1
|
Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M. WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy 2021; 17:3908-3923. [PMID: 33843443 PMCID: PMC8726670 DOI: 10.1080/15548627.2021.1899669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The WDR45 gene is localized on the X-chromosome and variants in this gene are linked to six different neurodegenerative disorders, i.e., ß-propeller protein associated neurodegeneration, Rett-like syndrome, intellectual disability, and epileptic encephalopathies including developmental and epileptic encephalopathy, early-onset epileptic encephalopathy and West syndrome and potentially also specific malignancies. WDR45/WIPI4 is a WD-repeat β-propeller protein that belongs to the WIPI (WD repeat domain, phosphoinositide interacting) family. The precise cellular function of WDR45 is still largely unknown, but deletions or conventional variants in WDR45 can lead to macroautophagy/autophagy defects, malfunctioning mitochondria, endoplasmic reticulum stress and unbalanced iron homeostasis, suggesting that this protein functions in one or more pathways regulating directly or indirectly those processes. As a result, the underlying cause of the WDR45-associated disorders remains unknown. In this review, we summarize the current knowledge about the cellular and physiological functions of WDR45 and highlight how genetic variants in its encoding gene may contribute to the pathophysiology of the associated diseases. In particular, we connect clinical manifestations of the disorders with their potential cellular origin of malfunctioning and critically discuss whether it is possible that one of the most prominent shared features, i.e., brain iron accumulation, is the primary cause for those disorders. Abbreviations: ATG/Atg: autophagy related; BPAN: ß-propeller protein associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; EEG: electroencephalograph; ENO2/neuron-specific enolase, enolase 2; EOEE: early-onset epileptic encephalopathy; ER: endoplasmic reticulum; ID: intellectual disability; IDR: intrinsically disordered region; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NCOA4: nuclear receptor coactivator 4; PtdIns3P: phosphatidylinositol-3-phosphate; RLS: Rett-like syndrome; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting
Collapse
Affiliation(s)
- Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent So
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Adang LA, Pizzino A, Malhotra A, Dubbs H, Williams C, Sherbini O, Anttonen AK, Lesca G, Linnankivi T, Laurencin C, Milh M, Perrine C, Schaaf CP, Poulat AL, Ville D, Hagelstrom T, Perry DL, Taft RJ, Goldstein A, Vossough A, Helbig I, Vanderver A. Phenotypic and Imaging Spectrum Associated With WDR45. Pediatr Neurol 2020; 109:56-62. [PMID: 32387008 PMCID: PMC7387198 DOI: 10.1016/j.pediatrneurol.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/29/2020] [Accepted: 03/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mutations in the X-linked gene WDR45 cause neurodegeneration with brain iron accumulation type 5. Global developmental delay occurs at an early age with slow progression to dystonia, parkinsonism, and dementia due to progressive iron accumulation in the brain. METHODS We present 17 new cases and reviewed 106 reported cases of neurodegeneration with brain iron accumulation type 5. Detailed information related to developmental history and key time to event measures was collected. RESULTS Within this cohort, there were 19 males. Most individuals were molecularly diagnosed by whole-exome testing. Overall 10 novel variants were identified across 11 subjects. All individuals were affected by developmental delay, most prominently in verbal skills. Most individuals experienced a decline in motor and cognitive skills. Although most individuals were affected by seizures, the spectrum ranged from provoked seizures to intractable epilepsy. The imaging findings varied as well, often evolving over time. The classic iron accumulation in the globus pallidus and substantia nigra was noted in half of our cohort and was associated with older age of image acquisition, whereas myelination abnormalities were associated with younger age. CONCLUSIONS WDR45 mutations lead to a progressive and evolving disorder whose diagnosis is often delayed. Developmental delay and seizures predominate in early childhood, followed by a progressive decline of neurological function. There is variable expressivity in the clinical phenotypes of individuals with WDR45 mutations, suggesting that this gene should be considered in the diagnostic evaluation of children with myelination abnormalities, iron deposition, developmental delay, and epilepsy depending on the age at evaluation.
