1
|
Liver Involvement in Congenital Disorders of Glycosylation: A Systematic Review. J Pediatr Gastroenterol Nutr 2021; 73:444-454. [PMID: 34173795 PMCID: PMC9255677 DOI: 10.1097/mpg.0000000000003209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
An ever-increasing number of disturbances in glycosylation have been described to underlie certain unexplained liver diseases presenting either almost isolated or in a multi-organ context. We aimed to update previous literature screenings which had identified up to 23 forms of congenital disorders of glycosylation (CDG) with associated liver disease. We conducted a comprehensive literature search of three scientific electronic databases looking at articles published during the last 20 years (January 2000-October 2020). Eligible studies were case reports/series reporting liver involvement in CDG patients. Our systematic review led us to point out 41 forms of CDG where the liver is primarily affected (n = 7) or variably involved in a multisystem disease with mandatory neurological abnormalities (n = 34). Herein we summarize individual clinical and laboratory presentation characteristics of these 41 CDG and outline their main presentation and diagnostic cornerstones with the aid of two synoptic tables. Dietary supplementation strategies have hitherto been investigated only in seven of these CDG types with liver disease, with a wide range of results. In conclusion, the systematic review recognized a liver involvement in a somewhat larger number of CDG variants corresponding to about 30% of the total of CDG so far reported, and it is likely that the number may increase further. This information could assist in an earlier correct diagnosis and a possibly proper management of these disorders.
Collapse
|
2
|
Lipiński P, Stępień KM, Ciara E, Tylki-Szymańska A, Jezela-Stanek A. Skeletal and Bone Mineral Density Features, Genetic Profile in Congenital Disorders of Glycosylation: Review. Diagnostics (Basel) 2021; 11:diagnostics11081438. [PMID: 34441372 PMCID: PMC8391432 DOI: 10.3390/diagnostics11081438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Congenital disorders of glycosylation (CDGs) are a heterogeneous group of disorders with impaired glycosylation of proteins and lipids. These conditions have multisystemic clinical manifestations, resulting in gradually progressive complications including skeletal involvement and reduced bone mineral density. Contrary to PMM2-CDG, all remaining CDG, including ALG12-CDG, ALG3-CDG, ALG9-CDG, ALG6-CDG, PGM3-CDG, CSGALNACT1-CDG, SLC35D1-CDG and TMEM-165, are characterized by well-defined skeletal dysplasia. In some of them, prenatal-onset severe skeletal dysplasia is observed associated with early death. Osteoporosis or osteopenia are frequently observed in all CDG types and are more pronounced in adults. Hormonal dysfunction, limited mobility and inadequate diet are common risk factors for reduced bone mineral density. Skeletal involvement in CDGs is underestimated and, thus, should always be carefully investigated and managed to prevent fractures and chronic pain. With the advent of new therapeutic developments for CDGs, the severity of skeletal complications may be reduced. This review focuses on possible mechanisms of skeletal manifestations, risk factors for osteoporosis, and bone markers in reported paediatric and adult CDG patients.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
- Correspondence:
| | - Karolina M. Stępień
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland;
| |
Collapse
|
3
|
Alsharhan H, Ng BG, Daniel EJP, Friedman J, Pivnick EK, Al-Hashem A, Faqeih EA, Liu P, Engelhardt NM, Keller KN, Chen J, Mazzeo PA, Rosenfeld JA, Bamshad MJ, Nickerson DA, Raymond KM, Freeze HH, He M, Edmondson AC, Lam C. Expanding the phenotype, genotype and biochemical knowledge of ALG3-CDG. J Inherit Metab Dis 2021; 44:987-1000. [PMID: 33583022 PMCID: PMC8282734 DOI: 10.1002/jimd.12367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Congenital disorders of glycosylation (CDGs) are a continuously expanding group of monogenic disorders of glycoprotein and glycolipid biosynthesis that cause multisystem diseases. Individuals with ALG3-CDG frequently exhibit severe neurological involvement (epilepsy, microcephaly, and hypotonia), ocular anomalies, dysmorphic features, skeletal anomalies, and feeding difficulties. We present 10 unreported individuals diagnosed with ALG3-CDG based on molecular and biochemical testing with 11 novel variants in ALG3, bringing the total to 40 reported individuals. In addition