1
|
Liehr T, Ziegler M, Person L, Kankel S, Padutsch N, Weise A, Weimer JP, Williams H, Ferreira S, Melo JB, Carreira IM. Small supernumerary marker chromosomes derived from human chromosome 11. Front Genet 2023; 14:1293652. [PMID: 38174048 PMCID: PMC10763568 DOI: 10.3389/fgene.2023.1293652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: With only 39 reported cases in the literature, carriers of a small supernumerary marker chromosome (sSMC) derived from chromosome 11 represent an extremely rare cytogenomic condition. Methods: Herein, we present a review of reported sSMC(11), add 18 previously unpublished cases, and closely review eight cases classified as 'centromere-near partial trisomy 11' and a further four suited cases from DECIPHER. Results and discussion: Based on these data, we deduced the borders of the pericentric regions associated with clinical symptoms into a range of 2.63 and 0.96 Mb for chromosome 11 short (p) and long (q) arms, respectively. In addition, the minimal pericentric region of chromosome 11 without triplo-sensitive genes was narrowed to positions 47.68 and 60.52 Mb (GRCh37). Furthermore, there are apparent differences in the presentation of signs and symptoms in carriers of larger sSMCs derived from chromosome 11 when the partial trisomy is derived from different chromosome arms. However, the number of informative sSMC(11) cases remains low, with overlapping presentation between p- and q-arm-imbalances. In addition, uniparental disomy (UPD) of 'normal' chromosome 11 needs to be considered in the evaluation of sSMC(11) carriers, as imprinting may be an influencing factor, although no such cases have been reported. Comprehensively, prenatal sSMC(11) cases remain a diagnostic and prognostic challenge.
Collapse
Affiliation(s)
- Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Monika Ziegler
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Luisa Person
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Niklas Padutsch
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Jörg Paul Weimer
- Department of Gynecology and Obstetrics, University Hospital of Schleswig-Holstein, University Kiel, Kiel, Germany
| | | | - Susana Ferreira
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Joana B. Melo
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M. Carreira
- Cytogenetics and Genomics Laboratory, CACC, iCBR/CIMAGO, CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Zaki MS, Eid OM, Eid MM, Mohamed AM, Sayed ISM, Abdel-Hamid MS, Abdel-Salam GMH. Bilateral Calcification of Basal Ganglia in a Patient with Duplication of Both 11q13.1q22.1 and 4q35.2 with New Phenotypic Features. Cytogenet Genome Res 2019; 159:130-136. [PMID: 31715598 DOI: 10.1159/000504075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 11/19/2022] Open
Abstract
We report on a female patient who presented with severe intellectual disability and autistic behavior, dysmorphic features, orodental anomalies, and bilateral calcification of basal ganglia. Using a high-density oligonucleotide microarray, we have identified a de novo duplication of 11q13.1q22.1 involving the dosage sensitive genes FGF3 and FGF4, genes related to autosomal dominant disorders KMT5B, GAL, SPTBN2, and LRP5, susceptibility loci SCZD2, SLEH1, and SHANK2, mitochondrial genes NDUFV1, NDUFS8, and TMEM126B, and many loss of function genes, including PHOX2A, CLPB, MED17, B3GNT1, LIPT2, and CLPB. However, the duplication did not involve Ribonuclease H2, subunit C (RNASEH2C) which is considered to be located in the critical region for Aicardi-Goutières syndrome. In combination with the duplication at 11q13.1, a 1.849-Mb heterozygous duplication at 4q35.2 was also identified. Although this duplicated region does not contain causative genes related to brain calcification, the duplication at 4q35 was reported previously in a patient with basal ganglia calcification, coats' like retinopathy, and glomerulosclerosis. Our patient's presentation and genomic findings indicate that duplication of 4q35.2 could be a novel genetic cause of calcification of basal ganglia. Our report also underscores the clinical significance of rearrangements in 11q13.1q22.1 in the pathogenesis of basal ganglia calcification.