Collapse
Affiliation(s)
- Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Corresponding author: Laura Adang MD PhD
| | - Amy Pizzino
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alka Malhotra
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Holly Dubbs
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Catherine Williams
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Omar Sherbini
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna-Kaisa Anttonen
- Folkhälsan Research Center, Helsinki, Finland,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Gaetan Lesca
- Department of Medical genetics, Lyon University Hospital, Bron, France
| | - Tarja Linnankivi
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | | | | | | | - Anne-Lise Poulat
- Department of Pediatric Neurology, Lyon University Hospital, Bron, France
| | - Dorothee Ville
- Department of Pediatric Neurology, Lyon University Hospital, Bron, France
| | - Tanner Hagelstrom
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Denise L. Perry
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Ryan J. Taft
- Illumina Clinical Services Laboratory, Illumina, Inc. San Diego, CA, USA
| | - Amy Goldstein
- Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Division of Neuroradiology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Association between Lysosomal Dysfunction and Obesity-Related Pathology: A Key Knowledge to Prevent Metabolic Syndrome. Int J Mol Sci 2019; 20:ijms20153688. [PMID: 31357643 PMCID: PMC6696452 DOI: 10.3390/ijms20153688] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity causes various health problems, such as type 2 diabetes, non-alcoholic fatty liver disease, and cardio- and cerebrovascular diseases. Metabolic organs, particularly white adipose tissue (WAT) and liver, are deeply involved in obesity. WAT contains many adipocytes with energy storage capacity and secretes adipokines depending on the obesity state, while liver plays pivotal roles in glucose and lipid metabolism. This review outlines and underscores the relationship between obesity and lysosomal functions, including lysosome biogenesis, maturation and activity of lysosomal proteases in WAT and liver. It has been revealed that obesity-induced abnormalities of lysosomal proteases contribute to inflammation and cellular senescence in adipocytes. Previous reports have demonstrated obesity-induced ectopic lipid accumulation in liver is associated with abnormality of lysosomal proteases as well as other lysosomal enzymes. These studies demonstrate that lysosomal dysfunction in WAT and liver underlies part of the obesity-related pathology, raising the possibility that strategies to modulate lysosomal function may be effective in preventing or treating the metabolic syndrome.
Collapse
|
4
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:cells8070674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
5
|
A new complex rearrangement in infant ALL: t(X;11;17)(p11.2;q23;q12). Cancer Genet 2018; 228-229:110-114. [DOI: 10.1016/j.cancergen.2018.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 11/23/2022]
|
6
|
Morales-Briceño H, Sanchez-Hernandez BE, Meyer E, Kurian MA, Fois AF, Rodriguez-Violante M, Leal-Ortega R, Perez-Lohman C, Mohammad S, Fung VSC. Beta-propeller-associated neurodegeneration can present with dominant or isolated parkinsonism. Mov Disord 2018; 33:654-656. [PMID: 29488265 DOI: 10.1002/mds.27294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Affiliation(s)
- Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Beatriz E Sanchez-Hernandez
- Department of Genetics, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", México City, Mexico
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Alessandro F Fois
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia
| | | | | | - Christian Perez-Lohman
- Movement Disorders Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Shekeeb Mohammad
- Neurology Department, Children's Hospital, Westmead, NSW, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Genome-Wide Identification and Characterization of WD40 Protein Genes in the Silkworm, Bombyx mori. Int J Mol Sci 2018; 19:ijms19020527. [PMID: 29425159 PMCID: PMC5855749 DOI: 10.3390/ijms19020527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
WD40 proteins are scaffolding molecules in protein-protein interactions and play crucial roles in fundamental biological processes. Genome-wide characterization of WD40 proteins in animals has been conducted solely in humans. We retrieved 172 WD40 protein genes in silkworm (BmWD40s) and identified these genes in 7 other insects, 9 vertebrates and 5 nematodes. Comparative analysis revealed that the WD40 protein gene family underwent lineage-specific expansions during animal evolution, but did not undergo significant expansion during insect evolution. The BmWD40s were categorized into five clusters and 12 classes according to the phylogenetic classification and their domain architectures, respectively. Sequence analyses indicated that tandem and segmental duplication played minor roles in producing the current number of BmWD40s, and domain recombination events of multi-domain BmWD40s might have occurred mainly after gene duplication events. Gene Ontology (GO) analysis revealed that a higher proportion of BmWD40s was involved in processes, such as binding, transcription-regulation and cellular component biogenesis, compared to all silkworm genes annotated in GO. Microarray-based analysis demonstrated that many BmWD40s had tissue-specific expression and exhibited high and/or sex-related expression during metamorphosis. These findings contribute to a better understanding of the evolution of the animal WD40 protein family and assist the study of the functions of BmWD40s.