to the typical multisystem disease seen in ALG3-CDG, we expand the symptomatology of ALG3-CDG to now include endocrine abnormalities, neural tube defects, mild aortic root dilatation, immunodeficiency, and renal anomalies. N-glycan analyses of these individuals showed combined deficiencies of hybrid glycans and glycan extension beyond Man5 GlcNAc2 consistent with their truncated lipid-linked precursor oligosaccharides. This spectrum of N-glycan changes is unique to ALG3-CDG. These expanded features of ALG3-CDG facilitate diagnosis and suggest that optimal management should include baseline endocrine, renal, cardiac, and immunological evaluation at the time of diagnosis and with ongoing monitoring.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Faculty of Medicine, Kuwait
University, Kuwait City, Kuwait
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical
Discovery Institute, La Jolla, California
| | - Earnest James Paul Daniel
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer Friedman
- Division of Neurosciences and Pediatrics, University of
California San Diego and Rady Children’s Hospital, San Diego,
California
| | - Eniko K. Pivnick
- Department of Pediatrics, Division of Medical Genetics,
University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Amal Al-Hashem
- Department of Pediatrics, Prince Sultan Military Medical
City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi
Arabia
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children’s Specialist
Hospital King Fahad Medical City, Riyadh, Saudi Arabia
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Nicole M. Engelhardt
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Kierstin N. Keller
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Jie Chen
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pamela A. Mazzeo
- Department of Pediatrics, The Children’s Hospital
of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington School of Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington,
Seattle, Washington
- Brotman-Baty Institute, Seattle, Washington
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington,
Seattle, Washington
- Brotman-Baty Institute, Seattle, Washington
| | - Kimiyo M. Raymond
- Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, Minnesota
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical
Discovery Institute, La Jolla, California
| | - Miao He
- Department of Pathology and Laboratory Medicine,
Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew C. Edmondson
- Department of Pediatrics, Division of Human Genetics,
Section of Metabolism, The Children’s Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics,
University of Washington School of Medicine, Seattle, Washington
- Center of Integrated Brain Research, Seattle
Children’s Research Institute, Seattle, Washington
| |
Collapse
|
4
|
ALG3-CDG: a patient with novel variants and review of the genetic and ophthalmic findings. BMC Ophthalmol 2021; 21:249. [PMID: 34090370 PMCID: PMC8180164 DOI: 10.1186/s12886-021-02013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022] Open
Abstract
Background ALG3-CDG is a rare autosomal recessive disease. It is characterized by deficiency of alpha-1,3-mannosyltransferase caused by pathogenic variants in the ALG3 gene. Patients manifest with severe neurologic, cardiac, musculoskeletal and ophthalmic phenotype in combination with dysmorphic features, and almost half of them die before or during the neonatal period. Case presentation A 23 months-old girl presented with severe developmental delay, epilepsy, cortical atrophy, cerebellar vermis hypoplasia and ocular impairment. Facial dysmorphism, clubfeet and multiple joint contractures were observed already at birth. Transferrin isoelectric focusing revealed a type 1 pattern. Funduscopy showed hypopigmentation and optic disc pallor. Profound retinal ganglion cell loss and inner retinal layer thinning was documented on spectral-domain optical coherence tomography imaging. The presence of optic nerve hypoplasia was also supported by magnetic resonance imaging. A gene panel based next-generation sequencing and subsequent Sanger sequencing identified compound heterozygosity for two novel variants c.116del p.(Pro39Argfs*40) and c.1060 C > T p.(Arg354Cys) in ALG3. Conclusions Our study expands the spectrum of pathogenic variants identified in ALG3. Thirty-three variants in 43 subjects with ALG3-CDG have been reported. Literature review shows that visual impairment in ALG3-CDG is most commonly linked to optic nerve hypoplasia.