Collapse
|
3
|
Lattanzi W, Barba M, Di Pietro L, Boyadjiev SA. Genetic advances in craniosynostosis. Am J Med Genet A 2017; 173:1406-1429. [PMID: 28160402 DOI: 10.1002/ajmg.a.38159] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Craniosynostosis, the premature ossification of one or more skull sutures, is a clinically and genetically heterogeneous congenital anomaly affecting approximately one in 2,500 live births. In most cases, it occurs as an isolated congenital anomaly, that is, nonsyndromic craniosynostosis (NCS), the genetic, and environmental causes of which remain largely unknown. Recent data suggest that, at least some of the midline NCS cases may be explained by two loci inheritance. In approximately 25-30% of patients, craniosynostosis presents as a feature of a genetic syndrome due to chromosomal defects or mutations in genes within interconnected signaling pathways. The aim of this review is to provide a detailed and comprehensive update on the genetic and environmental factors associated with NCS, integrating the scientific findings achieved during the last decade. Focus on the neurodevelopmental, imaging, and treatment aspects of NCS is also provided.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Latium Musculoskeletal Tıssue Bank, Rome, Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorena Di Pietro
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simeon A Boyadjiev
- Division of Genomic Medicine, Department of Pediatrics, Davis Medical Center, University of California, Sacramento, California
| |
Collapse
|
4
|
Mutation Screening of Candidate Genes in Patients with Nonsyndromic Sagittal Craniosynostosis. Plast Reconstr Surg 2016; 137:952-961. [PMID: 26910679 DOI: 10.1097/01.prs.0000479978.75545.ee] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Craniosynostosis is a condition that includes the premature fusion of one or multiple cranial sutures. Among various craniosynostosis forms, sagittal nonsyndromic craniosynostosis is the most prevalent. Although different gene mutations have been identified in some craniosynostosis syndromes, the cause of sagittal nonsyndromic craniosynostosis remains largely unknown. METHODS To screen for candidate genes for sagittal nonsyndromic craniosynostosis, the authors sequenced DNA of 93 sagittal nonsyndromic craniosynostosis patients from a population-based study conducted in Iowa and New York states. FGFR1-3 mutational hotspots and the entire TWIST1, RAB23, and BMP2 coding regions were screened because of their known roles in human nonsyndromic or syndromic sagittal craniosynostosis, expression patterns, and/or animal model studies. RESULTS The authors identified two rare variants in their cohort. A FGFR1 insertion c.730_731insG, which led to a premature stop codon, was predicted to abolish the entire immunoglobulin-like III domain, including the ligand-binding region. A c.439C>G variant was observed in TWIST1 at its highly conserved loop domain in another patient. The patient's mother harbored the same variant and was reported with jaw abnormalities. These two variants were not detected in 116 alleles from unaffected controls or seen in the several databases; however, TWIST1 variant was found in a low frequency of 0.000831 percent in Exome Aggregation Consortium database. CONCLUSIONS The low mutation detection rate indicates that these genes account for only a small proportion of sagittal nonsyndromic craniosynostosis patients. The authors' results add to the perception that sagittal nonsyndromic craniosynostosis is a complex developmental defect with considerable genetic heterogeneity. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, II.