Collapse
|
8
|
Stige KE, Gjerde IO, Houge G, Knappskog PM, Tzoulis C. Beta-propeller protein-associated neurodegeneration: a case report and review of the literature. Clin Case Rep 2018; 6:353-362. [PMID: 29445477 PMCID: PMC5799652 DOI: 10.1002/ccr3.1358] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/07/2023] Open
Abstract
Beta‐propeller protein‐associated neurodegeneration (BPAN) is a rare disorder, which is increasingly recognized thanks to next‐generation sequencing. Due to a highly variable phenotype, patients may present to pediatrics, neurology, psychiatry, or internal medicine. It is therefore essential that physicians of different specialties are familiar with this severe and debilitating condition.
Collapse
Affiliation(s)
| | - Ivar Otto Gjerde
- Department of Neurology Haukeland University Hospital Bergen Norway
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine Haukeland University Hospital Bergen Norway
| | - Per Morten Knappskog
- Center for Medical Genetics and Molecular Medicine Haukeland University Hospital Bergen Norway.,Department of Clinical Science K.G. Jebsen Centre for Neuropsychiatric Disorders University of Bergen Bergen Norway
| | - Charalampos Tzoulis
- Department of Neurology Haukeland University Hospital Bergen Norway.,Department of Clinical Medicine University of Bergen Bergen Norway
| |
Collapse
|
9
|
Yamamoto JI, Kasamatsu A, Okubo Y, Nakashima D, Fushimi K, Minakawa Y, Kasama H, Shiiba M, Tanzawa H, Uzawa K. Evaluation of tryptophan-aspartic acid repeat-containing protein 34 as a novel tumor-suppressor molecule in human oral cancer. Biochem Biophys Res Commun 2017; 495:2469-2474. [PMID: 29278705 DOI: 10.1016/j.bbrc.2017.12.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Tryptophan-aspartic acid (WD) repeat-containing protein 34 (WDR34), one of the WDR protein superfamilies with five WD40 domains, inhibits a transforming growth factor-beta (TGF-β) activated kinase 1 (TAK1)-associated NF-κB activation pathway. Nevertheless, little is known about the roles of WDR34 in cancer. The current study sought to elucidate the clinical relevance of WDRsfb34 in oral squamous cell carcinoma (OSCC). We found WDR34 down-regulation in OSCCs compared with normal control tissues using real-time quantitative reverse transcription-polymerase chain reaction, immunoblotting, and immunohistochemistry. Models of overexpression of WDR34 (oeWDR34) showed depressed cellular growth through cell-cycle arrest at the G1 phase. To investigate the inhibitory function of WDR34, we challenged oeWDR34 cells with interleukin (IL)-1, a ligand for activation of the TAK1-NF-κB pathway and assessed the expression of a target gene of the pathway. oeWDR34 strongly inhibited IL-6 expression, which is closely related to tumoral growth, compared with control cells, suggesting that WDR34 would be a critical molecule for control of tumoral progression. In addition to the in vitro experiments, WDR34 negativity was correlated with tumoral growth of OSCCs. Our findings suggested that WDR34 inhibits OSCC progression and might be a potential tumor-suppressor molecule in OSCCs.
Collapse
Affiliation(s)
- Jun-Ichiro Yamamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuaki Fushimi
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Yasuyuki Minakawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Division of Dentistry, Chiba Prefectural Sawara Hospital, Chiba, Japan
| | - Hiroki Kasama
- Division of Oral Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
10
|
Zou XD, Hu XJ, Ma J, Li T, Ye ZQ, Wu YD. Genome-wide Analysis of WD40 Protein Family in Human. Sci Rep 2016; 6:39262. [PMID: 27991561 PMCID: PMC5172248 DOI: 10.1038/srep39262] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023] Open
Abstract
The WD40 proteins, often acting as scaffolds to form functional complexes in fundamental cellular processes, are one of the largest families encoded by the eukaryotic genomes. Systematic studies of this family on genome scale are highly required for understanding their detailed functions, but are currently lacking in the animal lineage. Here we present a comprehensive in silico study of the human WD40 family. We have identified 262 non-redundant WD40 proteins, and grouped them into 21 classes according to their domain architectures. Among them, 11 animal-specific domain architectures have been recognized. Sequence alignment indicates the complicated duplication and recombination events in the evolution of this family. Through further phylogenetic analysis, we have revealed that the WD40 family underwent more expansion than the overall average in the evolutionary early stage, and the early emerged WD40 proteins are prone to domain architectures with fundamental cellular roles and more interactions. While most widely and highly expressed human WD40 genes originated early, the tissue-specific ones often have late origin. These results provide a landscape of the human WD40 family concerning their classification, evolution, and expression, serving as a valuable complement to the previous studies in the plant lineage.