Collapse
|
5
|
Lhussiez V, Dubus E, Cesar Q, Acar N, Nandrot EF, Simonutti M, Audo I, Lizé E, Nguyen S, Geissler A, Bouchot A, Ansar M, Picaud S, Thauvin-Robinet C, Olivier-Faivre L, Duplomb L, Da Costa R. Cohen Syndrome-Associated Cataract Is Explained by VPS13B Functions in Lens Homeostasis and Is Modified by Additional Genetic Factors. Invest Ophthalmol Vis Sci 2021; 61:18. [PMID: 32915983 PMCID: PMC7488618 DOI: 10.1167/iovs.61.11.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose Cohen syndrome (CS) is a rare genetic disorder caused by variants of the VPS13B gene. CS patients are affected with a severe form of retinal dystrophy, and in several cases cataracts also develop. The purpose of this study was to investigate the mechanisms and risk factors for cataract in CS, as well as to report on cataract surgeries in CS patients. Methods To understand how VPS13B is associated with visual impairments in CS, we generated the Vps13b∆Ex3/∆Ex3 mouse model. Mice from 1 to 3 months of age were followed by ophthalmoscopy and slit-lamp examinations. Phenotypes were investigated by histology, immunohistochemistry, and western blot. Literature analysis was performed to determine specific characteristic features of cataract in CS and to identify potential genotype–phenotype correlations. Results Cataracts rapidly developed in 2-month-old knockout mice and were present in almost all lenses at 3 months. Eye fundi appeared normal until cataract development. Lens immunostaining revealed that cataract formation was associated with the appearance of large vacuoles in the cortical area, epithelial–mesenchymal transition, and fibrosis. In later stages, cataracts became hypermature, leading to profound retinal remodeling due to inflammatory events. Literature analysis showed that CS-related cataracts display specific features compared to other forms of retinitis pigmentosa-related cataracts, and their onset is modified by additional genetic factors. Corroboratively, we were able to isolate a subline of the Vps13b∆Ex3/∆Ex3 model with delayed cataract onset. Conclusions VPS13B participates in lens homeostasis, and the CS-related cataract development dynamic is linked to additional genetic factors.
Collapse
Affiliation(s)
- Vincent Lhussiez
- INSERM UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Elisabeth Dubus
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Quénol Cesar
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Niyazi Acar
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Emeline F Nandrot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Manuel Simonutti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Eléonore Lizé
- INSERM UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Sylvie Nguyen
- INSERM UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Dijon, France
| | - Audrey Geissler
- Plateforme d'Imagerie Cellulaire DImaCell (site CellImaP), INSERM LNC UMR1231, Dijon, France
| | - André Bouchot
- Plateforme d'Imagerie Cellulaire DImaCell (site CellImaP), INSERM LNC UMR1231, Dijon, France
| | - Muhammad Ansar
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.,Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christel Thauvin-Robinet
- INSERM UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Dijon, France.,FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Olivier-Faivre
- INSERM UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Dijon, France.,FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Duplomb
- INSERM UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Dijon, France.,FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Romain Da Costa
- INSERM UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Dijon, France.,FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
6
|
