1
|
Paese CLB, Chang CF, Kristeková D, Brugmann SA. Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies. Dis Model Mech 2022; 15:275968. [PMID: 35818799 PMCID: PMC9403750 DOI: 10.1242/dmm.049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (Orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. While pharmacological intervention with the FDA-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target Sprouty2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and Teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in a molecular, cellular, and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
2
|
Han JT, Egbert MA, Ettinger RE, Kapadia H, Susarla SM. Orthognathic Surgery in Patients with Syndromic Craniosynostosis. Oral Maxillofac Surg Clin North Am 2022; 34:477-487. [PMID: 35787829 DOI: 10.1016/j.coms.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patients with syndromic and nonsyndromic synostosis may have end-stage skeletal discrepancies involving the lower midface and mandible, with associated malocclusion. While orthognathic surgical procedures in this population can be reliably executed, the surgeon must be aware of the unique morphologic characteristics that accompany the primary diagnoses as well as the technical challenges associated with performing Le Fort I osteotomies in patients who have undergone prior subcranial midface distraction.
Collapse
Affiliation(s)
- Jesse T Han
- Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, Seattle, WA, USA
| | - Mark A Egbert
- Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, Seattle, WA, USA; Department of Surgery, Division of Plastic Surgery, University of Washington School of Medicine, Seattle, WA, USA; Craniofacial Center, Seattle Children's Hospital, Seattle, WA, USA
| | - Russell E Ettinger
- Department of Surgery, Division of Plastic Surgery, University of Washington School of Medicine, Seattle, WA, USA; Craniofacial Center, Seattle Children's Hospital, Seattle, WA, USA
| | - Hitesh Kapadia
- Department of Surgery, Division of Plastic Surgery, University of Washington School of Medicine, Seattle, WA, USA; Craniofacial Center, Seattle Children's Hospital, Seattle, WA, USA
| | - Srinivas M Susarla
- Department of Oral and Maxillofacial Surgery, University of Washington School of Dentistry, Seattle, WA, USA; Department of Surgery, Division of Plastic Surgery, University of Washington School of Medicine, Seattle, WA, USA; Craniofacial Center, Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
3
|
Shin HR, Kim BS, Kim HJ, Yoon H, Kim WJ, Choi JY, Ryoo HM. Excessive osteoclast activation by osteoblast paracrine factor RANKL is a major cause of the abnormal long bone phenotype in Apert syndrome model mice. J Cell Physiol 2022; 237:2155-2168. [PMID: 35048384 PMCID: PMC9303724 DOI: 10.1002/jcp.30682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
The fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling pathway plays important roles in the development and growth of the skeleton. Apert syndrome caused by gain‐of‐function mutations of FGFR2 results in aberrant phenotypes of the skull, midface, and limbs. Although short limbs are representative features in patients with Apert syndrome, the causative mechanism for this limb defect has not been elucidated. Here we quantitatively confirmed decreases in the bone length, bone mineral density, and bone thickness in the Apert syndrome model of gene knock‐in Fgfr2S252W/+ (EIIA‐Fgfr2S252W/+) mice. Interestingly, despite these bone defects, histological analysis showed that the endochondral ossification process in the mutant mice was similar to that in wild‐type mice. Tartrate‐resistant acid phosphatase staining revealed that trabecular bone loss in mutant mice was associated with excessive osteoclast activity despite accelerated osteogenic differentiation. We investigated the osteoblast–osteoclast interaction and found that the increase in osteoclast activity was due to an increase in the Rankl level of osteoblasts in mutant mice and not enhanced osteoclastogenesis driven by the activation of FGFR2 signaling in bone marrow‐derived macrophages. Consistently, Col1a1‐Fgfr2S252W/+ mice, which had osteoblast‐specific expression of Fgfr2 S252W, showed significant bone loss with a reduction of the bone length and excessive activity of osteoclasts was observed in the mutant mice. Taken together, the present study demonstrates that the imbalance in osteoblast and osteoclast coupling by abnormally increased Rankl expression in Fgfr2S252W/+ mutant osteoblasts is a major causative mechanism for bone loss and short long bones in Fgfr2S252W/+ mice.