Collapse
Affiliation(s)
- Xu-Dong Zou
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Xue-Jia Hu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jing Ma
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Tuan Li
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
11
|
de Kovel CGF, Brilstra EH, van Kempen MJA, Van't Slot R, Nijman IJ, Afawi Z, De Jonghe P, Djémié T, Guerrini R, Hardies K, Helbig I, Hendrickx R, Kanaan M, Kramer U, Lehesjoki AEE, Lemke JR, Marini C, Mei D, Møller RS, Pendziwiat M, Stamberger H, Suls A, Weckhuysen S, Koeleman BPC. Targeted sequencing of 351 candidate genes for epileptic encephalopathy in a large cohort of patients. Mol Genet Genomic Med 2016; 4:568-80. [PMID: 27652284 PMCID: PMC5023942 DOI: 10.1002/mgg3.235] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Many genes are candidates for involvement in epileptic encephalopathy (EE) because one or a few possibly pathogenic variants have been found in patients, but insufficient genetic or functional evidence exists for a definite annotation. METHODS To increase the number of validated EE genes, we sequenced 26 known and 351 candidate genes for EE in 360 patients. Variants in 25 genes known to be involved in EE or related phenotypes were followed up in 41 patients. We prioritized the candidate genes, and followed up 31 variants in this prioritized subset of candidate genes. RESULTS Twenty-nine genotypes in known genes for EE (19) or related diseases (10), dominant as well as recessive or X-linked, were classified as likely pathogenic variants. Among those, likely pathogenic de novo variants were found in EE genes that act dominantly, including the recently identified genes EEF1A2, KCNB1 and the X-linked gene IQSEC2. A de novo frameshift variant in candidate gene HNRNPU was the only de novo variant found among the followed-up candidate genes, and the patient's phenotype was similar to a few recent publications. CONCLUSION Mutations in genes described in OMIM as, for example, intellectual disability gene can lead to phenotypes that get classified as EE in the clinic. We confirmed existing literature reports that de novo loss-of-function HNRNPUmutations lead to severe developmental delay and febrile seizures in the first year of life.
Collapse
Affiliation(s)
| | - Eva H Brilstra
- Department of Genetics UMC Utrecht Utrecht The Netherlands
| | | | | | - Isaac J Nijman
- Department of Genetics UMC Utrecht Utrecht The Netherlands
| | - Zaid Afawi
- Tel Aviv Sourasky Medical Center6 Weizmann St.Tel AvivIsrael; Genetics of Epilepsy Research in Israel Tel-Aviv University Medical SchoolTel-AvivIsrael
| | - Peter De Jonghe
- Neurogenetics GroupDepartment of Molecular GeneticsVIBAntwerpBelgium; Laboratory of NeurogeneticsInstitute Born-BungeUniversity of AntwerpAntwerpBelgium; Division of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Tania Djémié
- Neurogenetics GroupDepartment of Molecular GeneticsVIBAntwerpBelgium; Laboratory of NeurogeneticsInstitute Born-BungeUniversity of AntwerpAntwerpBelgium
| | - Renzo Guerrini
- Neuroscience Department Children's Hospital Anna Meyer University of Florence Florence Italy
| | - Katia Hardies
- Neurogenetics GroupDepartment of Molecular GeneticsVIBAntwerpBelgium; Laboratory of NeurogeneticsInstitute Born-BungeUniversity of AntwerpAntwerpBelgium
| | - Ingo Helbig
- Division of NeurologyThe Children's Hospital of PhiladelphiaPhiladephiaPennsylvania; Department of NeuropediatricsUniversity Medical Center Schleswig-HolsteinChristian Albrechts UniversityKielGermany
| | - Rik Hendrickx
- Neurogenetics Group Department of Molecular Genetics VIB Antwerp Belgium
| | - Moine Kanaan
- Pediatric Epilepsy Unit Tel Aviv Sourasky Medical Center Tel Aviv University Tel Aviv Israel
| | - Uri Kramer
- Department of Life Sciences Bethlehem University Bethlehem Palestine
