1
|
Nowakowska BA, Pankiewicz K, Nowacka U, Niemiec M, Kozłowski S, Issat T. Genetic Background of Fetal Growth Restriction. Int J Mol Sci 2021; 23:ijms23010036. [PMID: 35008459 PMCID: PMC8744929 DOI: 10.3390/ijms23010036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Fetal growth restriction (FGR) is one of the most formidable challenges in present-day antenatal care. Pathological fetal growth is a well-known factor of not only in utero demise in the third trimester, but also postnatal morbidity and unfavorable developmental outcomes, including long-term sequalae such as metabolic diseases, diabetic mellitus or hypertension. In this review, the authors present the current state of knowledge about the genetic disturbances responsible for FGR diagnosis, divided into fetal, placental and maternal causes (including preeclampsia), as well as their impact on prenatal diagnostics, with particular attention on chromosomal microarray (CMA) and noninvasive prenatal testing technique (NIPT).
Collapse
Affiliation(s)
- Beata Anna Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland;
- Correspondence: (B.A.N.); (K.P.); Tel.: +48-22-3277131 (B.A.N.); +48-22-3277044 (K.P.)
| | - Katarzyna Pankiewicz
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (U.N.); (S.K.); (T.I.)
- Correspondence: (B.A.N.); (K.P.); Tel.: +48-22-3277131 (B.A.N.); +48-22-3277044 (K.P.)
| | - Urszula Nowacka
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (U.N.); (S.K.); (T.I.)
| | - Magdalena Niemiec
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland;
| | - Szymon Kozłowski
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (U.N.); (S.K.); (T.I.)
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child in Warsaw, Kasprzaka 17a, 01-211 Warsaw, Poland; (U.N.); (S.K.); (T.I.)
| |
Collapse
|
2
|
Meler E, Sisterna S, Borrell A. Genetic syndromes associated with isolated fetal growth restriction. Prenat Diagn 2020; 40:432-446. [PMID: 31891188 DOI: 10.1002/pd.5635] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
Abstract
Early onset fetal growth restriction (FGR) may be due to impaired placentation, environmental or toxic exposure, congenital infections or genetic abnormalities. Remarkable research, mainly based on retrospective series, has been published on the diverse genetic causes. Those have become more and more relevant with the improvement in the accuracy of the analysis techniques and the rising of breakthrough genomewide methods such as the whole genome sequencing. However, no publication has presented an integrated view of management of those fetuses with an early and severe affection. In this review, we explored to which extent genetic syndromes can cause FGR fetuses without structural defects. The most common chromosomal abnormalities (Triploidies and Trisomy 18), submicroscopic chromosomal anomalies (22q11.2 microduplication syndrome) and single gene disorders (often associated with mild ultrasound findings) related to early and severe FGR had been analysed. Finally, we addressed the impact of epigenetic marks on fetal growth, a matter of growing importance. At the end of this review, we should be able to provide an adequate counseling to parents in terms of diagnosis, prognosis and management of those pregnancies.
Collapse
Affiliation(s)
- Eva Meler
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Fetal i+D Fetal Medicine Research, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Catalonia, Spain
| | - Silvina Sisterna
- Clinical Genetics and Prenatal Diagnosis, Hospital Privado de Comunidad - Maternal Fetal Medicine, Clínica Colon - Reproduction and human genetics center CRECER. Mar del Plata, Buenos Aires, Argentina
| | - Antoni Borrell
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Fetal i+D Fetal Medicine Research, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Cheng Y, Leung TY, Lao T, Chan YM, Sahota DS. Impact of replacing Chinese ethnicity-specific fetal biometry charts with the INTERGROWTH-21(st) standard. BJOG 2018; 123 Suppl 3:48-55. [PMID: 27627597 DOI: 10.1111/1471-0528.14008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess the impact of adopting the INTERGROWTH-21(st) biometry standards in a Chinese population. DESIGN Retrospective cohort study. SETTING A teaching hospital in Hong Kong. POPULATION A total of 10 527 Chinese women with a singleton pregnancy having a second- or third-trimester fetal anomaly or growth scan between January 2009 and June 2014. METHODS Z-scores were derived for fetal abdominal circumference (AC), head circumference (HC), and femur length (FL) using the INTERGROWTH-21(st) and Chinese biometry standards. Pregnancies with aneuploidy, structural or skeletal abnormalities, or that developed pre-eclampsia were excluded. Z-scores were stratified as <2.5th, <5th, <10th, >90th, >95th, or >97.5th percentile. Birthweight centile, adjusted for gestation and gender, was categorised as ≤3rd, 3rd to ≤5th, 5th to ≤10th, and >10th. Pairwise comparison and the McNemar test were performed to assess biometry Z-score differences and concordance between the INTERGROWTH-21(st) and Chinese standards. MAIN OUTCOME MEASURES The sensitivity of both the local and INTERGROWTH-21(st) AC standards to identify pregnancies that were small-for-gestational-age (SGA) was assessed. RESULTS INTERGROWTH-21(st) AC, HC, and FL Z-scores were significantly lower than those obtained using our local reference for AC, HC, and FL (P < 0.0001 for all). The proportion of fetuses with biometry in the <2.5th, <5th, <10th, >90th, >95th, or >97.5th percentiles was statistically significant (P < 0.01 for all). A total of 1224 (15.5%) of the scans at 18-22 weeks of gestation had AC, HC, or FL below the 3rd percentile of the INTERGROWTH-21(st) standard. CONCLUSIONS Adopting the INTERGROWTH-21(st) standard would lead to a significant number of fetuses being at risk of misdiagnosis for small fetal size, particularly when using HC and FL measures. TWEETABLE ABSTRACT INTERGROWTH-21(st) biometry assessment in Chinese leads to fetuses being at risk of misdiagnosis of small fetal size.
