1
|
Molecular Pathogenesis and Peripheral Monitoring of Adult Fragile X-Associated Syndromes. Int J Mol Sci 2021; 22:ijms22168368. [PMID: 34445074 PMCID: PMC8395059 DOI: 10.3390/ijms22168368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
Abnormal trinucleotide expansions cause rare disorders that compromise quality of life and, in some cases, lifespan. In particular, the expansions of the CGG-repeats stretch at the 5’-UTR of the Fragile X Mental Retardation 1 (FMR1) gene have pleiotropic effects that lead to a variety of Fragile X-associated syndromes: the neurodevelopmental Fragile X syndrome (FXS) in children, the late-onset neurodegenerative disorder Fragile X-associated tremor-ataxia syndrome (FXTAS) that mainly affects adult men, the Fragile X-associated primary ovarian insufficiency (FXPOI) in adult women, and a variety of psychiatric and affective disorders that are under the term of Fragile X-associated neuropsychiatric disorders (FXAND). In this review, we will describe the pathological mechanisms of the adult “gain-of-function” syndromes that are mainly caused by the toxic actions of CGG RNA and FMRpolyG peptide. There have been intensive attempts to identify reliable peripheral biomarkers to assess disease progression and onset of specific pathological traits. Mitochondrial dysfunction, altered miRNA expression, endocrine system failure, and impairment of the GABAergic transmission are some of the affectations that are susceptible to be tracked using peripheral blood for monitoring of the motor, cognitive, psychiatric and reproductive impairment of the CGG-expansion carriers. We provided some illustrative examples from our own cohort. Understanding the association between molecular pathogenesis and biomarkers dynamics will improve effective prognosis and clinical management of CGG-expansion carriers.
Collapse
|
2
|
Study of telomere length in men who carry a fragile X premutation or full mutation allele. Hum Genet 2020; 139:1531-1539. [PMID: 32533363 DOI: 10.1007/s00439-020-02194-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
The fragile X premutation is defined by the expansion of the CGG trinucleotide repeat at the 5' UTR of the FMR1 gene to between 55 and 200 repeats, while repeat tracks longer than 200 are defined as full mutations. Men carrying a premutation are at increased risk for fragile X-associated tremor/ataxia syndrome (FXTAS); those with > 200 repeats have fragile X syndrome, a common genetic form of intellectual disabilities. In our study, we tested the hypothesis that men carrying a fragile X premutation or full mutation are "biologically older", as suggested by the associated age-related disorder in the presence of the fragile X premutation or the altered cellular pathology that affects both the fragile X premutation and full mutation carriers. Thus, we predicted that both groups would have shorter telomeres than men carrying the normal size repeat allele. Using linear regression models, we found that, on average, premutation carriers had shorter telomeres compared with non-carriers (n = 69 vs n = 36; p = 0.02) and that there was no difference in telomere length between full mutation carriers and non-carriers (n = 37 vs n = 29; p > 0.10). Among premutation carriers only, we also asked whether telomere length was shorter among men with vs without symptoms of FXTAS (n = 28 vs n = 38 and n = 27 vs n = 41, depending on criteria) and found no evidence for a difference (p > 0.10). Previous studies have shown that the premutation is transcribed whereas the full mutation is not, and the expanded repeat track in FMR1 transcript is thought to lead to the risk for premutation-associated disorders. Thus, our data suggest that the observed premutation-only telomere shortening may be a consequence of the toxic effect of the premutation transcript and suggest that premutation carriers are "biologically older" than men carrying the normal size allele in the same age group.