Collapse
|
5
|
Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:429-59. [PMID: 27002187 PMCID: PMC4911263 DOI: 10.1002/wdev.227] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
Craniosynostosis is a condition of complex etiology that always involves the premature fusion of one or multiple cranial sutures and includes various anomalies of the soft and hard tissues of the head. Steady progress in the field has resulted in identifying gene mutations that recurrently cause craniosynostosis. There are now scores of mutations on many genes causally related to craniosynostosis syndromes, though the genetic basis for the majority of nonsyndromic cases is unknown. Identification of these genetic mutations has allowed significant progress in understanding the intrinsic properties of cranial sutures, including mechanisms responsible for normal suture patency and for pathogenesis of premature suture closure. An understanding of morphogenesis of cranial vault sutures is critical to understanding the pathophysiology of craniosynostosis conditions, but the field is now poised to recognize the repeated changes in additional skeletal and soft tissues of the head that typically accompany premature suture closure. We review the research that has brought an understanding of premature suture closure within our reach. We then enumerate the less well-studied, but equally challenging, nonsutural phenotypes of craniosynostosis conditions that are well characterized in available mouse models. We consider craniosynostosis as a complex growth disorder of multiple tissues of the developing head, whose growth is also targeted by identified mutations in ways that are poorly understood. Knowledge gained from studies of humans and mouse models for these conditions underscores the diverse, associated developmental anomalies of the head that contribute to the complex phenotypes of craniosynostosis conditions presenting novel challenges for future research. WIREs Dev Biol 2016, 5:429-459. doi: 10.1002/wdev.227 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kevin Flaherty
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Nandini Singh
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University,
University Park, PA 16802
| |
Collapse
|
6
|
Closing the Gap: Genetic and Genomic Continuum from Syndromic to Nonsyndromic Craniosynostoses. CURRENT GENETIC MEDICINE REPORTS 2014; 2:135-145. [PMID: 26146596 DOI: 10.1007/s40142-014-0042-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Craniosynostosis, a condition that includes the premature fusion of one or multiple cranial sutures, is a relatively common birth defect in humans and the second most common craniofacial anomaly after orofacial clefts. There is a significant clinical variation among different sutural synostoses as well as significant variation within any given single-suture synostosis. Craniosynostosis can be isolated (i.e., nonsyndromic) or occurs as part of a genetic syndrome (e.g., Crouzon, Pfeiffer, Apert, Muenke, and Saethre-Chotzen syndromes). Approximately 85 % of all cases of craniosynostosis are nonsyndromic. Several recent genomic discoveries are elucidating the genetic basis for nonsyndromic cases and implicate the newly identified genes in signaling pathways previously found in syndromic craniosynostosis. Published epidemiologic and phenotypic studies clearly demonstrate that nonsyndromic craniosynostosis is a complex and heterogeneous condition supporting a strong genetic component accompanied by environmental factors that contribute to the pathogenetic network of this birth defect. Large population, rather than single-clinic or hospital-based studies is required with phenotypically homogeneous subsets of patients to further understand the complex genetic, maternal, environmental, and stochastic factors contributing to nonsyndromic craniosynostosis. Learning about these variables is a key in formulating the basis of multidisciplinary and lifelong care for patients with these conditions.
Collapse
|
7
|
Increased FGF3 and FGF4 gene dosage is a risk factor for craniosynostosis. Gene 2014; 534:435-9. [DOI: 10.1016/j.gene.2013.09.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/09/2013] [Accepted: 09/28/2013] [Indexed: 11/19/2022]
|
8
|
Yamamoto T, Matsuo M, Shimada S, Sangu N, Shimojima K, Aso S, Saito K. De novo triplication of 11q12.3 in a patient with developmental delay and distinctive facial features. Mol Cytogenet 2013; 6:15. [PMID: 23552394 PMCID: PMC3626894 DOI: 10.1186/1755-8166-6-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/01/2013] [Indexed: 01/08/2023] Open
Abstract
Background Triplication is a rare chromosomal anomaly. We identified a de novo triplication of 11q12.3 in a patient with developmental delay, distinctive facial features, and others. In the present study, we discuss the mechanism of triplications that are not embedded within duplications and potential genes which may contribute to the phenotype. Results The identified triplication of 11q12.3 was 557 kb long and not embedded within the duplicated regions. The aberrant region was overlapped with the segment reported to be duplicated in 2 other patients. The common phenotypic features in the present patient and the previously reported patient were brain developmental delay, finger abnormalities (including arachnodactuly, camptodactyly, brachydactyly, clinodactyly, and broad thumbs), and preauricular pits. Conclusions Triplications that are not embedded within duplicated regions are rare and sometimes observed as the consequence of non-allelic homologous recombination. The de novo triplication identified in the present study is novel and not embedded within the duplicated region. In the 11q12.3 region, many copy number variations were observed in the database. This may be the trigger of this rare triplication. Because the shortest region of overlap contained 2 candidate genes, STX5 and CHRM1, which show some relevance to neuronal functions, we believe that the genomic copy number gains of these genes may be responsible for the neurological features seen in these patients.