Collapse
Affiliation(s)
- Yky Cheng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - T Y Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tth Lao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Y M Chan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - D S Sahota
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| |
Collapse
|
4
|
Sharony R, Engel O, Litz-Philipsborn S, Sukenik-Halevy R, Biron-Shental T, Evans MI. The impact of third-trimester genetic counseling. Arch Gynecol Obstet 2018; 297:659-665. [PMID: 29306968 DOI: 10.1007/s00404-017-4638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the impact of genetic counseling (GC) during the third trimester by analyzing changes in pregnancy management and the correlation with postnatal findings. METHODS This was a retrospective study. Pregnancy course and neonatal follow-up were analyzed according to the reason for referral and implementation of recommendations. RESULTS The records of neonates born to 181 women were retrieved. Fifty-two women (group 1-29%) qualified for pregnancy termination under Israeli guidelines and laws, and 129 (group 2-71%) were not at the time they were referred. By another division: 104 women (group 3-57%) followed the physician's diagnostic recommendations completely after counseling including amniocentesis, fetal MRI, targeted ultrasound scans, fetal echocardiography. Seventy-seven declined amniocentesis (group 4-43%). Additional abnormalities were detected postpartum in all groups without statistically difference: 3/52 (10%) in group 1, 9/129 (7%) in group 2, 6/104 (6%) in group 3, and 6/77 (8%) in group 4). CONCLUSION GC in the third trimester of pregnancy provided the couple with a sharper more focused picture and assisted them to perceive the significance of new, significant fetal findings which attest to the value of the GC.
Collapse
Affiliation(s)
- Reuven Sharony
- The Genetics Institute, Meir Medical Center, Kfar Saba, Israel. .,Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Offra Engel
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel
| | | | - Rivka Sukenik-Halevy
- The Genetics Institute, Meir Medical Center, Kfar Saba, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Biron-Shental
- Department of Obstetrics and Gynecology, Meir Medical Center, 59 Tchernichovsky St., 44281, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mark I Evans
- Department of Obstetrics and Gynecology, Fetal Medicine Foundation of America, Comprehensive Genetics PLLC, Mt. Sinai School of Medicine, New York, USA
| |
Collapse
|
5
|
DNA Damage as a Driver for Growth Delay: Chromosome Instability Syndromes with Intrauterine Growth Retardation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8193892. [PMID: 29238724 PMCID: PMC5702399 DOI: 10.1155/2017/8193892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature.
Collapse
|
6
|
Abstract
Clinical genetics is the application of advances in genetics and medicine to real human families. It involves diagnosis, care, and counseling concerning options available to affected individuals and their family members. Advances in medicine and genetics have led to dramatic changes in the scope and responsibilities of clinical genetics. This reflection on the last 50+ years of clinical genetics comes from personal experience, with an emphasis on the important contributions that clinical geneticists have made to the understanding of disease/disorder processes and mechanisms. The genetics clinic is a research laboratory where major advances in knowledge can and have been made.
