1
|
Öztürk Ö, Bagis H, Bolu S. Osteogenesis Imperfecta and Split Foot Malformation due to 7q21.2q21.3 Deletion Including COL1A2, DLX5/6 Genes: Review of the Literature. J Pediatr Genet 2024; 13:69-79. [PMID: 38567169 PMCID: PMC10984717 DOI: 10.1055/s-0041-1736613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Copy number variation in loss of 7q21 is a genetic disorder characterized by split hand/foot malformation, hearing loss, developmental delay, myoclonus, dystonia, joint laxity, and psychiatric disorders. Osteogenesis imperfecta caused by whole gene deletions of COL1A2 is a very rare condition. We report a Turkish girl with ectrodactyly, joint laxity, multiple bone fractures, blue sclera, early teeth decay, mild learning disability, and depression. A copy number variant in loss of 4.8 Mb at chromosome 7 (q21.2q21.3) included the 58 genes including DLX5, DLX6, DYNC1I1, SLC25A13, SGCE, and COL1A2 . They were identified by chromosomal microarray analysis. We compared the findings in our patients with those previously reported. This case report highlights the importance of using microarray to identify the genetic etiology in patients with ectrodactyly and osteogenesis imperfecta.
Collapse
Affiliation(s)
- Özden Öztürk
- Department of Medical Genetics, Medical School of Adiyaman University, Adiyaman, Türkiye
| | - Haydar Bagis
- Department of Medical Genetics, Medical School of Adiyaman University, Adiyaman, Türkiye
| | - Semih Bolu
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical School of Adiyaman University, Adiyaman, Türkiye
| |
Collapse
|
2
|
Bollaert E, de Rocca Serra A, Demoulin JB. The HMG box transcription factor HBP1: a cell cycle inhibitor at the crossroads of cancer signaling pathways. Cell Mol Life Sci 2019; 76:1529-1539. [PMID: 30683982 PMCID: PMC11105191 DOI: 10.1007/s00018-019-03012-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
HMG box protein 1 (HBP1) is a transcription factor and a potent cell cycle inhibitor in normal and cancer cells. HBP1 activates or represses the expression of different cell cycle genes (such as CDKN2A, CDKN1A, and CCND1) through direct DNA binding, cofactor recruitment, chromatin remodeling, or neutralization of other transcription factors. Among these are LEF1, TCF4, and MYC in the WNT/beta-catenin pathway. HBP1 also contributes to oncogenic RAS-induced senescence and terminal cell differentiation. Collectively, these activities suggest a tumor suppressor function. However, HBP1 is not listed among frequently mutated cancer driver genes. Nevertheless, HBP1 expression is lower in several tumor types relative to matched normal tissues. Several micro-RNAs, such as miR-155, miR-17-92, and miR-29a, dampen HBP1 expression in cancer cells of various origins. The phosphatidylinositol-3 kinase (PI3K)/AKT pathway also inhibits HBP1 transcription by preventing FOXO binding to the HBP1 promoter. In addition, AKT directly phosphorylates HBP1, thereby inhibiting its transcriptional activity. Taken together, these findings place HBP1 at the center of a network of micro-RNAs and oncoproteins that control cell proliferation. In this review, we discuss our current understanding of HBP1 function in human physiology and diseases.
Collapse
Affiliation(s)
- Emeline Bollaert
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Audrey de Rocca Serra
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium.
| |
Collapse
|
3
|
Fontana P, Melis D, D'Amico A, Cappuccio G, Auletta G, Vassallo P, Genesio R, Nitsch L, Buffolano W. Sensorineural Hearing Loss in a Patient Affected by Congenital Cytomegalovirus Infection: Is It Useful to Identify Comorbid Pathologies? J Pediatr Genet 2017; 6:181-185. [PMID: 28794912 DOI: 10.1055/s-0037-1599223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Sensorineural hearing loss (SNHL) is a common defect with a multifactorial etiology. Congenital cytomegalovirus infection (cCMV) is the most common infectious cause, and its early detection allows a prompt pharmacological treatment that can improve hearing prognosis. In a consistent percentage of profound SNHL, genetic causes and/or inner ear malformations are involved; their prompt diagnosis might change therapeutic options. This study reports a case of a 3- year-old female patient with symptomatic cCMV infection who also exhibits developmental delay, dysmorphic facial features, bilateral hearing loss, and cochlear incomplete partition, type 2, in 7q21.3 deletion. This deletion includes the genes DLX5 and DLX6 , which could be the candidate genes for the ear malformation named incomplete partition, type 2.