Lipiński P, Bogdańska A, Socha P, Tylki-Szymańska A. Liver Involvement in Congenital Disorders of Glycosylation and Deglycosylation. Front Pediatr 2021; 9:696918. [PMID: 34291020 PMCID: PMC8286991 DOI: 10.3389/fped.2021.696918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Congenital disorders of glycosylation (CDG) and NGLY1-CDDG (NGLY1-congenital disorder of deglycosylation) usually represent multisystem (especially neurovisceral) diseases with liver involvement reported in some of them. The aim of the study was to characterize the liver phenotype in CDG and NGLY1-CDDG patients hospitalized in our Institute, and to find the most specific features of liver disease among them. Material and Methods: The study involved 39 patients (from 35 families) with CDG, and two patients (from two families) with NGLY1-CDDG, confirmed molecularly, for whom detailed characteristics of liver involvement were available. They were enrolled based on the retrospective analysis of their medical records. Results: At the time of the first consultation, 13/32 patients were diagnosed with hepatomegaly; none of them with splenomegaly. As many as 23/32 persons had elevated serum transaminases, including 16 (70%) who had mildly elevated levels. During the long-term follow-up (available for 19 patients), serum transaminases normalized in 15/19 (79%) of them, including a spontaneous normalization in 12/15 (80%) of them. The GGT activity was observed to be normal in all study cases. Protein C, protein S and antithrombin activities in plasma were observed in 16 patients, and they were decreased in all of them. Conclusions: It is necessary to conduct a long-term follow-up of liver disease in CDG to obtain comprehensive data.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Bogdańska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Feeding Difficulties and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
7
|
Lipiński P, Tylki-Szymańska A. Congenital Disorders of Glycosylation: What Clinicians Need to Know? Front Pediatr 2021; 9:715151. [PMID: 34540767 PMCID: PMC8446601 DOI: 10.3389/fped.2021.715151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous disorders characterized by defects in the synthesis of glycans and their attachment to proteins and lipids. This manuscript aims to provide a classification of the clinical presentation, diagnostic methods, and treatment of CDG based on the literature review and our own experience (referral center in Poland). A diagnostic algorithm for CDG was also proposed. Isoelectric focusing (IEF) of serum transferrin (Tf) is still the method of choice for diagnosing N-glycosylation disorders associated with sialic acid deficiency. Nowadays, high-performance liquid chromatography, capillary zone electrophoresis, and mass spectrometry techniques are used, although they are not routinely available. Since next-generation sequencing became more widely available, an improvement in diagnostics has been observed, with more patients and novel CDG subtypes being reported. Early and accurate diagnosis of CDG is crucial for timely implementation of appropriate therapies and improving clinical outcomes. However, causative treatment is available only for few CDG types.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
8
|
PAKETCI C, EDEM P, HIZ S, SONMEZLER E, SOYDEMIR D, UZAN GS, OKTAY Y, O’HEIR E, BELTRAN S, LAURIE S, TÖPF A, LOCHMULLER H, HORVATH R, YIS U. Successful treatment of intractable epilepsy with ketogenic diet therapy in twins with ALG3-CDG. Brain Dev 2020; 42:539-545. [PMID: 32389449 PMCID: PMC7906126 DOI: 10.1016/j.braindev.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) is a heterogeneous group of congenital metabolic diseases with multisystem clinical involvement. ALG3-CDG is a very rare subtype with only 24 cases reported so far. CASE Here, we report two siblings with dysmorphic features, growth retardation, microcephaly, intractable epilepsy, and hemangioma in the frontal, occipital and lumbosacral regions. RESULTS We studied two siblings by whole exome sequencing. A pathogenic variant in ALG3 (NM_005787.6: c.165C > T; p.Gly55=) that had been previously associated with congenital glycolysis defect type 1d was identified. Their intractable seizures were controlled by ketogenic diet. CONCLUSION Although prominent findings of growth retardation and microcephaly seen in our patients have been extensively reported before, presence of hemangioma is a novel finding that may be used as an indication for ALG3-CDG diagnosis. Our patients are the first reported cases whose intractable seizures were controlled with ketogenic diet. This report adds ketogenic diet as an option for treatment of intractable epilepsy in ALG3-CDG.