Collapse
Affiliation(s)
- Judith G. Hall
- Department of Medical Genetics and Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver V6H 3N1, Canada
| |
Collapse
|
7
|
Endothelial dysfunction in individuals born after fetal growth restriction: cardiovascular and renal consequences and preventive approaches. J Dev Orig Health Dis 2017; 8:448-464. [PMID: 28460648 DOI: 10.1017/s2040174417000265] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals born after intrauterine growth restriction (IUGR) have an increased risk of perinatal morbidity/mortality, and those who survive face long-term consequences such as cardiovascular-related diseases, including systemic hypertension, atherosclerosis, coronary heart disease and chronic kidney disease. In addition to the demonstrated long-term effects of decreased nephron endowment and hyperactivity of the hypothalamic-pituitary-adrenal axis, individuals born after IUGR also exhibit early alterations in vascular structure and function, which have been identified as key factors of the development of cardiovascular-related diseases. The endothelium plays a major role in maintaining vascular function and homeostasis. Therefore, it is not surprising that impaired endothelial function can lead to the long-term development of vascular-related diseases. Endothelial dysfunction, particularly impaired endothelium-dependent vasodilation and vascular remodeling, involves decreased nitric oxide (NO) bioavailability, impaired endothelial NO synthase functionality, increased oxidative stress, endothelial progenitor cells dysfunction and accelerated vascular senescence. Preventive approaches such as breastfeeding, supplementation with folate, vitamins, antioxidants, L-citrulline, L-arginine and treatment with NO modulators represent promising strategies for improving endothelial function, mitigating long-term outcomes and possibly preventing IUGR of vascular origin. Moreover, the identification of early biomarkers of endothelial dysfunction, especially epigenetic biomarkers, could allow early screening and follow-up of individuals at risk of developing cardiovascular and renal diseases, thus contributing to the development of preventive and therapeutic strategies to avert the long-term effects of endothelial dysfunction in infants born after IUGR.
Collapse
|
8
|
Wakeling EL, Brioude F, Lokulo-Sodipe O, O'Connell SM, Salem J, Bliek J, Canton APM, Chrzanowska KH, Davies JH, Dias RP, Dubern B, Elbracht M, Giabicani E, Grimberg A, Grønskov K, Hokken-Koelega ACS, Jorge AA, Kagami M, Linglart A, Maghnie M, Mohnike K, Monk D, Moore GE, Murray PG, Ogata T, Petit IO, Russo S, Said E, Toumba M, Tümer Z, Binder G, Eggermann T, Harbison MD, Temple IK, Mackay DJG, Netchine I. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. Nat Rev Endocrinol 2017; 13:105-124. [PMID: 27585961 DOI: 10.1038/nrendo.2016.138] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood.
Collapse
Affiliation(s)
- Emma L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, Watford Road, Harrow HA1 3UJ, UK
| | - Frédéric Brioude
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Oluwakemi Lokulo-Sodipe
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Susan M O'Connell
- Department of Paediatrics and Child Health, Cork University Hospital, Wilton, Cork T12 DC4A, Ireland
| | - Jennifer Salem
- MAGIC Foundation, 6645 W. North Avenue, Oak Park, Illinois 60302, USA
| | - Jet Bliek
- Academic Medical Centre, Department of Clinical Genetics, Laboratory for Genome Diagnostics, Meibergdreef 15, 1105AZ Amsterdam, Netherlands
| | - Ana P M Canton
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 5° andar sala 5340 (LIM25), 01246-000 São Paulo, SP, Brazil
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Justin H Davies
- Department of Paediatric Endocrinology, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Renuka P Dias
- Institutes of Metabolism and Systems Research, Vincent Drive, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Vincent Drive, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Paediatric Endocrinology and Diabetes, Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Béatrice Dubern
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Nutrition and Gastroenterology Department, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Trousseau Hospital, HUEP, APHP, UPMC, 75012 Paris, France
| | - Miriam Elbracht
- Insitute of Human Genetics, Technical University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Eloise Giabicani
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Adda Grimberg
- Perelman School of Medicine, University of Pennsylvania, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Suite 11NW30, Philadelphia, Pennsylvania 19104, USA
| | - Karen Grønskov
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Copenhagen, Denmark
| | - Anita C S Hokken-Koelega
- Erasmus University Medical Center, Pediatrics, Subdivision of Endocrinology, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Alexander A Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 5° andar sala 5340 (LIM25), 01246-000 São Paulo, SP, Brazil
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Ohkura, Setagayaku, Tokyo 157-8535, Japan
| | - Agnes Linglart
- APHP, Department of Pediatric Endocrinology, Reference Center for Rare Disorders of the Mineral Metabolism and Plateforme d'Expertise Paris Sud Maladies Rares, Hospital Bicêtre Paris Sud, 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Mohamad Maghnie
- IRCCS Istituto Giannina Gaslini, University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Klaus Mohnike
- Otto-von-Guericke University, Department of Pediatrics, Leipziger Street 44, 39120 Magdeburg, Germany
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Biomedical Research Institute, Gran via 199-203, Hospital Duran i Reynals, 08908, Barcelona, Spain
| | - Gudrun E Moore