Collapse
Affiliation(s)
- P Fontana
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Naples, Italy
| | - D Melis
- Section of Pediatrics, Department of Translational Medical Sciences, "Federico II" University of Naples, Naples, Italy
| | - A D'Amico
- Section of Diagnostic Imaging, Department of Advanced Biomedical Sciences, "Federico II" University of Naples, Naples, Italy
| | - G Cappuccio
- Section of Pediatrics, Department of Translational Medical Sciences, "Federico II" University of Naples, Naples, Italy
| | - G Auletta
- Department of Neurosciences, "Federico II" University of Naples, Naples, Italy
| | - P Vassallo
- Department of Ophthalmology, "Federico II" University of Naples, Naples, Italy
| | - R Genesio
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Naples, Italy
| | - L Nitsch
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Naples, Italy
| | - W Buffolano
- Section of Pediatrics, Department of Translational Medical Sciences, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
4
|
Sivasankaran A, Srikanth A, Kulshreshtha PS, Anuradha D, Kadandale JS, Samuel CR. Split Hand/Foot Malformation Associated with 7q21.3 Microdeletion: A Case Report. Mol Syndromol 2016; 6:287-96. [PMID: 27022330 DOI: 10.1159/000443708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 11/19/2022] Open
Abstract
Split hand/foot malformation (SHFM) or ectrodactyly is a rare genetic condition affecting limb development. SHFM shows clinical and genetic heterogeneity. It can present as an isolated form or in combination with additional anomalies affecting the long bones (nonsyndromic form) or other organ systems including the craniofacial, genitourinary and ectodermal structures (syndromic ectrodactyly). This study reports a girl with SHFM who also exhibited developmental delay, mild dysmorphic facial features and sensorineural hearing loss. High-resolution banding analysis indicated an interstitial deletion within the 7q21 band. FISH using locus-specific BAC probes confirmed the microdeletion of 7q21.3. Chromosomal microarray analysis also revealed a microdeletion of 1.856 Mb in 7q21.3. However, a larger 8.44-Mb deletion involving bands 7q21.11q21.2 was observed, and the breakpoints were refined. The phenotype and the candidate genes underlying the pathogenesis of this disorder are discussed.
Collapse
Affiliation(s)
- Aswini Sivasankaran
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, India
| | - Ambika Srikanth
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Pooja S Kulshreshtha
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Deenadayalu Anuradha
- Department of Medical Genetics, Institute of Obstetrics and Gynecology, Government Hospital for Women and Children, Madras Medical College, Chennai, India
| | - Jayarama S Kadandale
- Center for Human Genetics, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Chandra R Samuel
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, India
| |
Collapse
|
5
|
Rasmussen MB, Kreiborg S, Jensen P, Bak M, Mang Y, Lodahl M, Budtz-Jørgensen E, Tommerup N, Tranebjærg L, Rendtorff ND. Phenotypic subregions within the split-hand/foot malformation 1 locus. Hum Genet 2016; 135:345-57. [DOI: 10.1007/s00439-016-1635-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/13/2016] [Indexed: 11/29/2022]
|
6
|
Prenatal diagnosis of a 7q21.13q22.1 deletion detected using high-resolution microarray. Obstet Gynecol Sci 2014; 57:318-24. [PMID: 25105107 PMCID: PMC4124095 DOI: 10.5468/ogs.2014.57.4.318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/19/2014] [Accepted: 03/10/2014] [Indexed: 11/08/2022] Open
Abstract
We report a case of de novo 7q interstitial deletion detected by conventional karyotyping and by microarray of amniotic fluid sampled during the prenatal period. A 32-year-old pregnant woman was evaluated at our hospital following detection of increased nuchal translucency at 12 weeks and 5 days of gestation. Conventional karyotyping revealed 46,XX,del(7)(q21q22) in 20 interphase mitotic cells, and high-resolution microarray revealed 12.8 Mb (90,625,014-103,430,901) deletion in the region 7q21.13q22.1. Both parents had normal karyotypes. After birth, the neonate displayed several anomalies, including palatine cleft, upslanted and wide palpebral fissure, low-set ears, micrognathia, microcephaly, ventriculomegaly, subglottic tracheal stenosis, hearing loss, and hand/foot deformities, including brachydactyly, polydactyly, and cutaneous syndactyly. This case study helps explain the phenotype-genotype relationship in patients with 7q21.13q22.1 deletion.
