1
|
Zou Z, Huang L, Lin S, He Z, Zhu H, Zhang Y, Fang Q, Luo Y. Prenatal diagnosis of posterior fossa anomalies: Additional value of chromosomal microarray analysis in fetuses with cerebellar hypoplasia. Prenat Diagn 2018; 38:91-98. [PMID: 29171036 DOI: 10.1002/pd.5190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To elucidate the relationship between copy number variations (CNVs) detected by high-resolution chromosomal microarray analysis (CMA) and the type of prenatal posterior fossa anomalies (PFAs), especially cerebellar hypoplasia (CH). METHODS This study involved 77 pregnancies with PFAs who underwent CMA. RESULTS Chromosomal aberrations including pathogenic CNVs and variants of unknown significance were detected in 31.2% (24/77) of all cases by CMA and in 18.5% (12/65) in fetuses with normal karyotypes. The high detection rate of clinically significant CNVs was evident in fetuses with cerebellar hypoplasia (54.6%, 6/11), vermis hypoplasia (33.3%, 1/3), and Dandy-Walker malformation (25.0%, 3/12). Compare with fetuses without other anomalies, cases with CH and additional malformations had the higher CMA detection rate (33.3% vs 88.9%). Three cases of isolated unilateral CH with intact vermis and normal CMA result had normal outcomes. The deletion of 5p15, 6q terminal deletion, and X chromosome aberrations were the most frequent genetic defects associated with cerebellar hypoplasia. CONCLUSION Among fetuses with PFA, those with cerebellar hypoplasia, vermis hypoplasia, or Dandy-Walker malformation are at the highest risk of clinically significant CNVs. Chromosomal microarray analysis revealed the most frequent chromosomal aberrations associated with CH.
Collapse
Affiliation(s)
- Zhiyong Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hui Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qun Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Abstract
X-linked cerebellar ataxias (XLCA) are an expanding group of genetically heterogeneous and clinically variable conditions characterized by cerebellar dysgenesis (hypoplasia, atrophy, or dysplasia) caused by gene mutations or genomic imbalances on the X chromosome. The neurologic features of XLCA include hypotonia, developmental delay, intellectual disability, ataxia, and other cerebellar signs. Normal cognitive development has also been reported. Cerebellar defects may be isolated or associated with other brain malformations or extraneurologic involvement. More than 20 genes on the X chromosome, mainly encoding for proteins involved in brain development and synaptic function that have been constantly or occasionally associated with a pathologic cerebellar phenotype, and several families with X-linked inheritance have been reported. Given the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiologic and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| |
Collapse
|
3
|
Pablo JL, Wang C, Presby MM, Pitt GS. Polarized localization of voltage-gated Na+ channels is regulated by concerted FGF13 and FGF14 action. Proc Natl Acad Sci U S A 2016; 113:E2665-74. [PMID: 27044086 PMCID: PMC4868475 DOI: 10.1073/pnas.1521194113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clustering of voltage-gated sodium channels (VGSCs) within the neuronal axon initial segment (AIS) is critical for efficient action potential initiation. Although initially inserted into both somatodendritic and axonal membranes, VGSCs are concentrated within the axon through mechanisms that include preferential axonal targeting and selective somatodendritic endocytosis. How the endocytic machinery specifically targets somatic VGSCs is unknown. Here, using knockdown strategies, we show that noncanonical FGF13 binds directly to VGSCs in hippocampal neurons to limit their somatodendritic surface expression, although exerting little effect on VGSCs within the AIS. In contrast, homologous FGF14, which is highly concentrated in the proximal axon, binds directly to VGSCs to promote their axonal localization. Single-point mutations in FGF13 or FGF14 abrogating VGSC interaction in vitro cannot support these specific functions in neurons. Thus, our data show how the concerted actions of FGF13 and FGF14 regulate the polarized localization of VGSCs that supports efficient action potential initiation.