- Fetal Growth and Development Group, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Philip G Murray
- Centre for Paediatrics and Child Health, Institute of Human Development, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Isabelle Oliver Petit
- Pediatric Endocrinology, Genetic, Bone Disease &Gynecology Unit, Children's Hospital, TSA 70034, 31059 Toulouse, France
| | - Silvia Russo
- Instituto Auxologico Italiano, Cytogenetic and Molecular Genetic Laboratory, via Ariosto 13 20145 Milano, Italy
| | - Edith Said
- Department of Anatomy &Cell Biology, Centre for Molecular Medicine &Biobanking, Faculty of Medicine &Surgery, University of Malta, Msida MSD2090, Malta
- Section of Medical Genetics, Department of Pathology, Mater dei Hospital, Msida MSD2090, Malta
| | - Meropi Toumba
- IASIS Hospital, 8 Voriou Ipirou, 8036, Paphos, Cyprus
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Copenhagen, Denmark
| | - Gerhard Binder
- University Children's Hospital, Pediatric Endocrinology, Hoppe-Seyler-Strasse 1, 72070 Tuebingen, Germany
| | - Thomas Eggermann
- Insitute of Human Genetics, Technical University of Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Madeleine D Harbison
- Mount Sinai School of Medicine, 5 E 98th Street #1192, New York, New York 10029, USA
| | - I Karen Temple
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Deborah J G Mackay
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Irène Netchine
- AP-HP, Hôpitaux Universitaires Paris Est (AP-HP) Hôpital des Enfants Armand Trousseau, Service d'Explorations Fonctionnelles Endocriniennes, 26 avenue du Dr Arnold Netter, 75012 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMR S938, 34 rue Crozatier, 75012 Paris, France
- Sorbonne Universities, UPMC UNIV Paris 06, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
9
|
Schierding W, Antony J, Cutfield WS, Horsfield JA, O'Sullivan JM. Intergenic GWAS SNPs are key components of the spatial and regulatory network for human growth. Hum Mol Genet 2016; 25:3372-3382. [PMID: 27288450 DOI: 10.1093/hmg/ddw165] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/19/2016] [Accepted: 05/20/2016] [Indexed: 12/25/2022] Open
Abstract
Meta-analysis of genome-wide association studies has resulted in the identification of hundreds of genetic variants associated with growth and stature. Determining how these genetic variants influence growth is important, but most are non-coding, and there is little understanding of how these variants contribute to adult height. To determine the mechanisms by which human variation contributes to growth, we combined spatial genomic connectivity (high-throughput conformation capture) with functional (gene expression, expression Quantitative Trait Loci) data to determine how non-genic loci associated with infant length, pubertal and adult height and contribute to gene regulatory networks. This approach identified intergenic single-nucleotide polymorphisms (SNPs) ∼85 kb upstream of FBXW11 that spatially connect with distant loci. These regulatory connections are reinforced by evidence of SNP-enhancer effects and altered expression in genes influencing the action of human growth hormone. Functional assays provided evidence for enhancer activity of the intergenic region near FBXW11 that harbors SNP rs12153391, which is associated with an expression Quantitative Trait Loci. Our results suggest that variants in this locus have genome-wide effects as key modifiers of growth (both overgrowth and short stature) acting through a regulatory network. We believe that the genes and pathways connected with this regulatory network are potential targets that could be investigated for diagnostic, prenatal and carrier testing for growth disorders. Finally, the regulatory networks we generated illustrate the power of using existing datasets to interrogate the contribution of intergenic SNPs to common syndromes/diseases.
Collapse
Affiliation(s)
- William Schierding
- Liggins Institute, University of Auckland, Grafton, Auckland 1032, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin 9016, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, University of Auckland, Grafton, Auckland 1032, New Zealand.,Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1032, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin 9016, New Zealand.,Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1032, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Grafton, Auckland 1032, New Zealand, .,Gravida: National Centre for Growth and Development, University of Auckland, Auckland 1032, New Zealand
| |
Collapse
|
10
|
Vinkler C, Leshinsky-Silver E, Michelson M, Haas D, Lerman-Sagie T, Lev D. A newly recognized syndrome of severe growth deficiency, microcephaly, intellectual disability, and characteristic facial features. Eur J Med Genet 2014; 57:288-92. [PMID: 24709618 DOI: 10.1016/j.ejmg.2014.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
Genetic syndromes with proportionate severe short stature are rare. We describe two sisters born to nonconsanguineous parents with severe linear growth retardation, poor weight gain, microcephaly, characteristic facial features, cutaneous syndactyly of the toes, high myopia, and severe intellectual disability. During infancy and early childhood, the girls had transient hepatosplenomegaly and low blood cholesterol levels that normalized later. A thorough evaluation including metabolic studies, radiological, and genetic investigations were all normal. Cholesterol metabolism and transport were studied and no definitive abnormality was found. No clinical deterioration was observed and no metabolic crises were reported. After due consideration of other known hereditary causes of post-natal severe linear growth retardation, microcephaly, and intellectual disability, we propose that this condition represents a newly recognized autosomal recessive multiple congenital anomaly-intellectual disability syndrome.