Collapse
|
7
|
Martínez-Jacobo L, Córdova-Fletes C, Ortiz-López R, Rivas F, Saucedo-Carrasco C, Rojas-Martínez A. Delineation of a de novo 7q21.3q31.1 Deletion by CGH-SNP Arrays in a Girl with Multiple Congenital Anomalies Including Severe Glaucoma. Mol Syndromol 2013; 4:285-91. [PMID: 24167464 DOI: 10.1159/000353510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this study, we present a female patient with a constitutional de novo deletion in 7q21.3q31.1 as determined by G-banding and CGH-SNP arrays. She exhibited, among other features, psychomotor retardation, congenital severe bilateral glaucoma, a cleft palate, and heart defect. Microarray assay disclosed a deleted 12.5-Mb region roughly 88 kb downstream the ectrodactyly critical region; thus, the patient's final karyotype was 46,XX.arr 7q21.3q31.1(96,742,140-109,246,085)×1 dn. This girl represents the fourth patient described so far with congenital glaucoma and a deletion encompassing or overlapping the 7q21.3q31.1 region, and confirms the presence of a locus or loci related to such a clinical feature. According to our results, the proneness to ocular defects secondary to 7q intermediate deletions could be caused by co-deletion of TAC1, HBP1, and a small cluster of cytochrome P450 genes (subfamily 3A). This conclusion is supported by their functional roles and expression locations as well as because TAC1 is related to the functional pathway of the MYOC gene whose mutations are linked to glaucoma. Moreover, given that this girl is clinically reminiscent of several phenotypes related to diverse deletions within 7q21q32, our results and observations offer a general overview of the gene content of deletions/phenotypes overlapping 7q21.3q31.1 and confirm that loci distal to DLX genes including the CUX1 gene and potential regulatory elements downstream from DLX5 are unrelated to ectrodactyly.
Collapse
Affiliation(s)
- L Martínez-Jacobo
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Monterrey, Mexico
| | | | | | | | | | | |
Collapse
|
8
|
Carecchio M, Magliozzi M, Copetti M, Ferraris A, Bernardini L, Bonetti M, Defazio G, Edwards MJ, Torrente I, Pellegrini F, Comi C, Bhatia KP, Valente EM. Defining the Epsilon-Sarcoglycan (SGCE) Gene Phenotypic Signature in Myoclonus-Dystonia: A Reappraisal of Genetic Testing Criteria. Mov Disord 2013; 28:787-94. [DOI: 10.1002/mds.25506] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 11/11/2022] Open
Affiliation(s)
- Miryam Carecchio
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London United Kingdom
- Department of Neurology; Amedeo Avogadro University; Novara Italy
| | - Monia Magliozzi
- CSS-Mendel Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Massimiliano Copetti
- Biostatistics Unit; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Alessandro Ferraris
- CSS-Mendel Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Laura Bernardini
- CSS-Mendel Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Monica Bonetti
- CSS-Mendel Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Giovanni Defazio
- Department of Neurosciences and Sensory Organs; School of Motor Sciences; “Aldo Moro” University of Bari; Bari Italy
| | - Mark J. Edwards
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London United Kingdom
| | - Isabella Torrente
- CSS-Mendel Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
| | - Fabio Pellegrini
- Biostatistics Unit; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
- Laboratory of Clinical Epidemiology of Diabetes and Chronic Diseases; Consorzio Mario Negri Sud; Santa Maria Imbaro Italy
| | - Cristoforo Comi
- Department of Neurology; Amedeo Avogadro University; Novara Italy
| | - Kailash P. Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders; UCL Institute of Neurology; London United Kingdom
| | - Enza Maria Valente
- CSS-Mendel Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo Italy
- Department of Medicine and Surgery; University of Salerno; Salerno Italy
| |
Collapse
|
9
|
Frenz DA, Liu W, Cvekl A, Xie Q, Wassef L, Quadro L, Niederreither K, Maconochie M, Shanske A. Retinoid signaling in inner ear development: A "Goldilocks" phenomenon. Am J Med Genet A 2010; 152A:2947-61. [PMID: 21108385 PMCID: PMC3057869 DOI: 10.1002/ajmg.a.33670] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Retinoic acid (RA) is a biologically active derivative of vitamin A that is indispensable for inner ear development. The normal function of RA is achieved only at optimal homeostatic concentrations, with an excess or deficiency in RA leading to inner ear dysmorphogenesis. We present an overview of the role of RA in the developing mammalian inner ear, discussing both how and when RA may act to critically control a program of inner ear development. Molecular mechanisms of otic teratogenicity involving two members of the fibroblast growth factor family, FGF3 and FGF10, and their downstream targets, Dlx5 and Dlx6, are examined under conditions of both RA excess and deficiency. We term the effect of too little or too much RA on FGF/Dlx signaling a Goldilocks phenomenon. We demonstrate that in each case (RA excess, RA deficiency), RA can directly affect FGF3/FGF10 signaling within the otic epithelium, leading to downregulated expression of these essential signaling molecules, which in turn, leads to diminution in Dlx5/Dlx6 expression. Non-cell autonomous affects of the otic epithelium subsequently occur, altering transforming growth factor-beta (TGFβ) expression in the neighboring periotic mesenchyme and serving as a putative explanation for RA-mediated otic capsule defects. We conclude that RA coordinates inner ear morphogenesis by controlling an FGF/Dlx signaling cascade, whose perturbation by deviations in local retinoid concentrations can lead to inner ear dysmorphogenesis.
