1
|
Lamantia J, Sloan K, Wallace JM, Roper RJ. Compromised femoral and lumbovertebral bone in the Dp(16)1Yey Down syndrome mouse model. Bone 2024; 181:117046. [PMID: 38336158 PMCID: PMC11000152 DOI: 10.1016/j.bone.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Down syndrome (DS), affecting ∼1 in 800 live births, is caused by the triplication of human chromosome 21 (Hsa21). Individuals with DS have skeletal features including craniofacial abnormalities and decreased bone mineral density (BMD). Lowered BMD can lead to increased fracture risk, with common fracture points at the femoral neck and lumbar spine. While the femur has been studied in DS mouse models, there is little research done on the vertebrae despite evidence that humans with DS have affected vertebrae. Additionally, it is important to establish when skeletal deficits occur to find times of potential intervention. The Dp(16)1Yey DS mouse model has all genes triplicated on mouse chromosome 16 orthologous to Hsa21 and displayed deficits in long bone, including trabecular and cortical deficits in male but not female mice, at 12 weeks. We hypothesized that the long bone and lumbovertebral microarchitecture would exhibit sexually dimorphic deficits in Dp(16)1Yey mice compared to control mice and long bone strength would be diminished in Dp(16)1Yey mice at 6 weeks. The trabecular region of the 4th lumbar (L4) vertebra and the trabecular and cortical regions of the femur were analyzed via micro-computed tomography and 3-point bending in 6-week-old male and female Dp(16)1Yey and control mice. Trabecular and cortical deficits were observed in femurs from male Dp(16)1Yey mice, and cortical deficits were seen in femurs of male and female Dp(16)1Yey mice. Male Dp(16)1Yey femurs had more deficits in bone strength at whole bone and tissue-estimate level properties, but female Dp(16)1Yey mice were also affected. Additionally, the L4 of male and female Dp(16)1Yey mice show trabecular deficits, which have not been previously reported in a DS mouse model. Our results indicate that skeletal deficits associated with DS occur early in skeletal development, are dependent on skeletal compartment and site, are sex dependent, and potential interventions should likely begin early in skeletal development of DS mouse models.
Collapse
Affiliation(s)
- Joshua Lamantia
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), United States of America
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis (IUPUI), United States of America.
| |
Collapse
|
2
|
O' Malley BGJ, Duong H, Kafer G, Maugham-Macan M. The aetiology of atypical bone health in individuals with Down syndrome. Arch Osteoporos 2023; 18:140. [PMID: 37996656 DOI: 10.1007/s11657-023-01348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE Trisomy 21 (T21), more commonly known as Down syndrome (DS) is a genetic condition where every cell in the body has an additional copy of chromosome 21. Despite improvements in our management of DS-associated health risks, we still do not understand how T21 impacts human bone health. This is a critical area of research owing to increased life expectancy of people with DS, and the predisposition of individuals with DS to early-onset osteoporosis and osteopenia. METHODS We have conducted a scoping review using the methodological framework of Arksey and O'Malley (2005) which analysed the existing data on bone growth, development, maintenance and repair in T21 using the Medical Subject Headings (MeSH) terms: Trisomy 21, Down syndrome, Down's syndrome, bone development, bone growth, bone maintenance, fracture risk, osteoporosis, bone mineral density, bone strength, bone mineral content, bone formation, bone repair, osteoblast, osteoclast, osteocyte, osteomacs. A total of 31 papers were identified. After screening, 16 articles were included in full-text review. RESULTS There was a total of eleven in vivo animal model studies identified and included in the scoping review. Of those eleven, ten revealed a difference in bone growth and development in animal models of DS, and two found that bone maintenance and repair in animal models of DS is reduced with both studies reporting an osteoporotic bone phenotype in male and female mice. All five studies that included human participants reported impacts on bone growth and development with reduced bone growth rates and delayed bone maturation in individuals with DS. At the time of review, there were no human studies directly investigating bone maintenance and repair in individuals with DS. CONCLUSION We found documented evidence that T21 impacts bone growth and development, maintenance and repair in both animal models and human studies.