Collapse
Affiliation(s)
- Hye-Rim Shin
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Jung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Heein Yoon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Skeletal Disease Analysis Center, Korea Mouse Phenotyping Center (KMPC), School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Zhao M, Wang Y, Li G, Li J, Yang K, Liu C, Wen X, Song J. The role and potential mechanism of p75NTR in mineralization via in vivo p75NTR knockout mice and in vitro ectomesenchymal stem cells. Cell Prolif 2020; 53:e12758. [PMID: 31922317 PMCID: PMC7048213 DOI: 10.1111/cpr.12758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE The aim of this study is to investigate the role and potential mechanism of p75NTR in mineralization in vivo using p75NTR-knockout mice and in vitro using ectomesenchymal stem cells (EMSCs). MATERIALS AND METHODS Femur bone mass and daily incisor mineralization speed were assessed in an in vivo p75NTR-knockout mouse model. The molecular signatures alkaline phosphatase (ALP), collagen type 1 (Col1), melanoma-associated antigen (Mage)-D1, bone sialoprotein (BSP), osteocalcin (OCN), osteopontin (OPN), distal-less homeobox 1 (Dlx1) and Msh homeobox 1 (Msx1) were examined in vitro in EMSCs isolated from p75NTR+/+ and p75NTRExIII-/- mice. RESULTS p75NTR-knockout mice were smaller in body size than heterozygous and wild-type mice. Micro-computed tomography and structural quantification showed that the osteogenic ability of p75NTRExIII -knockout mice was significantly decreased compared with that of wild-type mice (P < .05). Weaker ALP and alizarin red staining and reduced expression of ALP, Col1, Runx2, BSP, OCN and OPN were also observed in p75NTRExIII-/- EMSCs. Moreover, the distance between calcein fluorescence bands in p75NTRExIII -knockout mice was significantly smaller than that in wild type and heterozygous mice (P < .05), indicating the lower daily mineralization speed of incisors in p75NTRExIII -knockout mice. Further investigation revealed a positive correlation between p75NTR and Mage-D1, Dlx1, and Msx1. CONCLUSION p75NTR not only promotes osteogenic differentiation and tissue mineralization, but also shows a possible relationship with the circadian rhythm of dental hard tissue formation.
Collapse
Affiliation(s)
- Manzhu Zhao
- College of StomatologyChongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical UniversityChongqingChina
| | - Yingying Wang
- Department of StomatologyDaping Hospital & Research Institute of SurgeryThird Military Medical UniversityChongqingChina
| | - Gang Li
- Department of StomatologyDaping Hospital & Research Institute of SurgeryThird Military Medical UniversityChongqingChina
| | - Jun Li
- Department of StomatologyDaping Hospital & Research Institute of SurgeryThird Military Medical UniversityChongqingChina
| | - Kun Yang
- Department of StomatologyDaping Hospital & Research Institute of SurgeryThird Military Medical UniversityChongqingChina
| | - Chang Liu
- College of StomatologyChongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical UniversityChongqingChina
| | - Xiujie Wen
- Department of StomatologyDaping Hospital & Research Institute of SurgeryThird Military Medical UniversityChongqingChina
- Department of OrthodonticsHospital of StomatologySouthwest Medical UniversityLuzhouChina
| | - Jinlin Song
- College of StomatologyChongqing Key Laboratory for Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical UniversityChongqingChina
| |
Collapse
|
5
|
Motch Perrine SM, Wu M, Stephens NB, Kriti D, van Bakel H, Jabs EW, Richtsmeier JT. Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice. Dis Model Mech 2019; 12:dmm.038513. [PMID: 31064775 PMCID: PMC6550049 DOI: 10.1242/dmm.038513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