Collapse
|
3
|
Albizua I, Rambo-Martin BL, Allen EG, He W, Amin AS, Sherman SL. Women who carry a fragile X premutation are biologically older than noncarriers as measured by telomere length. Am J Med Genet A 2017; 173:2985-2994. [PMID: 28941155 DOI: 10.1002/ajmg.a.38476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/12/2017] [Accepted: 08/21/2017] [Indexed: 01/25/2023]
Abstract
Women who carry a fragile X premutation, defined as having 55-200 unmethylated CGG repeats in the 5' UTR of the X-linked FMR1 gene, have a 20-fold increased risk for primary ovarian insufficiency (FXPOI). We tested the hypothesis that women with a premutation + FXPOI have shorter telomeres than those without FXPOI because they are "biologically older." Using linear regression, we found that women carrying a premutation (n = 172) have shorter telomeres and hence, are "biologically older" than women carrying the normal size allele (n = 81). Strikingly, despite having shorter telomeres, age was not statistically associated with their telomere length, in contrast to non-carrier controls. Further, telomere length within premutation carriers was not associated with repeat length but was associated with a diagnosis of FXPOI, although the latter finding may depend on FXPOI age of onset.
Collapse
Affiliation(s)
- Igor Albizua
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Weiya He
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ashima S Amin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Kong PL, Looi LM, Lau TP, Cheah PL. Assessment of Telomere Length in Archived Formalin-Fixed, Paraffinized Human Tissue Is Confounded by Chronological Age and Storage Duration. PLoS One 2016; 11:e0161720. [PMID: 27598341 PMCID: PMC5012687 DOI: 10.1371/journal.pone.0161720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 01/13/2023] Open
Abstract
Telomeres shorten with physiological aging but undergo substantial restoration during cancer immortalization. Increasingly, cancer studies utilize the archive of formalin-fixed, paraffin-embedded (FFPE) tissues in diagnostic pathology departments. Conceptually, such studies would be confounded by physiological telomere attrition and loss of DNA integrity from prolonged tissue storage. Our study aimed to investigate these two confounding factors. 145 FFPE tissues of surgically-resected, non-diseased appendixes were retrieved from our pathology archive, from years 2008 to 2014. Cases from 2013 to 2014 were categorized by patient chronological age (0–20 years, 21–40 years, 41–60 years, > 60 years). Telomere lengths of age categories were depicted by telomere/chromosome 2 centromere intensity ratio (TCR) revealed by quantitative fluorescence in situ hybridization. Material from individuals aged 0–20 years from years 2013/2014, 2011/2012, 2009/2010, and 2008 were compared for storage effect. Telomere integrity was assessed by telomere fluorescence intensity (TFI). Epithelial TCRs (mean ± SD) for the respective age groups were 4.84 ± 2.08, 3.64 ± 1.21, 2.03 ± 0.37, and 1.93 ± 0.45, whereas corresponding stromal TCRs were 5.16 ± 2.55, 3.84 ± 1.36, 2.49 ± 1.20, and 2.93 ± 1.24. A trend of inverse correlation with age in both epithelial and stromal tissues is supported by r = -0.69, p < 0.001 and r = -0.42, p < 0.001 respectively. Epithelial TFIs (mean ± SD) of years 2013/2014, 2011/2012, 2009/2010 and 2008 were 852.60 ± 432.46, 353.04 ± 127.12, 209.24 ± 55.57 and 429.22 ± 188.75 respectively. Generally, TFIs reduced with storage duration (r = -0.42, p < 0.001). Our findings agree that age-related telomere attrition occurs in normal somatic tissues, and suggest that an age-based reference can be established for telomere studies on FFPE tissues. We also showed that FFPE tissues archived beyond 2 years are suboptimal for telomere analysis.