Collapse
Affiliation(s)
- Dorothy A Frenz
- Department of Otorhinolaryngology Head & Neck Surgery, Albert Einstein College of Medicine, Bronx, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Saugier-Veber P, Doummar D, Barthez MA, Czernecki V, Drouot N, Apartis E, Bürglen L, Frebourg T, Roze E. Myoclonus dystonia plus syndrome due to a novel 7q21 microdeletion. Am J Med Genet A 2010; 152A:1244-9. [PMID: 20425829 DOI: 10.1002/ajmg.a.33369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myoclonus dystonia (M-D) is a rare genetic movement disorder characterized by a combination of myoclonic jerks and dystonia. It is usually due to mutations in the SGCE gene. We report on a patient with a typical M-D syndrome, but also short stature, microcephaly, and mental retardation. Molecular analysis showed no mutations within the SGCE gene but a microdeletion encompassing the SGCE gene in chromosome region 7q21. Array-CGH analysis showed that the deletion spanned approximately 1.88 Mb. We suggest that M-D plus patients with mental retardation, microcephaly, dysmorphism, or short stature, all frequently associated disorders, should be screened for 7q21 microdeletion. By examining previously published cases of mental retardation associated with pure 7q21 deletions, we identified two distinct regions of respectively 455 and 496 kb that are critical for mental retardation and growth retardation. Among the genes located within these regions, LOC253012, also known as HEPACAM2, is a good candidate for both mental retardation and microcephaly.
Collapse
|
11
|
Levy B, Wang D, Ullner PM, Engelstad K, Yang H, Nahum O, Chung WK, De Vivo DC. Uncovering microdeletions in patients with severe Glut-1 deficiency syndrome using SNP oligonucleotide microarray analysis. Mol Genet Metab 2010; 100:129-35. [PMID: 20382060 DOI: 10.1016/j.ymgme.2010.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/12/2010] [Accepted: 03/12/2010] [Indexed: 11/22/2022]
Abstract
Glut-1 facilitates the diffusion of glucose across the blood-brain barrier and is responsible for glucose entry into the brain. Impaired glucose transport across the blood-brain barrier results in Glut-1 deficiency syndrome (Glut-1 DS, OMIM 606777), characterized in its most severe form by infantile seizures, developmental delay, acquired microcephaly, spasticity, ataxia, and hypoglycorrhachia. Approximately 93% of patients with Glut-1 DS have identifiable mutations by sequence analysis in SLC2A1 which localizes to chromosome 1p34.2. In this report, we describe seven severe cases of Glut-1 DS, including a set of identical twins, caused by microdeletions in the SLC2A1 region. These patients were all mutation negative by molecular sequencing. Microdeletions ranged in size from 45Kb to 4.51Mb, and all were identified using high resolution single nucleotide polymorphism (SNP) oligonucleotide microarray analysis (SOMA). Cases with microdeletions 82Kb were not resolvable by FISH. All patients had severe epilepsy, significant cognitive and motor delay, ataxia, and microcephaly. MRI changes, when present, were of greater severity than are typically associated with missense mutations in SLC2A1.