Collapse
Affiliation(s)
- Bridgette G J O' Malley
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Huong Duong
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Georgia Kafer
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Michelle Maugham-Macan
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Sloan K, Thomas J, Blackwell M, Voisard D, Lana-Elola E, Watson-Scales S, Roper DL, Wallace JM, Fisher EMC, Tybulewicz VLJ, Roper RJ. Genetic dissection of triplicated chromosome 21 orthologs yields varying skeletal traits in Down syndrome model mice. Dis Model Mech 2023; 16:dmm049927. [PMID: 36939025 PMCID: PMC10163323 DOI: 10.1242/dmm.049927] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023] Open
Abstract
Down syndrome (DS) phenotypes result from triplicated genes, but the effects of three copy genes are not well known. A mouse mapping panel genetically dissecting human chromosome 21 (Hsa21) syntenic regions was used to investigate the contributions and interactions of triplicated Hsa21 orthologous genes on mouse chromosome 16 (Mmu16) on skeletal phenotypes. Skeletal structure and mechanical properties were assessed in femurs of male and female Dp9Tyb, Dp2Tyb, Dp3Tyb, Dp4Tyb, Dp5Tyb, Dp6Tyb, Ts1Rhr and Dp1Tyb;Dyrk1a+/+/- mice. Dp1Tyb mice, with the entire Hsa21 homologous region of Mmu16 triplicated, display bone deficits similar to those of humans with DS and served as a baseline for other strains in the panel. Bone phenotypes varied based on triplicated gene content, sex and bone compartment. Three copies of Dyrk1a played a sex-specific, essential role in trabecular deficits and may interact with other genes to influence cortical deficits related to DS. Triplicated genes in Dp9Tyb and Dp2Tyb mice improved some skeletal parameters. As triplicated genes can both improve and worsen bone deficits, it is important to understand the interaction between and molecular mechanisms of skeletal alterations affected by these genes.
Collapse
Affiliation(s)
- Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jared Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew Blackwell
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Deanna Voisard
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Abstract
PURPOSE Down syndrome (DS) is caused by trisomy 21 (Ts21) and results in skeletal deficits including shortened stature, low bone mineral density, and a predisposition to early onset osteoporosis. Ts21 causes significant alterations in skeletal development, morphology of the appendicular skeleton, bone homeostasis, age-related bone loss, and bone strength. However, the genetic or cellular origins of DS skeletal phenotypes remain unclear. RECENT FINDINGS New studies reveal a sexual dimorphism in characteristics and onset of skeletal deficits that differ between DS and typically developing individuals. Age-related bone loss occurs earlier in the DS as compared to general population. Perturbations of DS skeletal quality arise from alterations in cellular and molecular pathways affected by the overexpression of trisomic genes. Sex-specific alterations occur in critical developmental pathways that disrupt bone accrual, remodeling, and homeostasis and are compounded by aging, resulting in increased risks for osteopenia, osteoporosis, and fracture in individuals with DS.
Collapse
Affiliation(s)
- Jared R Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL 306, Indianapolis, IN, 46202-3275, USA
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL 306, Indianapolis, IN, 46202-3275, USA.
| |
Collapse
|
5
|
Thomas JR, LaCombe J, Long R, Lana-Elola E, Watson-Scales S, Wallace JM, Fisher EMC, Tybulewicz VLJ, Roper RJ. Interaction of sexual dimorphism and gene dosage imbalance in skeletal deficits associated with Down syndrome. Bone 2020; 136:115367. [PMID: 32305495 PMCID: PMC7262595 DOI: 10.1016/j.bone.2020.115367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
All individuals with Down syndrome (DS), which results from trisomy of human chromosome 21 (Ts21), present with skeletal abnormalities typified by craniofacial features, short stature and low bone mineral density (BMD). Differences in skeletal deficits between males and females with DS suggest a sexual dimorphism in how trisomy affects bone. Dp1Tyb mice contain three copies of all of the genes on mouse chromosome 16 that are homologous to human chromosome 21, males and females are fertile, and therefore are an excellent model to test the hypothesis that gene dosage influences the sexual dimorphism of bone abnormalities in DS. Dp1Tyb as compared to control littermate mice at time points associated with bone accrual (6 weeks) and skeletal maturity (16 weeks) showed deficits in BMD and trabecular architecture that occur largely through interactions between sex and genotype and resulted in lower percent bone volume in all female and Dp1Tyb male mice. Cortical bone in Dp1Tyb as compared to control mice exhibited different changes over time influenced by sex × genotype interactions including reduced cortical area in both male and female Dp1Tyb mice. Mechanical testing analyses suggested deficits in whole bone properties such as bone mass and geometry, but improved material properties in female and Dp1Tyb mice. Sexual dimorphisms and the influence of trisomic gene dosage differentially altered cellular properties of male and female Dp1Tyb bone. These data establish sex, gene dosage, skeletal site and age as important factors in skeletal development of DS model mice, paving the way for identification of the causal dosage-sensitive genes. Skeletal differences in developing male and female Dp1Tyb DS model mice replicated differences in less-studied adolescents with DS and established a foundation to understand the etiology of trisomic bone deficits.