Collapse
Affiliation(s)
- Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Lattanzi W, Bukvic N, Barba M, Tamburrini G, Bernardini C, Michetti F, Di Rocco C. Genetic basis of single-suture synostoses: genes, chromosomes and clinical implications. Childs Nerv Syst 2012; 28:1301-10. [PMID: 22872241 DOI: 10.1007/s00381-012-1781-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Non syndromic craniosynostoses are the most frequent craniofacial malformations worldwide. They represent a wide and heterogeneous group of entities, in which the dysmorphism may occur in a single (simple forms) or in multiple sutures (complex forms). Simple forms present a higher birth prevalence and are classified according to the involved suture and to the corresponding abnormal cranial shape: scaphocephaly (SC; sagittal suture), trigonocephaly (TC; metopic suture), anterior plagiocephaly (unilateral coronal suture), posterior plagiocephaly (unilateral lambdoid suture). They occur commonly as sporadic forms, although a familiar recurrence is sometimes observed, suggesting a mendelian inheritance. The genetic causes of simple craniosynostosis are still largely unknown, as mutations in common craniosynostosis-associated genes and structural chromosomal aberrations have been rarely found in these cases. AIMS This review is intended to dissect comprehensively the state-of-the art on the genetic etiology of single suture craniosynostoses, in the attempt to categorize all known disease-associated genes and chromosomal aberrations. Possible genotype/phenotype correlations are discussed as useful clues towards the definition of optimized clinical management flowcharts.
Collapse
|
10
|
The role of vertebrate models in understanding craniosynostosis. Childs Nerv Syst 2012; 28:1471-81. [PMID: 22872264 DOI: 10.1007/s00381-012-1844-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Craniosynostosis (CS), the premature fusion of cranial sutures, is a relatively common pediatric anomaly, occurring in isolation or as part of a syndrome. A growing number of genes with pathologic mutations have been identified for syndromic and nonsyndromic CS. The study of human sutural material obtained post-operatively is not sufficient to understand the etiology of CS, for which animal models are indispensable. DISCUSSION The similarity of the human and murine calvarial structure, our knowledge of mouse genetics and biology, and ability to manipulate the mouse genome make the mouse the most valuable model organism for CS research. A variety of mouse mutants are available that model specific human CS mutations or have CS phenotypes. These allow characterization of the biochemical and morphological events, often embryonic, which precede suture fusion. Other vertebrate organisms have less functional genetic utility than mice, but the rat, rabbit, chick, zebrafish, and frog provide alternative systems in which to validate or contrast molecular functions relevant to CS.
Collapse
|
11
|
Ziebart T, Draenert FG, Galetzka D, Babaryka G, Schmidseder R, Wagner W, Bartsch O. The original family revisited after 37 years: odontoma–dysphagia syndrome is most likely caused by a microduplication of chromosome 11q13.3, including the FGF3 and FGF4 genes. Clin Oral Investig 2012; 17:123-30. [DOI: 10.1007/s00784-012-0676-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
|
12
|
Manoli I, Golas G, Westbroek W, Vilboux T, Markello TC, Introne W, Maynard D, Pederson B, Tsilou E, Jordan MB, Hart PS, White JG, Gahl WA, Huizing M. Chediak-Higashi syndrome with early developmental delay resulting from paternal heterodisomy of chromosome 1. Am J Med Genet A 2010; 152A:1474-83. [PMID: 20503323 DOI: 10.1002/ajmg.a.33389] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disease characterized by variable oculocutaneous albinism, immunodeficiency, mild bleeding diathesis, and an accelerated lymphoproliferative state. Abnormal lysosome-related organelle membrane function leads to the accumulation of large intracellular vesicles in several cell types, including granulocytes, melanocytes, and platelets. This report describes a severe case of CHS resulting from paternal heterodisomy of chromosome 1, causing homozygosity for the most distal nonsense mutation (p.E3668X, exon 50) reported to date in the LYST/CHS1 gene. The mutation is located in the WD40 region of the CHS1 protein. The patient's fibroblasts expressed no detectable CHS1. Besides manifesting the classical CHS findings, the patient exhibited hypotonia and global developmental delays, raising concerns about other effects of heterodisomy. An interstitial 747 kb duplication on 6q14.2-6q14.3 was identified in the propositus and paternal samples by comparative genomic hybridization. SNP genotyping revealed no additional whole chromosome or segmental isodisomic regions or other dosage variations near the crossover breakpoints on chromosome 1. Unmasking of a separate autosomal recessive cause of developmental delay, or an additive effect of the paternal heterodisomy, could underlie the severity of the phenotype in this patient.