Collapse
Affiliation(s)
- Juan Lorenzo Pablo
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Chaojian Wang
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Matthew M Presby
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Geoffrey S Pitt
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
4
|
Figueroa KP, Paul S, Calì T, Lopreiato R, Karan S, Frizzarin M, Ames D, Zanni G, Brini M, Dansithong W, Milash B, Scoles DR, Carafoli E, Pulst SM. Spontaneous shaker rat mutant - a new model for X-linked tremor/ataxia. Dis Model Mech 2016; 9:553-62. [PMID: 27013529 PMCID: PMC4892658 DOI: 10.1242/dmm.022848] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/29/2016] [Indexed: 12/18/2022] Open
Abstract
The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca2+ transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3R35C function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes. Summary: The shaker rat mutant: a new model for essential tremors and ataxia characterized by Purkinje cell degeneration.
Collapse
Affiliation(s)
- Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Sukanya Karan
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Martina Frizzarin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Darren Ames
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ginevra Zanni
- Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Brett Milash
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Pablo JL, Pitt GS. Fibroblast Growth Factor Homologous Factors: New Roles in Neuronal Health and Disease. Neuroscientist 2014; 22:19-25. [PMID: 25492945 DOI: 10.1177/1073858414562217] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fibroblast growth factor homologous factors (FHFs) are a noncanonical subset of intracellular fibroblast growth factors that have been implicated in a variety of neurobiological processes and in disease. They are most prominently regulators of voltage-gated Na(+) channels (NaVs). In this review, we discuss new insights into how FHFs modulate NaVs. This is followed by a summary of a growing body of evidence that FHFs operate in much broader fashion. Finally, we highlight unknown aspects of FHF function as areas of future interest.
Collapse
Affiliation(s)
- Juan L Pablo
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC, USA Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC, USA Department of Neurobiology, Duke University Medical Center, Durham, NC, USA Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Di Gregorio E, Bianchi FT, Schiavi A, Chiotto AMA, Rolando M, Verdun di Cantogno L, Grosso E, Cavalieri S, Calcia A, Lacerenza D, Zuffardi O, Retta SF, Stevanin G, Marelli C, Durr A, Forlani S, Chelly J, Montarolo F, Tempia F, Beggs HE, Reed R, Squadrone S, Abete MC, Brussino A, Ventura N, Di Cunto F, Brusco A. A de novo X;8 translocation creates a PTK2-THOC2 gene fusion with THOC2 expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. J Med Genet 2013; 50:543-51. [PMID: 23749989 DOI: 10.1136/jmedgenet-2013-101542] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM We identified a balanced de novo translocation involving chromosomes Xq25 and 8q24 in an eight year-old girl with a non-progressive form of congenital ataxia, cognitive impairment and cerebellar hypoplasia. METHODS AND RESULTS Breakpoint definition showed that the promoter of the Protein Tyrosine Kinase 2 (PTK2, also known as Focal Adhesion Kinase, FAK) gene on chromosome 8q24.3 is translocated 2 kb upstream of the THO complex subunit 2 (THOC2) gene on chromosome Xq25. PTK2 is a well-known non-receptor tyrosine kinase whereas THOC2 encodes a component of the evolutionarily conserved multiprotein THO complex, involved in mRNA export from nucleus. The translocation generated a sterile fusion transcript under the control of the PTK2 promoter, affecting expression of both PTK2 and THOC2 genes. PTK2 is involved in cell adhesion and, in neurons, plays a role in axonal guidance, and neurite growth and attraction. However, PTK2 haploinsufficiency alone is unlikely to be associated with human disease. Therefore, we studied the role of THOC2 in the CNS using three models: 1) THOC2 ortholog knockout in C.elegans which produced functional defects in specific sensory neurons; 2) Thoc2 knockdown in primary rat hippocampal neurons which increased neurite extension; 3) Thoc2 knockdown in neuronal stem cells (LC1) which increased their in vitro growth rate without modifying apoptosis levels. CONCLUSION We suggest that THOC2 can play specific roles in neuronal cells and, possibly in combination with PTK2 reduction, may affect normal neural network formation, leading to cognitive impairment and cerebellar congenital hypoplasia.
