1
|
Du H, Jolly A, Grochowski CM, Yuan B, Dawood M, Jhangiani SN, Li H, Muzny D, Fatih JM, Coban-Akdemir Z, Carlin ME, Scheuerle AE, Witzl K, Posey JE, Pendleton M, Harrington E, Juul S, Hastings PJ, Bi W, Gibbs RA, Sedlazeck FJ, Lupski JR, Carvalho CMB, Liu P. The multiple de novo copy number variant (MdnCNV) phenomenon presents with peri-zygotic DNA mutational signatures and multilocus pathogenic variation. Genome Med 2022; 14:122. [PMID: 36303224 PMCID: PMC9609164 DOI: 10.1186/s13073-022-01123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The multiple de novo copy number variant (MdnCNV) phenotype is described by having four or more constitutional de novo CNVs (dnCNVs) arising independently throughout the human genome within one generation. It is a rare peri-zygotic mutational event, previously reported to be seen once in every 12,000 individuals referred for genome-wide chromosomal microarray analysis due to congenital abnormalities. These rare families provide a unique opportunity to understand the genetic factors of peri-zygotic genome instability and the impact of dnCNV on human diseases. METHODS Chromosomal microarray analysis (CMA), array-based comparative genomic hybridization, short- and long-read genome sequencing (GS) were performed on the newly identified MdnCNV family to identify de novo mutations including dnCNVs, de novo single-nucleotide variants (dnSNVs), and indels. Short-read GS was performed on four previously published MdnCNV families for dnSNV analysis. Trio-based rare variant analysis was performed on the newly identified individual and four previously published MdnCNV families to identify potential genetic etiologies contributing to the peri-zygotic genomic instability. Lin semantic similarity scores informed quantitative human phenotype ontology analysis on three MdnCNV families to identify gene(s) driving or contributing to the clinical phenotype. RESULTS In the newly identified MdnCNV case, we revealed eight de novo tandem duplications, each ~ 1 Mb, with microhomology at 6/8 breakpoint junctions. Enrichment of de novo single-nucleotide variants (SNV; 6/79) and de novo indels (1/12) was found within 4 Mb of the dnCNV genomic regions. An elevated post-zygotic SNV mutation rate was observed in MdnCNV families. Maternal rare variant analyses identified three genes in distinct families that may contribute to the MdnCNV phenomenon. Phenotype analysis suggests that gene(s) within dnCNV regions contribute to the observed proband phenotype in 3/3 cases. CNVs in two cases, a contiguous gene duplication encompassing PMP22 and RAI1 and another duplication affecting NSD1 and SMARCC2, contribute to the clinically observed phenotypic manifestations. CONCLUSIONS Characteristic features of dnCNVs reported here are consistent with a microhomology-mediated break-induced replication (MMBIR)-driven mechanism during the peri-zygotic period. Maternal genetic variants in DNA repair genes potentially contribute to peri-zygotic genomic instability. Variable phenotypic features were observed across a cohort of three MdnCNV probands, and computational quantitative phenotyping revealed that two out of three had evidence for the contribution of more than one genetic locus to the proband's phenotype supporting the hypothesis of de novo multilocus pathogenic variation (MPV) in those families.
Collapse
Affiliation(s)
- Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher M Grochowski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Baylor Genetics Laboratory, Houston, TX, 77021, USA
- Seattle Children's Hospital, Seattle, WA, 98105, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mary Esther Carlin
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Angela E Scheuerle
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Division of Genetics Diagnostics, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Karin Witzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | | | - Sissel Juul
- Oxford Nanopore Technologies Inc, New York, NY, 10013, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, BCM, Houston, TX, 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Baylor Genetics Laboratory, Houston, TX, 77021, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fritz J Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Pacific Northwest Research Institute, 720 Broadway, Seattle, WA, 98122, USA.
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Baylor Genetics Laboratory, Houston, TX, 77021, USA.