Collapse
Affiliation(s)
- C PAKETCI
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - P EDEM
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - S HIZ
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - E SONMEZLER
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - D SOYDEMIR
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - GS UZAN
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Y OKTAY
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - E O’HEIR
- Center for Mendelian Genomics and Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - S BELTRAN
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S LAURIE
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - A TÖPF
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University and Newcastle Hospitals, Newcastle upon Tyne, UK
| | - H LOCHMULLER
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain,Children’s Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, The Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - R HORVATH
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - U YIS
- Department of Paediatric Neurology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
9
|
ALG3-CDG: lethal phenotype and novel variants in Chinese siblings. J Hum Genet 2020; 65:1129-1134. [PMID: 32655146 DOI: 10.1038/s10038-020-0798-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/28/2020] [Indexed: 11/08/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a group of genetic, mostly multisystem disorders, which often involve the central nervous system. ALG3-CDG is one the some 130 known CDG. Here we report two siblings with a severe phenotype and intrauterine death. Whole-exome sequencing revealed two novel variants in ALG3: NM_005787.6:c.512G>T (p.Arg171Leu) inherited from the mother and NM_005787.6:c.511C>T (p.Arg171Trp) inherited from the father.
Collapse
|
10
|
BoAli AY, Alfadhel M, Tabarki B. Neurometabolic disorders and congenital malformations of the central nervous system. ACTA ACUST UNITED AC 2019; 23:97-103. [PMID: 29664449 PMCID: PMC8015440 DOI: 10.17712/nsj.2018.2.20170481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both malformations of the central nervous system and neurometabolic disorders are common, mainly in highly consanguineous populations. Both metabolic pathways and developmental pathways are closely related and interact with each other. Neurometabolic disorders can lead to disturbances in brain development through multiple mechanisms that include deficits in energy metabolism, critical nutrient deficiency, accumulation of neurotoxic substrates, abnormality in cell membrane constituents, and interference in cell-to-cell signaling pathways. The anomalies observed include absent or hypoplastic corpus callosum, midline brain defects, and malformations of the cortex, the cerebellum and the brain stem. Early diagnosis of an underlying inherited neurometabolic disorders is critical for the institution of treatment, which may positively influence prognosis, and allow for proper genetic counseling. In this review, we discuss those disorders in which the structural brain malformation is a dominant feature, and propose a practical approach that will permit a physician to investigate, and treat these disorders.
Collapse
Affiliation(s)
- Ahmed Y BoAli
- Divisions of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City,Riyadh, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
11
|
Himmelreich N, Dimitrov B, Geiger V, Zielonka M, Hutter AM, Beedgen L, Hüllen A, Breuer M, Peters V, Thiemann KC, Hoffmann GF, Sinning I, Dupré T, Vuillaumier-Barrot S, Barrey C, Denecke J, Kölfen W, Düker G, Ganschow R, Lentze MJ, Moore S, Seta N, Ziegler A, Thiel C. Novel variants and clinical symptoms in four new ALG3-CDG patients, review of the literature, and identification of AAGRP-ALG3 as a novel ALG3 variant with alanine and glycine-rich N-terminus. Hum Mutat 2019; 40:938-951. [PMID: 31067009 DOI: 10.1002/humu.23764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
ALG3-CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER-mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3-CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5 GlcNAc2 -PP-dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right-descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3-CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open-reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP-ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Bianca Dimitrov
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Virginia Geiger
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Matthias Zielonka
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Anna-Marlen Hutter
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Lars Beedgen
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Andreas Hüllen
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Maximilian Breuer
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Verena Peters
