linked mental retardation (XLMR). METHODS We report a deletion spanning exons 21 and 22 of the OPHN1 gene identified by a tiling path X-chromosome array comparative genomic hybridization (CGH) and multiplex ligation-dependent probe amplification, confirmed by polymerase chain reaction (PCR), in a family with four males with intellectual disabilities. RESULTS Patients harbouring mutations in this gene share the same clinical manifestations reinforcing the idea of a syndromic XLMR. The most important neurological findings are cerebellar hypoplasia and ventriculomegaly. CONCLUSIONS We recommend screening of the OPHN1 gene in male patients with XLMR and cerebellar anomalies. This case highlights the value of high-resolution techniques as Multiplex Ligation Probe Amplification (MLPA) and CGH array for a better characterization of copy number changes and suggests that MLPA technology may be very useful for an initial screening of small deletions and duplications in XLMR patients.
Collapse
Affiliation(s)
- I Madrigal
- Biochemistry and Molecular Genetics Department Hospital Clínic and IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Barcelona, Spain
| | | | | | | | | |
Collapse
|
24
|
Froyen G, Van Esch H, Bauters M, Hollanders K, Frints SGM, Vermeesch JR, Devriendt K, Fryns JP, Marynen P. Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes. Hum Mutat 2007; 28:1034-42. [PMID: 17546640 DOI: 10.1002/humu.20564] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A tiling X-chromosome-specific genomic array with a theoretical resolution of 80 kb was developed to screen patients with idiopathic mental retardation (MR) for submicroscopic copy number differences. Four patients with aberrations previously detected at lower resolution were first analyzed. This facilitated delineation of the location and extent of the aberration at high resolution and subsequently, more precise genotype-phenotype analyses. A cohort of 108 patients was screened, 57 of which were suspected of X-linked mental retardation (XLMR), 26 were probands of brother pairs, and 25 were sporadic cases. A total of 15 copy number changes in 14 patients (13%) were detected, which included two deletions and 13 duplications ranging from 0.1 to 2.7 Mb. The aberrations are associated with the phenotype in five patients (4.6%), based on the following criteria: de novo aberration; involvement of a known or candidate X-linked nonsyndromic(syndromic) MR (MRX(S)) gene; segregation with the disease in the family; absence in control individuals; and skewed X-inactivation in carrier females. These include deletions that contain the MRX(S) genes CDKL5, OPHN1, and CASK, and duplications harboring CDKL5, NXF5, MECP2, and GDI1. In addition, seven imbalances were apparent novel polymorphic regions because they do not fulfill the proposed criteria. Taken together, our data strongly suggest that not only deletions but also duplications on the X chromosome contribute to the phenotype more often than expected, supporting the increased gene dosage mechanism for deregulation of normal cognitive development.
Collapse
Affiliation(s)
- Guy Froyen
- Human Genome Laboratory, Department for Molecular and Developmental Genetics, VIB, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wieland I, Weidner C, Ciccone R, Lapi E, McDonald-McGinn D, Kress W, Jakubiczka S, Collmann H, Zuffardi O, Zackai E, Wieacker P. Contiguous gene deletions involving EFNB1, OPHN1, PJA1 and EDA in patients with craniofrontonasal syndrome. Clin Genet 2007; 72:506-16. [PMID: 17941886 DOI: 10.1111/j.1399-0004.2007.00905.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Craniofrontonasal syndrome (CFNS [MIM 304110]) is an X-linked malformation syndrome characterized by craniofrontonasal dysplasia and extracranial manifestations in heterozygous females. In the majority of patients CFNS is caused by mutations in the EFNB1 gene (MIM 300035). We identified three girls with classical CFNS and mild developmental delay harboring de novo deletions of the EFNB1 gene. Applying haplotype analysis, Southern blot hybridization and array-comparative genomic hybridization, deletion of EFNB1 was found to be part of contiguous gene deletions in the patients. In one patient the deletion interval includes the genes for oligophrenin-1 (OPHN1 [MIM 300127]) and praja 1 (PJA1 [MIM 300420]). In the second patient the deletion includes OPHN1, PJA1 and the gene for ectodysplasin A (EDA [MIM 300451]). In the third patient EFNB1 gene deletion may include deletion of regulatory regions 5' of OPHN1. Previously, the OPHN1 gene has been shown to be responsible for recessive X-linked mental retardation. Although it is too early to predict the future cognitive performance of the two infant patients with contiguous gene deletions of OPHN1-EFNB1-PJA1, mild learning disabilities have been recognized in the older, third patient. It is important for genetic counseling to be aware that their male offspring may not only be carriers of CFNS but may also be affected by mental retardation and anhidrotic ectodermal dysplasia.
Collapse
Affiliation(s)
- I Wieland
- Institut für Humangenetik, Otto-von-Guericke-Universität, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Menten B, Buysse K, Vermeulen S, Meersschaut V, Vandesompele J, Ng BL, Carter NP, Mortier GR, Speleman F. Report of a female patient with mental retardation and tall stature due to a chromosomal rearrangement disrupting the OPHN1 gene on Xq12. Eur J Med Genet 2007; 50:446-54. [PMID: 17845870 PMCID: PMC2688819 DOI: 10.1016/j.ejmg.2007.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
We report on a patient with mental retardation, seizures and tall stature with advanced bone age in whom a de novo apparently balanced chromosomal rearrangement 46,XX,t(X;9)(q12;p13.3) was identified. Using array CGH on flow-sorted derivative chromosomes (array painting) and subsequent FISH and qPCR analysis, we mapped and sequenced both breakpoints. The Xq12 breakpoint was located within the gene coding for oligophrenin 1 (OPHN1) whereas the 9p13.3 breakpoint was assigned to a non-coding segment within a gene dense region. Disruption of OPHN1 by the Xq12 breakpoint was considered the major cause of the abnormal phenotype observed in the proband.
Collapse
Affiliation(s)
- Björn Menten
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Madrigal I, Rodríguez-Revenga L, Badenas C, Sánchez A, Martinez F, Fernandez I, Fernández-Burriel M, Fernández-Buriel M, Milà M. MLPA as first screening method for the detection of microduplications and microdeletions in patients with X-linked mental retardation. Genet Med 2007; 9:117-22. [PMID: 17304053 DOI: 10.1097/gim.0b013e318031206e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Routine protocols for the study of mental retardation include karyotype, analysis for fragile X syndrome, and subtelomeric rearrangements. Nevertheless, detection of cryptic rearrangements requires more sensitive techniques. Mutation screening in all known genes responsible for X-linked mental retardation is not feasible, and linkage analysis is sometimes limited. Multiplex ligation probe amplification is a recently developed technique based on the amplification of specific probes that allows relative quantification of 40 to 46 different target DNA sequences in a single reaction. METHODS In the present study, we assessed multiplex ligation probe amplification for the detection of microduplications/microdeletions in 80 male patients with suspicion of X-linked mental retardation. RESULTS We detected four copy number aberrations (5%): three duplications (GDI1, RPS6KA3, and ARHGEF6) and one deletion (OPHN1). All these changes were confirmed by other molecular techniques, and patients were clinically re-evaluated. CONCLUSIONS We strongly recommend the use of multiplex ligation probe amplification as a first screening method for the detection of copy number aberrations in patients with mental retardation because of its cost-effectiveness.
Collapse
Affiliation(s)
- Irene Madrigal
- Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|