Collapse
Affiliation(s)
- Irini Manoli
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Castori M, Silvestri E, Pedace L, Marseglia G, Tempera A, Antigoni I, Torricelli F, Majore S, Grammatico P. Fontaine-Farriaux syndrome: a recognizable craniosynostosis syndrome with nail, skeletal, abdominal, and central nervous system anomalies. Am J Med Genet A 2009; 149A:2193-9. [PMID: 19731360 DOI: 10.1002/ajmg.a.32763] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Craniosynostosis is an etiologically heterogeneous malformation, which may present as an isolated finding or in association with other anomalies. The concurrence of craniosynostosis together with specific central nervous system, abdominal, genital, and limb malformations defines the Fontaine-Farriaux syndrome, described so far in only two patients. We report on a stillborn who mainly presented severe intrauterine growth retardation, bilateral coronal synostosis, generalized nail hypo/aplasia more evident on the posterior side, tapered digits, mild cutaneous syndactyly, abdominal muscle hypoplasia, micropenis and bilateral cryptorchidism. Skeletal radiographs revealed universal platyspondyly and necropsy findings comprised intestinal malrotation, abnormal cortical gyral formation, periventricular heterotopia, and cerebellar hypoplasia. Comparison between the present and the two previously described patients demonstrates that our case shows a combination of features strikingly resembling the original description. Conversely, the second reported patient shows a very atypical phenotype and is, most probably, affected by a distinct clinical entity. The triad of craniosynostosis, anonychia, and abdominal muscle hypo/aplasia emerges as the most consistent core phenotype, although skeletal and brain anomalies are relevant ancillary findings. An in-depth differential diagnosis with other partially overlapping conditions is carried out.
Collapse
Affiliation(s)
- Marco Castori
- Experimental Medicine Department, Medical Genetics, Sapienza-University of Rome, San Camillo-Forlanini Hospital, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Knight MA, Hernandez D, Diede SJ, Dauwerse HG, Rafferty I, van de Leemput J, Forrest SM, Gardner RJM, Storey E, van Ommen GJB, Tapscott SJ, Fischbeck KH, Singleton AB. A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20. Hum Mol Genet 2008; 17:3847-53. [PMID: 18801880 PMCID: PMC2588641 DOI: 10.1093/hmg/ddn283] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Spinocerebellar ataxia type 20 (SCA20) has been linked to chromosome 11q12, but the underlying genetic defect has yet to be identified. We applied single-nucleotide polymorphism genotyping to detect structural alterations in the genomic DNA of patients with SCA20. We found a 260 kb duplication within the previously linked SCA20 region, which was confirmed by quantitative polymerase chain reaction and fiber fluorescence in situ hybridization, the latter also showing its direct orientation. The duplication spans 10 known and 2 unknown genes, and is present in all affected individuals in the single reported SCA20 pedigree. While the mechanism whereby this duplication may be pathogenic remains to be established, we speculate that the critical gene within the duplicated segment may be DAGLA, the product of which is normally present at the base of Purkinje cell dendritic spines and contributes to the modulation of parallel fiber-Purkinje cell synapses.
Collapse
Affiliation(s)
- Melanie A Knight
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20894-3708, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|