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Kai-Christian Thiemann
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Irmgard Sinning
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Thierry Dupré
- Department Biochimie, AP-HP, Hôpital Bichat, Biochimie, Paris, France.,Faculté de Médecine Xavier Bichat, INSERM U1149, Université Paris Diderot, Paris, France
| | - Sandrine Vuillaumier-Barrot
- Department Biochimie, AP-HP, Hôpital Bichat, Biochimie, Paris, France.,Faculté de Médecine Xavier Bichat, INSERM U1149, Université Paris Diderot, Paris, France
| | | | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Kölfen
- Zentrum für Kinder und Jugendmedizin, Städtischen Kliniken Mönchengladbach, Mönchengladbach, Germany
| | - Gesche Düker
- Department of Pediatrics, Children's Hospital Medical Center, University Hospitals Bonn, Bonn, Germany
| | - Rainer Ganschow
- Department of Pediatrics, Children's Hospital Medical Center, University Hospitals Bonn, Bonn, Germany
| | - Michael J Lentze
- Department of Pediatrics, Children's Hospital Medical Center, University Hospitals Bonn, Bonn, Germany
| | - Stuart Moore
- Faculté de Médecine Xavier Bichat, INSERM U1149, Université Paris Diderot, Paris, France
| | - Nathalie Seta
- Department Biochimie, AP-HP, Hôpital Bichat, Biochimie, Paris, France
| | - Andreas Ziegler
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Arora V, Puri RD, Bhai P, Sharma N, Bijarnia-Mahay S, Dimri N, Baijal A, Saxena R, Verma I. The first case of antenatal presentation in COG8-congenital disorder of glycosylation with a novel splice site mutation and an extended phenotype. Am J Med Genet A 2019; 179:480-485. [PMID: 30690882 DOI: 10.1002/ajmg.a.61030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/16/2022]
Abstract
Congenital disorders of glycosylation (CDG) are an extremely rapidly growing and phenotypically versatile group of disorders. Conserved oligomeric Golgi (COG) complexes are hetero-octameric proteins involved in retrograde trafficking within the Golgi. Seven of its eight subunits have a causal role in CDG. To date, only three cases of COG8-CDG have been published but none in the antenatal period. We present the first case of antenatally diagnosed COG8-CDG with facial dysmorphism and additional features such as Dandy-Walker malformation and arthrogryposis multiplex congenita, thus expanding the phenotype of this rare disorder. Trio whole exome sequencing revealed a novel homozygous variant in COG8, which creates a new splice site in exon 5 and protein truncation after 12 amino acids downstream to the newly generated splice site. As the mutations of the previous three patients were also identified in exon 5, it is likely to be a potential mutational hotspot in COG8. An association between antenatally increased nuchal translucency and COG8-CDG is also established, which would alert clinicians to its diagnosis early in gestation. It remains to be seen if this observation can be extended to other COG-CDGs.
Collapse
Affiliation(s)
- Veronica Arora
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Pratibha Bhai
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Nidhish Sharma
- Department of Fetal Medicine, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Nandita Dimri
- Department of Fetal Medicine, Sir Ganga Ram Hospital, New Delhi, India
| | - Ashok Baijal
- Department of Fetal Medicine, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar Verma
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
13
|
Hacker B, Schultheiß C, Kurzik-Dumke U. Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting in distinct cellular compartments. Hum Mol Genet 2018; 27:4231-4248. [PMID: 30192950 DOI: 10.1093/hmg/ddy315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/04/2018] [Indexed: 11/12/2022] Open
Abstract
This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that the truncated transcripts are not translated. The two main forms hNOT-1/ALG3-1 and -4, distinguishable by alternative exon 1, encode full-length precursors that undergo a complex posttranslational processing. To specifically detect the two full-length hNOT/ALG3 proteins and their distinct derivatives and to examine their expression profiles and cellular location we generated polyclonal antibodies against diverse parts of the putative full-length proteins. We provide experimental evidence for the N-glycosylation of the two precursors. This modification seems to be a prerequisite for their sequential cleavage resulting in derivatives destined to distinct cellular compartments and links them with the N-glycosylation machinery not as its functional component but as molecules functionally dependent on its action. We present the expression profiles and subcellular location of the two full-length proteins, their N-glycosylated forms and distinct cleavage products. Furthermore, using diverse bioinformatics tools, we characterize the properties and predict the 2D and 3D structure of the two proteins and, for comparative purposes, of their Drosophila counterpart.