| |
Collapse
|
3
|
Cai M, Fu X, Xu L, Lin N, Huang H. Prenatal Diagnosis of 17p11.2 Copy Number Abnormalities Associated With Smith-Magenis and Potocki-Lupski Syndromes in Fetuses. Front Genet 2022; 12:779237. [PMID: 34992630 PMCID: PMC8724517 DOI: 10.3389/fgene.2021.779237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/06/2021] [Indexed: 01/19/2023] Open
Abstract
Smith-Magenis syndrome and Potocki-Lupski syndrome are rare autosomal dominant diseases. Although clinical phenotypes of adults and children have been reported, fetal ultrasonic phenotypes are rarely reported. A retrospective analysis of 6,200 pregnant women who received invasive prenatal diagnosis at Fujian Provincial Maternal and Child Health Hospital between October 2016 and January 2021 was performed. Amniotic fluid or umbilical cord blood was extracted for karyotyping and single nucleotide polymorphism array analysis. Single nucleotide polymorphism array analysis revealed six fetuses with copy number variant changes in the 17p11.2 region. Among them, one had a copy number variant microdeletion in the 17p11.2 region, which was pathogenically analyzed and diagnosed as Smith-Magenis syndrome. Five fetuses had copy number variant microduplications in the 17p11.2 region, which were pathogenically analyzed and diagnosed as Potocki-Lupski syndrome. The prenatal ultrasound phenotypes of the six fetuses were varied. The parents of two fetuses with Potocki-Lupski syndrome refused verification. Smith-Magenis syndrome in one fetus and Potocki-Lupski in another were confirmed as de novo. Potocki-Lupski syndrome in two fetuses was confirmed to be from maternal inheritance. The prenatal ultrasound phenotypes of Smith-Magenis syndrome and Potocki-Lupski syndrome in fetuses vary; single nucleotide polymorphism array analysis is a powerful diagnostic tool for these diseases. The ultrasonic phenotypes of these cases may enrich the clinical database.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xianguo Fu
- Department of Prenatal Diagnosis, Ningde Municipal Hospital, Ningde Normal University, Ningde, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
6
|
Dhanushkodi A, Xue Y, Roguski EE, Ding Y, Matta SG, Heck D, Fan GH, McDonald MP. Lentiviral-mediated knock-down of GD3 synthase protects against MPTP-induced motor deficits and neurodegeneration. Neurosci Lett 2018; 692:53-63. [PMID: 30391320 DOI: 10.1016/j.neulet.2018.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/16/2022]
Abstract
Converging evidence demonstrates an important role for gangliosides in brain function and neurodegenerative diseases. Exogenous GM1 is broadly neuroprotective, including in rodent, feline, and primate models of Parkinson's disease, and has shown positive effects in clinical trials. We and others have shown that inhibition of the ganglioside biosynthetic enzyme GD3 synthase (GD3S) increases endogenous levels GM1 ganglioside. We recently reported that targeted deletion of St8sia1, the gene that codes for GD3S, prevents motor impairments and significantly attenuates neurodegeneration induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current study investigated the effects of GD3S inhibition on the neurotoxicity and parkinsonism induced by MPTP. Mice were injected intrastriatally with a lentiviral-vector-mediated shRNA construct targeting GD3S (shGD3S) or a scrambled-sequence control (scrRNA). An MPTP regimen of 18 mg/kg x 5 days reduced tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta of scrRNA-treated mice by nearly two-thirds. In mice treated with shGD3S the MPTP-induced lesion was approximately half that size. MPTP induced bradykinesia and deficits in fine motor skills in mice treated with scrRNA. These deficits were absent in shGD3S-treated mice. These results suggest that inhibition of GD3S protects against the nigrostriatal damage, bradykinesia, and fine-motor-skill deficits associated with MPTP administration.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Yi Xue
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Emily E Roguski
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Yun Ding
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Shannon G Matta
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Detlef Heck
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States
| | - Guo-Huang Fan
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center Memphis, TN 38163, United States; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center Memphis, TN 38163, United States.
| |
Collapse
|
7
|
Harel T, Lupski JR. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin Genet 2017; 93:439-449. [PMID: 28950406 DOI: 10.1111/cge.13146] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/01/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022]
Abstract
Genomic disorders result from copy-number variants (CNVs) or submicroscopic rearrangements of the genome rather than from single nucleotide variants (SNVs). Diverse technologies, including array comparative genomic hybridization (aCGH) and single nucleotide polymorphism (SNP) microarrays, and more recently, whole genome sequencing and whole-exome sequencing, have enabled robust genome-wide unbiased detection of CNVs in affected individuals and in reportedly healthy controls. Sequencing of breakpoint junctions has allowed for elucidation of upstream mechanisms leading to genomic instability and resultant structural variation, whereas studies of the association between CNVs and specific diseases or susceptibility to morbid traits have enhanced our understanding of the downstream effects. In this review, we discuss the hallmarks of genomic disorders as they were defined during the first decade of the field, including genomic instability and the mechanism for rearrangement defined as nonallelic homologous recombination (NAHR); recurrent vs nonrecurrent rearrangements; and gene dosage sensitivity. Moreover, we highlight the exciting advances of the second decade of this field, including a deeper understanding of genomic instability and the mechanisms underlying complex rearrangements, mechanisms for constitutional and somatic chromosomal rearrangements, structural intra-species polymorphisms and susceptibility to NAHR, the role of CNVs in the context of genome-wide copy number and single nucleotide variation, and the contribution of noncoding CNVs to human disease.
Collapse
Affiliation(s)
- T Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - J R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|