| | - Anna-Elina E Lehesjoki
- Folkhälsan Institute of Genetics Neuroscience Center and Research Programs Unit Molecular Neurology University of Helsinki Helsinki Finland
| | - Johannes R Lemke
- Institute of Human Genetics University of Leipzig Hospitals and Clinics Leipzig Germany
| | - Carla Marini
- Neuroscience Department Children's Hospital Anna Meyer University of Florence Florence Italy
| | - Davide Mei
- Neuroscience Department Children's Hospital Anna Meyer University of Florence Florence Italy
| | - Rikke S Møller
- Danish Epilepsy Centre - FiladelfiaDianalundDenmark; Institute for Regional Health ServicesUniversity of Southern DenmarkDK-5230OdenseDenmark
| | - Manuela Pendziwiat
- Department of Neuropediatrics University Medical Center Schleswig-Holstein Christian Albrechts University Kiel Germany
| | - Hannah Stamberger
- Neurogenetics GroupDepartment of Molecular GeneticsVIBAntwerpBelgium; Laboratory of NeurogeneticsInstitute Born-BungeUniversity of AntwerpAntwerpBelgium
| | - Arvid Suls
- Neurogenetics GroupDepartment of Molecular GeneticsVIBAntwerpBelgium; Laboratory of NeurogeneticsInstitute Born-BungeUniversity of AntwerpAntwerpBelgium
| | - Sarah Weckhuysen
- Neurogenetics GroupDepartment of Molecular GeneticsVIBAntwerpBelgium; Laboratory of NeurogeneticsInstitute Born-BungeUniversity of AntwerpAntwerpBelgium
| | | | | |
Collapse
|
12
|
Nakashima M, Takano K, Tsuyusaki Y, Yoshitomi S, Shimono M, Aoki Y, Kato M, Aida N, Mizuguchi T, Miyatake S, Miyake N, Osaka H, Saitsu H, Matsumoto N. WDR45 mutations in three male patients with West syndrome. J Hum Genet 2016; 61:653-61. [DOI: 10.1038/jhg.2016.27] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
|
13
|
Hoffjan S, Ibisler A, Tschentscher A, Dekomien G, Bidinost C, Rosa AL. WDR45 mutations in Rett (-like) syndrome and developmental delay: Case report and an appraisal of the literature. Mol Cell Probes 2016; 30:44-9. [PMID: 26790960 DOI: 10.1016/j.mcp.2016.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 11/25/2022]
Abstract
Mutations in the WDR45 gene have been identified as causative for the only X-linked type of neurodegeneration with brain iron accumulation (NBIA), clinically characterized by global developmental delay in childhood, followed by a secondary neurological decline with parkinsonism and/or dementia in adolescence or early adulthood. Recent reports suggest that WDR45 mutations are associated with a broader phenotypic spectrum. We identified a novel splice site mutation (c.440-2 A > G) in a 5-year-old Argentinian patient with Rett-like syndrome, exhibiting developmental delay, microcephaly, seizures and stereotypic hand movements, and discuss this finding, together with a review of the literature. Additional patients with a clinical diagnosis of Rett (-like) syndrome were also found to carry WDR45 mutations before (or without) clinical decline or signs of iron accumulation by magnetic resonance imaging (MRI). This information indicates that WDR45 mutations should be added to the growing list of genetic alterations linked to Rett-like syndrome. Further, clinical symptoms associated with WDR45 mutations ranged from early-onset epileptic encephalopathy in a male patient with a deletion of WDR45 to only mild cognitive delay in a female patient, suggesting that analysis of this gene should be considered more often in patients with developmental delay, regardless of severity. The increasing use of next generation sequencing technologies as well as longitudinal follow-up of patients with an early diagnosis will help to gain additional insight into the phenotypic spectrum associated with WDR45 mutations.
Collapse
Affiliation(s)
- Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, Germany; Center for Rare Diseases Ruhr (CeSER), Bochum, Germany.