One diagnostic feature of craniosynostosis syndromes is mandibular dysgenesis. Using three mouse models of Apert, Crouzon and Pfeiffer craniosynostosis syndromes, we investigated how embryonic development of the mandible is affected by fibroblast growth factor receptor 2 (Fgfr2) mutations. Quantitative analysis of skeletal form at birth revealed differences in mandibular morphology between mice carrying Fgfr2 mutations and their littermates that do not carry the mutations. Murine embryos with the mutations associated with Apert syndrome in humans (Fgfr2+/S252W and Fgfr2+/P253R) showed an increase in the size of the osteogenic anlagen and Meckel's cartilage (MC). Changes in the microarchitecture and mineralization of the developing mandible were visualized using histological staining. The mechanism for mandibular dysgenesis in the Apert Fgfr2+/S252W mouse resulting in the most severe phenotypic effects was further analyzed in detail and found to occur to a lesser degree in the other craniosynostosis mouse models. Laser capture microdissection and RNA-seq analysis revealed transcriptomic changes in mandibular bone at embryonic day 16.5 (E16.5), highlighting increased expression of genes related to osteoclast differentiation and dysregulated genes active in bone mineralization. Increased osteoclastic activity was corroborated by TRAP assay and in situ hybridization of Csf1r and Itgb3. Upregulated expression of Enpp1 and Ank was validated in the mandible of Fgfr2+/S252W embryos, and found to result in elevated inorganic pyrophosphate concentration. Increased proliferation of osteoblasts in the mandible and chondrocytes forming MC was identified in Fgfr2+/S252W embryos at E12.5. These findings provide evidence that FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone, contributing to mandibular dysmorphogenesis in craniosynostosis syndromes. This article has an associated First Person interview with the joint first authors of the paper. Summary: FGFR2 gain-of-function mutations differentially affect cartilage formation and intramembranous ossification of dermal bone, resulting in abnormal embryonic osteogenesis of the mandible.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas B Stephens
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Mian M, Ranjitkar S, Townsend GC, Anderson PJ. Alterations in mandibular morphology associated with glypican 1 and glypican 3 gene mutations. Orthod Craniofac Res 2017; 20:183-187. [PMID: 28426184 DOI: 10.1111/ocr.12170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Glypican 1 (GPC1) and glypican 3 (GPC3) are bone co-regulators that act downstream in many of the signalling pathways associated with craniosynostosis. Morphometric data from GPC-knockout mice were analysed to determine whether elimination of GPC1 and GPC3 genes would alter mandibular morphology. SETTING AND SAMPLE POPULATION The murine model included five male and five female mandibles in each of GPC1-knockout, GPC1/GPC3-knockout and wild-type (control) groups. Female GPC3-knockout mice had a very high rate of perinatal lethality, and therefore, only five males were included in this group. METHODS The mandibular morphology of GPC1-knockout (n=10), GPC3-knockout (n=5), GPC1/GPC3-knockout (n=10) and wild-type (n=10) mice was compared by analysing five landmark-based linear dimensions: anterior and posterior lengths, as well as ascending, descending and posterior heights. Measurements were recorded on three-dimensional micro-CT reconstructions. RESULTS GPC3-knockout mandibles were larger than wild-type mandibles for all dimensions (P<.05). Mandibular heights were more affected than lengths. A decreasing trend of mandibular dimensions across the mouse groups (GPC3-knockout>GPC1/GPC3-knockout>GPC1-knockout=wild-type) (P<.05) indicated that an increase in mandibular size was associated with increased GPC3 expression, but not GPC1. CONCLUSIONS Alterations in GPC3 expression are likely to mediate changes to mandibular size in craniosynostosis. These findings have potential future applications in the prevention and treatment of craniosynostosis and associated craniofacial dysmorphology.