Collapse
Affiliation(s)
- Benedikt Hacker
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Christoph Schultheiß
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| | - Ursula Kurzik-Dumke
- Institute of Medical Microbiology and Hygiene, Laboratory for Comparative Tumour Biology, University Medical Centre, Johannes Gutenberg University, Obere Zahlbacher, Mainz, Germany
| |
Collapse
|
14
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
15
|
Alsubhi S, Alhashem A, Faqeih E, Alfadhel M, Alfaifi A, Altuwaijri W, Alsahli S, Aldhalaan H, Alkuraya FS, Hundallah K, Mahmoud A, Alasmari A, Mutairi FA, Abduraouf H, AlRasheed L, Alshahwan S, Tabarki B. Congenital disorders of glycosylation: The Saudi experience. Am J Med Genet A 2017; 173:2614-2621. [DOI: 10.1002/ajmg.a.38358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah Alsubhi
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Amal Alhashem
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Majid Alfadhel
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Abdullah Alfaifi
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Waleed Altuwaijri
- Division of Pediatric Neurology; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Saud Alsahli
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Hesham Aldhalaan
- Division of Pediatric Neurology; Department of Neurosciences, King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- Department of Anatomy and Cell Biology; College of Medicine, Alfaisal University; Riyadh Saudi Arabia
| | - Khalid Hundallah
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Adel Mahmoud
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Ali Alasmari
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - Fuad Al Mutairi
- Division of Genetics; Department of Pediatrics, King Abdulaziz Medical City; Riyadh Saudi Arabia
| | - Hanem Abduraouf
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Layan AlRasheed
- Division of Genetics; Department of Pediatrics; Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Saad Alshahwan
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology; Department of Pediatrics, Prince Sultan Military Medical City; Riyadh Saudi Arabia
| |
Collapse
|
16
|
Al Teneiji A, Bruun TUJ, Sidky S, Cordeiro D, Cohn RD, Mendoza-Londono R, Moharir M, Raiman J, Siriwardena K, Kyriakopoulou L, Mercimek-Mahmutoglu S. Phenotypic and genotypic spectrum of congenital disorders of glycosylation type I and type II. Mol Genet Metab 2017; 120:235-242. [PMID: 28122681 DOI: 10.1016/j.ymgme.2016.12.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inborn defects of glycan metabolism. They are multisystem disorders. Analysis of transferrin isoforms is applied as a screening test for CDG type I (CDG-I) and type II (CDG-II). We performed a retrospective cohort study to determine spectrum of phenotype and genotype and prevalence of the different subtypes of CDG-I and CDG-II. MATERIAL AND METHODS All patients with CDG-I and CDG-II evaluated in our institution's Metabolic Genetics Clinics were included. Electronic and paper patient charts were reviewed. We set-up a high performance liquid chromatography transferrin isoelectric focusing (TIEF) method to measure transferrin isoforms in our Institution. We reviewed the literature for the rare CDG-I and CDG-II subtypes seen in our Institution. RESULTS Fifteen patients were included: 9 with PMM2-CDG and 6 with non-PMM2-CDG (one ALG3-CDG, one ALG9-CDG, two ALG11-CDG, one MPDU1-CDG and one ATP6V0A2-CDG). All patients with PMM2-CDG and 5 patients with non-PMM2-CDG showed abnormal TIEF suggestive of CDG-I or CDG-II pattern. In all patients, molecular diagnosis was confirmed either by single gene testing, targeted next generation sequencing for CDG genes, or by whole exome sequencing. CONCLUSION We report 15 new patients with CDG-I and CDG-II. Whole exome sequencing will likely identify more patients with normal TIEF and expand the phenotypic spectrum of CDG-I and CDG-II.