| | - Aysegül Ibisler
- Department of Human Genetics, Ruhr-University Bochum, Germany; Center for Rare Diseases Ruhr (CeSER), Bochum, Germany
| | | | - Gabriele Dekomien
- Department of Human Genetics, Ruhr-University Bochum, Germany; Center for Rare Diseases Ruhr (CeSER), Bochum, Germany
| | - Carla Bidinost
- Sanatorio Allende and Fundación Allende, Córdoba, Argentina
| | - Alberto L Rosa
- Sanatorio Allende and Fundación Allende, Córdoba, Argentina
| |
Collapse
|
14
|
Ebrahimi-Fakhari D, Saffari A, Wahlster L, Lu J, Byrne S, Hoffmann GF, Jungbluth H, Sahin M. Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism. Brain 2015; 139:317-37. [PMID: 26715604 DOI: 10.1093/brain/awv371] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022] Open
Abstract
Single gene disorders of the autophagy pathway are an emerging, novel and diverse group of multisystem diseases in children. Clinically, these disorders prominently affect the central nervous system at various stages of development, leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration, among others. Frequent early and severe involvement of the central nervous system puts the paediatric neurologist, neurogeneticist, and neurometabolic specialist at the forefront of recognizing and treating these rare conditions. On a molecular level, mutations in key autophagy genes map to different stages of this highly conserved pathway and thus lead to impairment in isolation membrane (or phagophore) and autophagosome formation, maturation, or autophagosome-lysosome fusion. Here we discuss 'congenital disorders of autophagy' as an emerging subclass of inborn errors of metabolism by using the examples of six recently identified monogenic diseases: EPG5-related Vici syndrome, beta-propeller protein-associated neurodegeneration due to mutations in WDR45, SNX14-associated autosomal-recessive cerebellar ataxia and intellectual disability syndrome, and three forms of hereditary spastic paraplegia, SPG11, SPG15 and SPG49 caused by SPG11, ZFYVE26 and TECPR2 mutations, respectively. We also highlight associations between defective autophagy and other inborn errors of metabolism such as lysosomal storage diseases and neurodevelopmental diseases associated with the mTOR pathway, which may be included in the wider spectrum of autophagy-related diseases from a pathobiological point of view. By exploring these emerging themes in disease pathogenesis and underlying pathophysiological mechanisms, we discuss how congenital disorders of autophagy inform our understanding of the importance of this fascinating cellular pathway for central nervous system biology and disease. Finally, we review the concept of modulating autophagy as a therapeutic target and argue that congenital disorders of autophagy provide a unique genetic perspective on the possibilities and challenges of pathway-specific drug development.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Afshin Saffari
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Lara Wahlster
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany 3 Department of Haematology and Oncology, Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jenny Lu
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Byrne
- 4 Department of Paediatric Neurology, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Georg F Hoffmann
- 2 Division of Paediatric Neurology and Inherited Metabolic Diseases, Department of Paediatrics, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Heinz Jungbluth
- 4 Department of Paediatric Neurology, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK 5 Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College London, London, UK 6 Department of Basic and Clinical Neuroscience, IoPPN, King's College London, London, UK
| | - Mustafa Sahin
- 1 The F.M. Kirby Neurobiology Centre, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Grimmel M, Backhaus C, Proikas-Cezanne T. WIPI-Mediated Autophagy and Longevity. Cells 2015; 4:202-17. [PMID: 26010754 PMCID: PMC4493456 DOI: 10.3390/cells4020202] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/17/2015] [Accepted: 05/17/2015] [Indexed: 01/20/2023] Open
Abstract
Autophagy is a lysosomal degradation process for cytoplasmic components, including organelles, membranes, and proteins, and critically secures eukaryotic cellular homeostasis and survival. Moreover, autophagy-related (ATG) genes are considered essential for longevity control in model organisms. Central to the regulatory relationship between autophagy and longevity is the control of insulin/insulin-like growth factor receptor-driven activation of mTOR (mechanistic target of rapamycin), which inhibits WIPI (WD repeat protein interacting with phosphoinositides)-mediated autophagosome formation. Release of the inhibitory mTOR action on autophagy permits the production of PI3P (phosphatidylinositol-3 phosphate), predominantly at the endoplasmic reticulum, to function as an initiation signal for the formation of autophagosomes. WIPI proteins detect this pool of newly produced PI3P and function as essential PI3P effector proteins that recruit downstream autophagy-related (ATG) proteins. The important role of WIPI proteins in autophagy is highlighted by functional knockout of the WIPI homologues ATG-18 and EPG-6 in Caenorhabditis elegans (C. elegans). Adult lifespan is significantly reduced in ATG-18 mutant animals, demonstrating that longevity as such is crucially determined by essential autophagy factors. In this review we summarize the role of WIPI proteins and their C. elegans homologues with regard to the molecular basis of aging. As the development of strategies on how to increase health span in humans is increasingly appreciated, we speculate that targeting WIPI protein function might represent a therapeutic opportunity to fight and delay the onset of age-related human diseases.
Collapse
Affiliation(s)
- Mona Grimmel
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Charlotte Backhaus
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, Interfaculty Institute of Cell Biology, Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany.
| |
Collapse
|