Collapse
Affiliation(s)
- Po-Lian Kong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Lai-Meng Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
- * E-mail:
| | - Tze-Pheng Lau
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| | - Phaik-Leng Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Federal Territory, Malaysia
| |
Collapse
|
5
|
Wang Q, Ma S, Song N, Li X, Liu L, Yang S, Ding X, Shan L, Zhou X, Su D, Wang Y, Zhang Q, Liu X, Yu N, Zhang K, Shang Y, Yao Z, Shi L. Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J Clin Invest 2016; 126:2205-20. [PMID: 27183383 DOI: 10.1172/jci85747] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
The histone demethylase PHF8 has been implicated in multiple pathological disorders, including X-linked mental retardation and tumorigenesis. However, it is not clear how the abundance and function of PHF8 are regulated. Here, we report that PHF8 physically associates with the deubiquitinase USP7. Specifically, we demonstrated that USP7 promotes deubiquitination and stabilization of PHF8, leading to the upregulation of a group of genes, including cyclin A2, that are critical for cell growth and proliferation. The USP7-encoding gene was also transcriptionally regulated by PHF8, via positive feedback. USP7 was overexpressed in breast carcinomas, and the level of expression positively correlated with expression of PHF8 and cyclin A2 and with the histological grade of breast cancer. We showed that USP7 promotes breast carcinogenesis by stabilizing PHF8 and upregulating cyclin A2 and that the interaction between USP7 and PHF8 is augmented during DNA damage. Moreover, USP7-promoted PHF8 stabilization conferred cellular resistance to genotoxic insults and was required for the recruitment of BLM and KU70, which are both essential for DNA double-strand break repair. Our study mechanistically links USP7 to epigenetic regulation and DNA repair. Moreover, these data support the pursuit of USP7 and PHF8 as potential targets for breast cancer intervention, especially in combination with chemo- or radiotherapies.
Collapse
|
6
|
Nelson CA, Varcin KJ, Coman NK, De Vivo I, Tager-Flusberg H. Shortened Telomeres in Families With a Propensity to Autism. J Am Acad Child Adolesc Psychiatry 2015; 54:588-94. [PMID: 26088664 DOI: 10.1016/j.jaac.2015.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/22/2015] [Accepted: 04/27/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Shortened telomeres have been linked to poorer health outcomes. Exposure to psychological stress is associated with accelerated telomere shortening, and a well-established body of evidence indicates that families with a child with autism spectrum disorder (ASD) experience heightened levels of psychological stress. Also, alterations in a number of biological processes implicated in telomere length dynamics (i.e., oxidative stress, DNA methylation) have been linked to ASD susceptibility. We examined whether families of children with ASD who have an infant show shortened telomeres. METHOD Saliva samples were collected from infants, their older sibling (proband), and parents in families with or without a child with ASD. Infants and their families were designated as high-risk for ASD (HRA; n = 86) or low-risk for ASD (LRA; n = 118) according to the older siblings' diagnostic status. We used the real-time polymerase chain reaction (PCR) telomere assay to determine relative average telomere length for each participant. RESULTS HRA families demonstrated significantly shorter telomere length relative to LRA families. This effect was observed at the individual family member level, with infants, probands, and mothers in HRA families showing reduced relative telomere length compared to individuals in LRA families; although not significant, fathers of high-risk infants showed a similar pattern of decreased telomere length. CONCLUSION Families of children with ASD who have an infant show shortened telomeres relative to families with no history of ASD. These results suggest that such "high-risk" families should be monitored for the physical and mental health consequences that are often associated with accelerated telomere shortening.
Collapse
Affiliation(s)
- Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, and Harvard Graduate School of Education, Cambridge, MA.
| | - Kandice J Varcin
- Division of Developmental Medicine, Boston Children's Hospital and Harvard Medical School
| | - Nicole K Coman
- Division of Developmental Medicine, Boston Children's Hospital
| | - Immaculata De Vivo
- Harvard Medical School, Harvard School of Public Health Program in Genetic Epidemiology, Boston, and Statistical Genetics and Channing Division of Network Medicine, Brigham and Women's Hospital, Boston
| | | |
Collapse
|
7
|
Polussa J, Schneider A, Hagerman R. Molecular Advances Leading to Treatment Implications for Fragile X Premutation Carriers. BRAIN DISORDERS & THERAPY 2014; 3:1000119. [PMID: 25436181 PMCID: PMC4245015 DOI: 10.4172/2168-975x.1000119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment. Here we review the clinical problems of carriers and treatment recommendations.
Collapse
Affiliation(s)
- Jonathan Polussa
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Health System, Sacramento, California, USA
- Department of Pediatrics, University of California Davis Health System, Sacramento, California, USA
| |
Collapse
|