1
|
Aboagye ET, Adadey SM, Wonkam-Tingang E, Amenga-Etego L, Awandare GA, Wonkam A. Global Distribution of Founder Variants Associated with Non-Syndromic Hearing Impairment. Genes (Basel) 2023; 14:399. [PMID: 36833326 PMCID: PMC9957346 DOI: 10.3390/genes14020399] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The genetic etiology of non-syndromic hearing impairment (NSHI) is highly heterogeneous with over 124 distinct genes identified. The wide spectrum of implicated genes has challenged the implementation of molecular diagnosis with equal clinical validity in all settings. Differential frequencies of allelic variants in the most common NSHI causal gene, gap junction beta 2 (GJB2), has been described as stemming from the segregation of a founder variant and/or spontaneous germline variant hot spots. We aimed to systematically review the global distribution and provenance of founder variants associated with NSHI. The study protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews, with the registration number "CRD42020198573". Data from 52 reports, involving 27,959 study participants from 24 countries, reporting 56 founder pathogenic or likely pathogenic (P/LP) variants in 14 genes (GJB2, GJB6, GSDME, TMC1, TMIE, TMPRSS3, KCNQ4, PJVK, OTOF, EYA4, MYO15A, PDZD7, CLDN14, and CDH23), were reviewed. Varied number short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) were used for haplotype analysis to identify the shared ancestral informative markers in a linkage disequilibrium and variants' origins, age estimates, and common ancestry computations in the reviewed reports. Asia recorded the highest number of NSHI founder variants (85.7%; 48/56), with variants in all 14 genes, followed by Europe (16.1%; 9/56). GJB2 had the highest number of ethnic-specific P/LP founder variants. This review reports on the global distribution of NSHI founder variants and relates their evolution to population migration history, bottleneck events, and demographic changes in populations linked with the early evolution of deleterious founder alleles. International migration and regional and cultural intermarriage, coupled to rapid population growth, may have contributed to re-shaping the genetic architecture and structural dynamics of populations segregating these pathogenic founder variants. We have highlighted and showed the paucity of data on hearing impairment (HI) variants in Africa, establishing unexplored opportunities in genetic traits.
Collapse
Affiliation(s)
- Elvis Twumasi Aboagye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG Box 54, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- McKusick-Nathans Institute and Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Gudmundsson S, Wilbe M, Ekvall S, Ameur A, Cahill N, Alexandrov LB, Virtanen M, Hellström Pigg M, Vahlquist A, Törmä H, Bondeson ML. Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26. Hum Mol Genet 2017; 26:1070-1077. [PMID: 28158657 PMCID: PMC5409067 DOI: 10.1093/hmg/ddx017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/30/2016] [Indexed: 01/21/2023] Open
Abstract
Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G > A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.
Collapse
Affiliation(s)
- Sanna Gudmundsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Wilbe
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sara Ekvall
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nicola Cahill
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ludmil B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, USA and
| | - Marie Virtanen
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Maritta Hellström Pigg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Vahlquist
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Hans Törmä
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Beheshtian M, Babanejad M, Azaiez H, Bazazzadegan N, Kolbe D, Sloan-Heggen C, Arzhangi S, Booth K, Mohseni M, Frees K, Azizi MH, Daneshi A, Farhadi M, Kahrizi K, Smith RJ, Najmabadi H. Heterogeneity of Hereditary Hearing Loss in Iran: a Comprehensive Review. ARCHIVES OF IRANIAN MEDICINE 2017; 19:720-728. [PMID: 27743438 DOI: 0161910/aim.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A significant contribution to the causes of hereditary hearing impairment comes from genetic factors. More than 120 genes and 160 loci have been identified to be involved in hearing impairment. Given that consanguine populations are more vulnerable to most inherited diseases, such as hereditary hearing loss (HHL), the genetic picture of HHL among the Iranian population, which consists of at least eight ethnic subgroups with a high rate of intermarriage, is expected to be highly heterogeneous. Using an electronic literature review through various databases such as PubMed, MEDLINE, and Scopus, we review the current picture of HHL in Iran. In this review, we present more than 39 deafness genes reported to cause non-syndromic HHL in Iran, of which the most prevalent causative genes include GJB2, SLC26A4, MYO15A, and MYO7A. In addition, we highlight some of the more common genetic causes of syndromic HHL in Iran. These results are of importance for further investigation and elucidation of the molecular basis of HHL in Iran and also for developing a national diagnostic tool tailored to the Iranian context enabling early and efficient diagnosis of hereditary hearing impairment.