Collapse
Affiliation(s)
- Chana Vinkler
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel; Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel.
| | - Esther Leshinsky-Silver
- Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel; Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Michelson
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel; Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel
| | - Dorothea Haas
- Division of Inborn Metabolic Diseases, University Children's Hospital, Im Neuenheimer Feld, Heidelberg, Germany
| | - Tally Lerman-Sagie
- Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel; Metabolic Neurogenetic Service, Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Abstract
The Silver-Russell syndrome (SRS) is a sporadic clinically and genetically heterogeneous disorder. Diagnosis is based on the variable combination of the following characteristics: intrauterine growth retardation, short stature because of lack of catch-up growth, underweight, relative macrocephaly, typical triangular face, body asymmetry and several minor anomalies including clinodactyly V. Different diagnostic scores have been proposed. The main genetic defects detected are at the epigenetic level: hypomethylation of the imprinting control region 1 (ICR1) on 11p15 in around 44% of cases and maternal uniparental disomy of chromosome 7 (UPD(7)mat) in 5-10% of cases. Severe phenotype is frequently associated with hypomethylation of ICR1 while mild phenotype is more often seen in combination with UPD(7)mat. Origins and biological consequences of these epimutations are still obscure. For genetic testing, we recommend a methylation-specific PCR-approach for both 7p and 7q loci (confirmed by microsatellite typing) for the detection of UPD(7)mat, and the methylation-specific multiplex ligation dependent probe amplification (MS-MLPA) approach for methylation analysis of the 11p15 loci. Short stature in SRS can be treated by use of pharmacological doses of recombinant GH resulting in good short-term catch-up; sufficient information on the therapeutic effect in terms of final height is still missing.
Collapse
Affiliation(s)
- Gerhard Binder
- University Children's Hospital Tuebingen, Paediatric Endocrinology, Hoppe-Seyler-Strasse 1, Tuebingen, Germany.
| | | | | | | |
Collapse
|
12
|
Abstract
Normally, one inherits one chromosome of each pair from one parent and the second chromosome from the other parent. Uniparental disomy (UPD) describes the inheritance of both homologues of a chromosome pair from the same parent. The biological basis of UPD syndromes is disturbed genomic imprinting. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. Phenotypes range from unapparent to unmasking of an autosomal-recessive disease to presentation as a syndromic imprinting disorder. Whilst paternal UPD(7) is clinically unapparent, maternal UPD(7) is one of several causes of Silver-Russell syndrome. Presentation of paternal UPD(14) ("Kagami syndrome") is a thoracic dysplasia syndrome with mental retardation and limited survival. Findings in maternal UPD(14) ("Temple") syndrome show an age-dependent overlap with the well-known maternal UPD(15) (Prader-Willi) syndrome and are dominated by initial failure to thrive followed by obesity, learning difficulties and precocious puberty. Diagnostic strategies to tackle the genetic heterogeneity of UPD(7) and UPD(14) syndromes will be explained. Management issues in UPD(7) and UPD(14) patients will be discussed, and finally areas requiring further research will be outlined.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Institute of Medical Genetics, Campus Virchow-Klinikum, Charité, Augustenburger Platz 1, Berlin, Germany.
| | | |
Collapse
|
13
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:568-80. [PMID: 21030841 DOI: 10.1097/med.0b013e328341311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Affiliation(s)
- Robert A McKnight
- Developmental Origins of Disease Laboratories, Division of Neonatology, Department of Pediatrics, University of Utah, 295 Chipeta Way, 2N131, Salt Lake City, UT 84108, USA
| | - Lisa A Joss-Moore
- Developmental Origins of Disease Laboratories, Division of Neonatology, Department of Pediatrics, University of Utah, 295 Chipeta Way, 2N131, Salt Lake City, UT 84108, USA
| | | |
Collapse
|