Collapse
|
7
|
Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci U S A 2012; 109:14514-9. [PMID: 22912398 DOI: 10.1073/pnas.1207488109] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ca(2+) in neurons is vital to processes such as neurotransmission, neurotoxicity, synaptic development, and gene expression. Disruption of Ca(2+) homeostasis occurs in brain aging and in neurodegenerative disorders. Membrane transporters, among them the calmodulin (CaM)-activated plasma membrane Ca(2+) ATPases (PMCAs) that extrude Ca(2+) from the cell, play a key role in neuronal Ca(2+) homeostasis. Using X-exome sequencing we have identified a missense mutation (G1107D) in the CaM-binding domain of isoform 3 of the PMCAs in a family with X-linked congenital cerebellar ataxia. PMCA3 is highly expressed in the cerebellum, particularly in the presynaptic terminals of parallel fibers-Purkinje neurons. To study the effects of the mutation on Ca(2+) extrusion by the pump, model cells (HeLa) were cotransfected with expression plasmids encoding its mutant or wild-type (wt) variants and with the Ca(2+)-sensing probe aequorin. The mutation reduced the ability of the PMCA3 pump to control the cellular homeostasis of Ca(2+). It significantly slowed the return to baseline of the Ca(2+) transient induced by an inositol-trisphosphate (InsP(3))-linked plasma membrane agonist. It also compromised the ability of the pump to oppose the influx of Ca(2+) through the plasma membrane capacitative channels.
Collapse
|
8
|
Terracciano A, Renaldo F, Zanni G, D'Amico A, Pastore A, Barresi S, Valente EM, Piemonte F, Tozzi G, Carrozzo R, Valeriani M, Boldrini R, Mercuri E, Santorelli FM, Bertini E. The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children. Eur J Paediatr Neurol 2012; 16:248-56. [PMID: 21873089 PMCID: PMC3341568 DOI: 10.1016/j.ejpn.2011.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/21/2011] [Accepted: 07/24/2011] [Indexed: 01/07/2023]
Abstract
Childhood cerebellar ataxias, and particularly congenital ataxias, are heterogeneous disorders and several remain undefined. We performed a muscle biopsy in patients with congenital ataxia and children with later onset undefined ataxia having neuroimaging evidence of cerebellar atrophy. Significant reduced levels of Coenzyme Q10 (COQ10) were found in the skeletal muscle of 9 out of 34 patients that were consecutively screened. A mutation in the ADCK3/Coq8 gene (R347X) was identified in a female patient with ataxia, seizures and markedly reduced COQ10 levels. In a 2.5-years-old male patient with non syndromic congenital ataxia and autophagic vacuoles in the muscle biopsy we identified a homozygous nonsense mutation R111X mutation in SIL1 gene, leading to early diagnosis of Marinesco-Sjogren syndrome. We think that muscle biopsy is a valuable procedure to improve diagnostic assesement in children with congenital ataxia or other undefined forms of later onset childhood ataxia associated to cerebellar atrophy at MRI.
Collapse
Affiliation(s)
- Alessandra Terracciano
- Unit of Neuromuscular and Neurodegenerative Disorders, Lab of Molecular Medicine, Dept of Neuroscience, Bambino Gesù Childrens Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zanni G, Bertini ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011; 6:24. [PMID: 21569638 PMCID: PMC3115841 DOI: 10.1186/1750-1172-6-24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/15/2011] [Indexed: 12/15/2022] Open
Abstract
X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Molecular Medicine, Departement of Neurosciences, Bambino Gesù ediatric Research Hospital, 4 Piazza S. Onofrio, 00165 Rome, Italy.
| | | |
Collapse
|
10
|
Genetics and Pathogenesis of Inherited Ataxias and Spastic Paraplegias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:263-96. [DOI: 10.1007/978-90-481-2813-6_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|