Collapse
Affiliation(s)
- Brynn Levy
- Department of Pathology and Cell Biology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Split hand/foot malformation due to chromosome 7q aberrations(SHFM1): additional support for functional haploinsufficiency as the causative mechanism. Eur J Hum Genet 2009; 17:1432-8. [PMID: 19401716 DOI: 10.1038/ejhg.2009.72] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We report on three patients with split hand/foot malformation type 1 (SHFM1). We detected a deletion in two patients and an inversion in the third, all involving chromosome 7q21q22. We performed conventional chromosomal analysis, array comparative genomic hybridization and fluorescence in situ hybridization. Both deletions included the known genes associated with SHFM1 (DLX5, DLX6 and DSS1), whereas in the third patient one of the inversion break points was located just centromeric to these genes. These observations confirm that haploinsufficiency due to either a simultaneous deletion of these genes or combined downregulation of gene expression due to a disruption in the region between these genes and a control element could be the cause of the syndrome. We review previously reported studies that support this hypothetical mechanism.
Collapse
|
13
|
Bonnet C, Grégoire MJ, Vibert M, Raffo E, Leheup B, Jonveaux P. Cryptic 7q21 and 9p23 deletions in a patient with apparently balanced de novo reciprocal translocation t(7;9)(q21;p23) associated with a dystonia-plus syndrome: paternal deletion of the epsilon-sarcoglycan (SGCE) gene. J Hum Genet 2008; 53:876-885. [DOI: 10.1007/s10038-008-0321-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/27/2008] [Indexed: 12/11/2022]
|
14
|
Marshall CR, Young EJ, Pani AM, Freckmann ML, Lacassie Y, Howald C, Fitzgerald KK, Peippo M, Morris CA, Shane K, Priolo M, Morimoto M, Kondo I, Manguoglu E, Berker-Karauzum S, Edery P, Hobart HH, Mervis CB, Zuffardi O, Reymond A, Kaplan P, Tassabehji M, Gregg RG, Scherer SW, Osborne LR. Infantile spasms is associated with deletion of the MAGI2 gene on chromosome 7q11.23-q21.11. Am J Hum Genet 2008; 83:106-11. [PMID: 18565486 DOI: 10.1016/j.ajhg.2008.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/29/2008] [Accepted: 06/02/2008] [Indexed: 01/14/2023] Open
Abstract
Infantile spasms (IS) is the most severe and common form of epilepsy occurring in the first year of life. At least half of IS cases are idiopathic in origin, with others presumed to arise because of brain insult or malformation. Here, we identify a locus for IS by high-resolution mapping of 7q11.23-q21.1 interstitial deletions in patients. The breakpoints delineate a 500 kb interval within the MAGI2 gene (1.4 Mb in size) that is hemizygously disrupted in 15 of 16 participants with IS or childhood epilepsy, but remains intact in 11 of 12 participants with no seizure history. MAGI2 encodes the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 that interacts with Stargazin, a protein also associated with epilepsy in the stargazer mouse.
Collapse
|
15
|
Aradhya S, Cherry AM. Array-based comparative genomic hybridization: clinical contexts for targeted and whole-genome designs. Genet Med 2007; 9:553-9. [PMID: 17873642 DOI: 10.1097/gim.0b013e318149e354] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Array-based comparative genomic hybridization is ushering in a new standard for analyzing the genome, overcoming the limits of resolution associated with conventional G-banded karyotyping. The first genomic arrays were based on bacterial artificial chromosome clones mapped during the initial phases of the Human Genome Project. These arrays essentially represented multiple fluorescence in situ hybridization assays performed simultaneously. The first arrays featured a targeted design, consisting of hundreds of bacterial artificial chromosome clones limited mostly to genomic regions of known medical significance. Then came whole-genome arrays, which contained bacterial artificial chromosome clones from across the entire genome. More recently, alternative designs based on oligonucleotide probes have been developed, and all these are high-density whole-genome arrays with resolutions between 3 and 35 kb. Certain clinical circumstances are well suited for investigation by targeted arrays, and there are others in which high-resolution whole-genome arrays are necessary. Here we review the differences between the two types of arrays and the clinical contexts for which they are best suited. As array-based comparative genomic hybridization is integrated into diagnostic laboratories and different array designs are used in appropriate clinical contexts, this novel technology will invariably alter the testing paradigm in medical genetics and will lead to the discovery of novel genetic conditions caused by chromosomal anomalies.
Collapse
Affiliation(s)
- Swaroop Aradhya
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA.
| | | |
Collapse
|