Collapse
Affiliation(s)
- Jared R Thomas
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Jonathan LaCombe
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Rachel Long
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA
| | | | | | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| | | | - Victor L J Tybulewicz
- The Francis Crick Institute, London, UK; Department of Immunology & Inflammation, Imperial College London, London W12 0NN, UK
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, USA.
| |
Collapse
|
6
|
LaCombe JM, Roper RJ. Skeletal dynamics of Down syndrome: A developing perspective. Bone 2020; 133:115215. [PMID: 31887437 PMCID: PMC7044033 DOI: 10.1016/j.bone.2019.115215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/05/2019] [Accepted: 12/24/2019] [Indexed: 01/14/2023]
Abstract
Individuals with Down syndrome (DS) display distinctive skeletal morphology compared to the general population, but disparate descriptions, methodologies, analyses, and populations sampled have led to diverging conclusions about this unique skeletal phenotype. As individuals with DS are living longer, they may be at a higher risk of aging disorders such as osteoporosis and increased fracture risk. Sexual dimorphism has been suggested between males and females with DS in which males, not females, experience an earlier decline in bone mineral density (BMD). Unfortunately, studies focusing on skeletal health related to Trisomy 21 (Ts21) are few in number and often too underpowered to answer questions about skeletal development, resultant osteoporosis, and sexual dimorphism, especially in stages of bone accrual. Further confounding the field are the varied methods of bone imaging, analysis, and data interpretation. This review takes a critical look at the current knowledge of DS skeletal phenotypes, both from human and mouse studies, and presents knowledge gaps that need to be addressed, differences in research methodologies and analyses that affect the interpretation of results, and proposes guidelines for overcoming obstacles to understand skeletal traits associated with DS. By examining our current knowledge of bone in individuals with Ts21, a trajectory for future studies may be established to provide meaningful solutions for understanding the development of and improving skeletal structures in individuals with and without DS.
Collapse
Affiliation(s)
- Jonathan M LaCombe
- Department of Biology, Indiana University-Purdue University Indianapolis, United States of America
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, United States of America.
| |
Collapse
|
7
|
Belichenko PV, Kleschevnikov AM, Becker A, Wagner GE, Lysenko LV, Yu YE, Mobley WC. Down Syndrome Cognitive Phenotypes Modeled in Mice Trisomic for All HSA 21 Homologues. PLoS One 2015; 10:e0134861. [PMID: 26230397 PMCID: PMC4521889 DOI: 10.1371/journal.pone.0134861] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/14/2015] [Indexed: 01/01/2023] Open
Abstract
Down syndrome (DS), trisomy for chromosome 21, is the most common genetic cause of intellectual disability. The genomic regions on human chromosome 21 (HSA21) are syntenically conserved with regions on mouse chromosomes 10, 16, and 17 (Mmu10, Mmu16, and Mmu17). Recently, we created a genetic model of DS which carries engineered duplications of all three mouse syntenic regions homologous to HSA21. This 'triple trisomic' or TTS model thus represents the most complete and accurate murine model currently available for experimental studies of genotype-phenotype relationships in DS. Here we extended our initial studies of TTS mice. Locomotor activity, stereotypic and repetitive behavior, anxiety, working memory, long-term memory, and synaptic plasticity in the dentate gyrus were examined in the TTS and wild-type (WT) control mice. Changes in locomotor activity were most remarkable for a significant increase in ambulatory time and a reduction in average velocity of TTS mice. No changes were detected in repetitive and stereotypic behavior and in measures of anxiety. Working memory showed no changes when tested in Y-maze, but deficiency in a more challenging T-maze test was detected. Furthermore, long-term object recognition memory was significantly reduced in the TTS mice. These changes were accompanied by deficient long-term potentiation in the dentate gyrus, which was restored to the WT levels following blockade of GABAA receptors with picrotoxin (100 μM). TTS mice thus demonstrated a number of phenotypes characteristic of DS and may serve as a new standard by which to evaluate and direct findings in other less complete models of DS.