Collapse
Affiliation(s)
- Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hela Azaiez
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Diana Kolbe
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Christina Sloan-Heggen
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kevin Booth
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kathy Frees
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | - Ahmad Daneshi
- Head and Neck Surgery Department and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- Head and Neck Surgery Department and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard Jh Smith
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wang H, Wu K, Yu L, Xie L, Xiong W, Wang D, Guan J, Wang Q. A novel dominant GJB2 (DFNA3) mutation in a Chinese family. Sci Rep 2017; 7:34425. [PMID: 28102197 PMCID: PMC5244381 DOI: 10.1038/srep34425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
To decipher the phenotype and genotype of a Chinese family with autosomal dominant non-syndromic hearing loss (ADNSHL) and a novel dominant missense mutation in the GJB2 gene (DFNA3), mutation screening of GJB2 was performed on the propositus from a five-generation ADNSHL family through polymerase chain reaction amplification and Sanger sequencing. The candidate variation and the co-segregation of the phenotype were verified in all ascertained family members. Targeted genes capture and next-generation sequencing (NGS) were performed to explore additional genetic variations. We identified the novel GJB2 mutation c.524C > A (p.P175H), which segregated with high frequency and was involved in progressive sensorineural hearing loss. One subject with an additional c.235delC mutation showed a more severe phenotype than did the other members with single GJB2 dominant variations. Four patients diagnosed with noise-induced hearing loss did not carry this mutation. No other pathogenic variations or modifier genes were identified by NGS. In conclusion, a novel missense mutation in GJB2 (DFNA3), affecting the second extracellular domain of the protein, was identified in a family with ADNSHL.
Collapse
Affiliation(s)
- Hongyang Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Kaiwen Wu
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Lan Yu
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Linyi Xie
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Wenping Xiong
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Dayong Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Jing Guan
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Qiuju Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| |
Collapse
|
5
|
Najmabadi H, Kahrizi K. Genetics of non-syndromic hearing loss in the Middle East. Int J Pediatr Otorhinolaryngol 2014; 78:2026-36. [PMID: 25281338 DOI: 10.1016/j.ijporl.2014.08.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/24/2014] [Accepted: 08/25/2014] [Indexed: 12/23/2022]
Abstract
Hearing impairment is the most common sensory disorder, present 1 in every 500 newborns. About 80% of genetic HL is classified as non-syndromic deafness. To date, over 115 non-syndromic loci have been identified of which fifty associated with autosomal recessive non-syndromic hearing loss (ARNSHL). In this review article, we represent the 40 genes function and contribution to genetic deafness in different Middle Eastern populations as well as gene frequencies and mutation spectrum. The wide variety of mutations have so far detected in 19 countries reflects the heterogeneity of the genes involved in HL in this region. The deafness genes can cause dysfunction of cochlear homeostasis, cellular organization, neuronal transmission, cell growth, differentiation, and survival, some coding for tectorial membrane-associated proteins, and the remaining with unknown functions. Non-syndromic deafness is highly heterogeneous and mutations in the GJB2 are responsible for almost 30-50% in northwest to as low as 0-5% in south and southeast of the Middle East, it remain as major gene in ARNSHL in Middle East. The other genes contributing to AR/ADNSHL in some countries have been determined while for many other countries in the Middle East have not been studied or little study has been done. With the advancement of next generation sequencing one could expect in next coming year many of the remaining genes to be determine and to understand their function in the inner ear.
Collapse
Affiliation(s)
- Hossein Najmabadi
- Genetics Research Centre (GRC), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Kimia Kahrizi
- Genetics Research Centre (GRC), University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
6
|
EMQN Best Practice guidelines for diagnostic testing of mutations causing non-syndromic hearing impairment at the DFNB1 locus. Eur J Hum Genet 2013; 21:1325-9. [PMID: 23695287 PMCID: PMC3798855 DOI: 10.1038/ejhg.2013.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
7
|
Bazazzadegan N, Nikzat N, Fattahi Z, Nishimura C, Meyer N, Sahraian S, Jamali P, Babanejad M, Kashef A, Yazdan H, Sabbagh Kermani F, Taghdiri M, Azadeh B, Mojahedi F, Khoshaeen A, Habibi H, Reyhanifar F, Nouri N, Smith RJH, Kahrizi K, Najmabadi H. The spectrum of GJB2 mutations in the Iranian population with non-syndromic hearing loss--a twelve year study. Int J Pediatr Otorhinolaryngol 2012; 76:1164-74. [PMID: 22695344 DOI: 10.1016/j.ijporl.2012.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Mutations in GJB2, encoding connexin 26 (CX26), are causally related to autosomal recessive form of non-syndromic hearing loss (NSHL) at the DFNB1 locus and autosomal dominant NSHL at the DFNA3 locus. In this study, we investigated the prevalence of GJB2 mutations in the Iranian deaf population. METHODS A total of 2322 deaf probands presenting the ethnically diverse Iranian population were screened for variants in GJB2. All persons were first screened for the c.35delG mutation, as this variant is the most prevalent GJB2-deafness causing mutation in the Iranian population. In all persons carrying zero or one c.35delG allele, exons 1 and 2 were then sequenced. RESULTS In total, 374 (~16%) families segregated GJB2-related deafness caused by 45 different mutations and 5 novel variants. The c.35delG mutation was most commonly identified and accounts for ~65% of the GJB2 mutations found in population studied. CONCLUSION Our data also show that there is a gradual decrease in the frequency of the c.35delG mutation and of GJB2-related deafness in general in a cline across Iran extending from the northwest to southeast.
Collapse
Affiliation(s)
- Niloofar Bazazzadegan
- Genetics Research Centre, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|