1
|
Yang Q, Liu H, Zhong D, Li Z, Li J, Xiao K, Liu W. Tanc1/2 TPR domain interacts with Myo18a C-terminus and undergoes liquid-liquid phase separation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119650. [PMID: 38092135 DOI: 10.1016/j.bbamcr.2023.119650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Tanc1 and its homologous protein Tanc2 are critical synaptic scaffold proteins which regulate synaptic spine densities and excitatory synapse strength. Recent studies indicated TANC1 and TANC2 are candidate genes of several neurodevelopmental disorders (NDDs). In this study, we identified and characterized a novel interaction between Tanc1/2 and Myo18a, mediated by the Tanc1/2 TPR domains and Myo18a coiled-coil domain and C-extension (CCex). Sequence analysis and size exclusion chromatography experiments reveal that high salt disrupts the interaction between Myo18a and Tanc1/2, indicating that the interaction is primarily driven by charge-charge interactions. More importantly, we found that the Tanc1-TPR/Myo18a CCex interaction could undergo liquid-liquid phase separation (LLPS) in both cultured cells and test tubes, which provides the biochemical basis and potential molecular mechanisms for the LLPS-mediated interactions between Myo18a and Tanc1/2.
Collapse
Affiliation(s)
- Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Dengqin Zhong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zhiwei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jianchao Li
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kang Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Institute of Geriatric Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| |
Collapse
|
2
|
Mizrahi L, Choudhary A, Ofer P, Goldberg G, Milanesi E, Kelsoe JR, Gurwitz D, Alda M, Gage FH, Stern S. Immunoglobulin genes expressed in lymphoblastoid cell lines discern and predict lithium response in bipolar disorder patients. Mol Psychiatry 2023; 28:4280-4293. [PMID: 37488168 PMCID: PMC10827667 DOI: 10.1038/s41380-023-02183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.
Collapse
Affiliation(s)
- Liron Mizrahi
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Ashwani Choudhary
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Polina Ofer
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Gabriela Goldberg
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - John R Kelsoe
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, B3H 2E2, Canada
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
3
|
Yang Q, Liu H, Li Z, Wang Y, Liu W. Purification and mutagenesis studies of TANC1 ankyrin repeats domain provide clues to understand mis-sense variants from diseases. Biochem Biophys Res Commun 2019; 514:358-364. [PMID: 31040020 DOI: 10.1016/j.bbrc.2019.04.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Abstract
TANC1 and its close relative TANC2 are two important synaptic scaffold proteins which play critical roles in regulating densities of synaptic spines and excitatory synapse strength. Recent studies indicated TANC1 and TANC2 are candidate genes of several neurodevelopmental disorders (NDD). So far, the biochemical properties of TANC1/2 proteins remain largely unknown. In this study, Ankyrin-repeats (AR) domain of TANC1 was expressed and purified using Escherichia coli. (E. coli.) cells, which showed low solubility and stability after removing the maltose binding protein (MBP) tag. Sequence analysis revealed that the TANC1 AR domain is lack of canonical N, C-capping units. By introducing two point mutations in the C-capping unit and replacing the N-capping unit, monomeric and well-folded TANC1 AR domain was purified and characterized by size exclusion chromatography coupled with multi-angle static light scattering (SEC-MALS) and circular dichroism spectroscopy (CD). In addition, mutations from intellectual disability (ID) patients and cancer patients were imported into the TANC1 AR domain. The ID mutant exhibited marginal effects in terms of conformation and protein folding stability changes. By contrast, the cancer mutants dramatically decreased protein solubility. Combined with structural prediction, we speculated that mis-sense variants tested in this study may either affect protein folding or disrupt the interaction between TANC1/2 AR domains and their binding partners.
Collapse
Affiliation(s)
- Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiwei Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China.
| |
Collapse
|
4
|
Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family. Sci Rep 2017; 7:6829. [PMID: 28754924 PMCID: PMC5533708 DOI: 10.1038/s41598-017-05748-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
The emergence of genes implicated across multiple comorbid neurologic disorders allows to identify shared underlying molecular pathways. Recently, investigation of patients with diverse neurologic disorders found TANC1 and TANC2 as possible candidate disease genes. While the TANC proteins have been reported as postsynaptic scaffolds influencing synaptic spines and excitatory synapse strength, their molecular functions remain unknown. Here, we conducted a comprehensive in silico analysis of the TANC protein family to characterize their molecular role and understand possible neurobiological consequences of their disruption. The known Ankyrin and tetratricopeptide repeat (TPR) domains have been modeled. The newly predicted N-terminal ATPase domain may function as a regulated molecular switch for downstream signaling. Several putative conserved protein binding motifs allowed to extend the TANC interaction network. Interestingly, we highlighted connections with different signaling pathways converging to modulate neuronal activity. Beyond a known role for TANC family members in the glutamate receptor pathway, they seem linked to planar cell polarity signaling, Hippo pathway, and cilium assembly. This suggests an important role in neuron projection, extension and differentiation.
Collapse
|
5
|
Poot M. Chromothripsis Challenges the Germline. Mol Syndromol 2012; 3:99-101. [PMID: 23112751 DOI: 10.1159/000341255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Kasnauskiene J, Cimbalistiene L, Utkus A, Ciuladaite Z, Preiksaitiene E, Pečiulytė A, Kučinskas V. Two new de novo interstitial duplications covering 2p14-p22.1: clinical and molecular analysis. Cytogenet Genome Res 2012; 139:52-8. [PMID: 23036992 DOI: 10.1159/000342544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
We provide a detailed clinical and molecular analysis of 2 patients with de novo interstitial duplications at 2p14-p16.1 and 2p16.1-p22.1. The 10.13-Mb duplication of chromosome 2p14-p16.1 was identified in a 9-year-old boy with mental retardation, behavioral problems (hyperactivity, hyperphagia, and subsequent vomiting), recurrent respiratory tract infections, macrocephaly, epilepsy, and dysmorphic features. The 17.49-Mb duplication of 2p16.1-p22.1 was found in a 17-year-old girl with moderate mental retardation, behavioral and emotional problems, anxiety, and facial dysmorphic features. Very few cases of de novo interstitial duplication of 2p14-p22.1 are reported in the literature, with the great majority of them lacking a detailed molecular analysis. The abnormal phenotype of these cases is caused by mechanisms such as the overdose of a duplicated gene (or genes), the disruption of a gene or its regulatory sequence by the breakpoints of duplication, or by an excess of genetic material which may disorganize chromatin conformation affecting distant gene expression. The clinical and molecular analysis of these 2 rare de novo interstitial duplications provides useful information which is extremely valuable for clinical evaluation at the prenatal and postnatal level and for the molecular understanding of the underlying mechanisms of human diseases.
Collapse
Affiliation(s)
- J Kasnauskiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
7
|
Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ, van Binsbergen E, Renkens I, Duran K, Ballarati L, Vergult S, Giardino D, Hansson K, Ruivenkamp CAL, Jager M, van Haeringen A, Ippel EF, Haaf T, Passarge E, Hochstenbach R, Menten B, Larizza L, Guryev V, Poot M, Cuppen E. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 2012; 1:648-55. [PMID: 22813740 DOI: 10.1016/j.celrep.2012.05.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/09/2012] [Accepted: 05/14/2012] [Indexed: 12/20/2022] Open
Abstract
Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements.
Collapse
Affiliation(s)
- Wigard P Kloosterman
- Department of Medical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|