Collapse
Affiliation(s)
- Pavel V. Belichenko
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093–0649, United States of America
| | - Alexander M. Kleschevnikov
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093–0649, United States of America
- * E-mail:
| | - Ann Becker
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093–0649, United States of America
| | - Grant E. Wagner
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093–0649, United States of America
| | - Larisa V. Lysenko
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093–0649, United States of America
| | - Y. Eugene Yu
- Genetics Program and Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, 14263, United States of America
| | - William C. Mobley
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093–0649, United States of America
| |
Collapse
|
8
|
Abstract
The normal human chromosome complement consists of 46 chromosomes comprising 22 morphologically different pairs of autosomes and one pair of sex chromosomes. Variations in either chromosome number and/or structure frequently result in significant mental impairment and/or a variety of other clinical problems, among them, altered bone mass and strength. Chromosomal syndromes associated with specific chromosomal abnormalities are classified as either numerical or structural and may involve more than one chromosome. Aneuploidy refers to the presence of an extra copy of a specific chromosome, or trisomy, as seen in Down's syndrome (trisomy 21), or the absence of a single chromosome, or monosomy, as seen in Turner syndrome (a single X chromosome in females: 45, X). Aneuploidies have diverse phenotypic consequences, ranging from severe mental retardation and developmental abnormalities to increased susceptibility to various neoplasms and premature death. In fact, trisomy 21 is the prototypical aneuploidy in humans, is the most common genetic abnormality associated with longevity, and is one of the most widespread genetic causes of intellectual disability. In this review, the impact of trisomy 21 on the bone mass, architecture, skeletal health, and quality of life of people with Down syndrome will be discussed.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR
| | - John R. Harris
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Kent D. McKelvey
- Department of Genetics. University of Arkansas for Medical Sciences, Little Rock, AR
| | - Larry J. Suva
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR
- Corresponding Author
| |
Collapse
|
9
|
Fowler TW, McKelvey KD, Akel NS, Vander Schilden J, Bacon AW, Bracey JW, Sowder T, Skinner RA, Swain FL, Hogue WR, Leblanc DB, Gaddy D, Wenger GR, Suva LJ. Low bone turnover and low BMD in Down syndrome: effect of intermittent PTH treatment. PLoS One 2012; 7:e42967. [PMID: 22916188 PMCID: PMC3419249 DOI: 10.1371/journal.pone.0042967] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
Trisomy 21 affects virtually every organ system and results in the complex clinical presentation of Down syndrome (DS). Patterns of differences are now being recognized as patients' age and these patterns bring about new opportunities for disease prevention and treatment. Low bone mineral density (BMD) has been reported in many studies of males and females with DS yet the specific effects of trisomy 21 on the skeleton remain poorly defined. Therefore we determined the bone phenotype and measured bone turnover markers in the murine DS model Ts65Dn. Male Ts65Dn DS mice are infertile and display a profound low bone mass phenotype that deteriorates with age. The low bone mass was correlated with significantly decreased osteoblast and osteoclast development, decreased bone biochemical markers, a diminished bone formation rate and reduced mechanical strength. The low bone mass observed in 3 month old Ts65Dn mice was significantly increased after 4 weeks of intermittent PTH treatment. These studies provide novel insight into the cause of the profound bone fragility in DS and identify PTH as a potential anabolic agent in the adult low bone mass DS population.
Collapse
Affiliation(s)
- Tristan W. Fowler
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Kent D. McKelvey
- Department of Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Nisreen S. Akel
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jaclyn Vander Schilden
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Anthony W. Bacon
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - John W. Bracey
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Timothy Sowder
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Robert A. Skinner
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Frances L. Swain
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - William R. Hogue
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Donna B. Leblanc
- Department of Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Dana Gaddy
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Galen R. Wenger
- Department of Pharmacology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Larry J. Suva
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
10
|
The use of mouse models for understanding the biology of down syndrome and aging. Curr Gerontol Geriatr Res 2012; 2012:717315. [PMID: 22461792 PMCID: PMC3296169 DOI: 10.1155/2012/717315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022] Open
Abstract
Down syndrome is a complex condition caused by trisomy of human chromosome 21. The biology of aging may be different in individuals with Down syndrome; this is not well understood in any organism. Because of its complexity, many aspects of Down syndrome must be studied either in humans or in animal models. Studies in humans are essential but are limited for ethical and practical reasons. Fortunately, genetically altered mice can serve as extremely useful models of Down syndrome, and progress in their production and analysis has been remarkable. Here, we describe various mouse models that have been used to study Down syndrome. We focus on segmental trisomies of mouse chromosome regions syntenic to human chromosome 21, mice in which individual genes have been introduced, or mice in which genes have been silenced by targeted mutagenesis. We selected a limited number of genes for which considerable evidence links them to aspects of Down syndrome, and about which much is known regarding their function. We focused on genes important for brain and cognitive function, and for the altered cancer spectrum seen in individuals with Down syndrome. We conclude with observations on the usefulness of mouse models and speculation on future directions.
Collapse
|