Collapse
Affiliation(s)
- M Mian
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - S Ranjitkar
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - G C Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - P J Anderson
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia.,Australian Craniofacial Unit, Women's and Children's Hospital Adelaide, Adelaide, SA, Australia
| |
Collapse
|
7
|
Zhang N, Gui Y, Qiu X, Tang W, Li L, Gober HJ, Li D, Wang L. DHEA prevents bone loss by suppressing the expansion of CD4 + T cells and TNFa production in the OVX-mouse model for postmenopausal osteoporosis. Biosci Trends 2016; 10:277-87. [DOI: 10.5582/bst.2016.01081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Na Zhang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yuyan Gui
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Wei Tang
- Department of Surgery, Graduate School of Medicine, the University of Tokyo
| | - Lisha Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Hans-Jürgen Gober
- Department of Pharmacy, Wagner Jauregg Hospital and Children's Hospital
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- The Academy of Integrative Medicine of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
8
|
Wang L, Qiu XM, Gui YY, Xu YP, Gober HJ, Li DJ. Bu-Shen-Ning-Xin Decoction ameliorated the osteoporotic phenotype of ovariectomized mice without affecting the serum estrogen concentration or uterus. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5019-31. [PMID: 26357466 PMCID: PMC4560509 DOI: 10.2147/dddt.s89505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Bu-Shen-Ning-Xin Decoction (BSNXD), a traditional Chinese medicinal composition, has been used as a remedy for postmenopausal osteoporosis, but its effects on bone metabolism and the uterus have not been reported. PURPOSE We aimed to determine the respective effects of BSNXD on the bones and the uterus of ovariectomized (OVX) mice to evaluate the efficacy and safety of this herbal formula. MATERIALS AND METHODS Postmenopausal osteoporosis animal models that were generated by ovariectomy were treated with BSNXD. Dual-energy X-ray absorptiometry was performed to analyze the bone mineral density, and histomorphometric analysis was performed to measure the parameters related to bone metabolism. Calcein labeling was performed to detect bone formation. The uteruses from the mice were weighed, and the histomorphometry was analyzed. Drug-derived serum was prepared to assess the 17-β-estradiol concentration via enzyme immunoassay. RESULTS BSNXD administration ameliorated the osteoporotic phenotype of OVX mice, as evidenced by an increase in the bone mineral density and bone volume; these effects could not be abolished by the administration of the aromatase inhibitor letrozole. Moreover, BSNXD had no effect on the serum estrogen concentration or uterus. CONCLUSION These results suggest that BSNXD has ameliorating effects on bone loss due to estrogen deprivation without affecting the peripheral blood estrogen concentration or the uterus in OVX mice.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Yu-Yan Gui
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Ying-Ping Xu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Hans-Jürgen Gober
- Department of Pharmacy, Wagner Jauregg Hospital and Children's Hospital, Linz, Austria
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Zhang L, Chen P, Chen L, Weng T, Zhang S, Zhou X, Zhang B, Liu L. Inhibited Wnt signaling causes age-dependent abnormalities in the bone matrix mineralization in the Apert syndrome FGFR2(S252W/+) mice. PLoS One 2015; 10:e112716. [PMID: 25693202 PMCID: PMC4333342 DOI: 10.1371/journal.pone.0112716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/14/2014] [Indexed: 01/16/2023] Open
Abstract
Apert syndrome (AS) is a type of autosomal dominant disease characterized by premature fusion of the cranial sutures, severe syndactyly, and other abnormalities in internal organs. Approximately 70% of AS cases are caused by a single mutation, S252W, in fibroblast growth factor receptor 2 (FGFR2). Two groups have generated FGFR2 knock-in mice Fgfr2S252W/+ that exhibit features of AS. During the present study of AS using the Fgfr2S252W/+ mouse model, an age-related phenotype of bone homeostasis was discovered. The long bone mass was lower in 2 month old mutant mice than in age-matched controls but higher in 5 month old mutant mice. This unusual phenotype suggested that bone marrow-derived mesenchymal stem cells (BMSCs), which are vital to maintain bone homeostasis, might be involved. BMSCs were isolated from Fgfr2S252W/+ mice and found that S252W mutation could impair osteogenic differentiation BMSCs but enhance mineralization of more mature osteoblasts. A microarray analysis revealed that Wnt pathway inhibitors SRFP1/2/4 were up-regulated in mutant BMSCs. This work provides evidence to show that the Wnt/β-catenin pathway is inhibited in both mutant BMSCs and osteoblasts, and differentiation defects of these cells can be ameliorated by Wnt3a treatment. The present study suggested that the bone abnormalities caused by deregulation of Wnt pathway may underlie the symptoms of AS.
Collapse
Affiliation(s)
- Li Zhang
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Peng Chen
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
- Neurosurgery Department, PLA 324 Hospital, Chongqing, China
| | - Lin Chen
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Tujun Weng
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Shichang Zhang
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Xia Zhou
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Bo Zhang
- Department 4, Daping Hospital & Research Institute of Surgery, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Luchuan Liu
- Department of Stomatology, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|