Collapse
Affiliation(s)
- Amal Al Teneiji
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Theodora U J Bruun
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sarah Sidky
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ronald D Cohn
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mahendranath Moharir
- Division of Neurology, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Lianna Kyriakopoulou
- Division of Genome Diagnostics, Department of Paediatric Laboratory Medicine, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada; Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Marques-da-Silva D, Dos Reis Ferreira V, Monticelli M, Janeiro P, Videira PA, Witters P, Jaeken J, Cassiman D. Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 2017; 40:195-207. [PMID: 28108845 DOI: 10.1007/s10545-016-0012-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family of genetic diseases caused by defects in glycosylation. Nearly 100 CDG types are known so far. Patients present a great phenotypic diversity ranging from poly- to mono-organ/system involvement and from very mild to extremely severe presentation. In this literature review, we summarize the liver involvement reported in CDG patients. Although liver involvement is present in only a minority of the reported CDG types (22 %), it can be debilitating or even life-threatening. Sixteen of the patients we collated here developed cirrhosis, 10 had liver failure. We distinguish two main groups: on the one hand, the CDG types with predominant or isolated liver involvement including MPI-CDG, TMEM199-CDG, CCDC115-CDG, and ATP6AP1-CDG, and on the other hand, the CDG types associated with liver disease but not as a striking, unique or predominant feature, including PMM2-CDG, ALG1-CDG, ALG3-CDG, ALG6-CDG, ALG8-CDG, ALG9-CDG, PGM1-CDG, and COG-CDG. This review aims to facilitate CDG patient identification and to understand CDG liver involvement, hopefully leading to earlier diagnosis, and better management and treatment.
Collapse
Affiliation(s)
- D Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
- Portuguese Association for CDG, Lisboa, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - V Dos Reis Ferreira
- Portuguese Association for CDG, Lisboa, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - M Monticelli
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - P Janeiro
- Departamento de Pediatria, Unidade de Doenças Metabólicas, CHLN, Hospital de Sta. Maria, Lisboa, Portugal
| | - P A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
- Portuguese Association for CDG, Lisboa, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - P Witters
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium
| | - J Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium.
| | - D Cassiman
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.
- Center for Metabolic Diseases, UZ and KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Guibaud L, Collardeau-Frachon S, Lacalm A, Massoud M, Rossi M, Cordier MP, Vianey-Saban C. Antenatal manifestations of inborn errors of metabolism: prenatal imaging findings. J Inherit Metab Dis 2017; 40:103-112. [PMID: 27853988 DOI: 10.1007/s10545-016-9992-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
Prenatal manifestations of inborn errors of metabolism (IEM) are related to severe disorders involving metabolic pathways active in the fetal period and not compensated by maternal or placental metabolism. Some prenatal imaging findings can be suggestive of such conditions-especially in cases of consanguinity and/or recurrence of symptoms-after exclusion of the most frequent nonmetabolic etiologies. Most of these prenatal imaging findings are nonspecific. They include mainly ascites and hydrops fetalis, intrauterine growth restriction (IUGR), central nervous system (CNS) anomalies, echogenic kidneys, epiphyseal stippling, craniosynostosis, and a wide spectrum of dysostoses. These anomalies can be isolated, but in most cases, an IEM is suggested by an association of features. It must be stressed that the diagnosis of an IEM in the prenatal period is based on a close collaboration between specialists in fetal imaging, medicine, genetics, biology, and pathology.
Collapse
Affiliation(s)
- Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Lyon Bron, France.
- Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon Bron, France.
- Université Claude Bernard Lyon I, Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, 59, Boulevard Pinel, 69677, Lyon-Bron, France.
| | | | - Audrey Lacalm
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Mona Massoud
- Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Massimiliano Rossi
- Service de Génétique, Centre de Référence des Anomalies de Développement, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Marie Pierre Cordier
- Service de Génétique, Centre de Référence des Anomalies de Développement, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie, Groupement Hospitalier Est, Lyon Bron, France
| |
Collapse
|
19
|
Vianey-Saban C, Acquaviva C, Cheillan D, Collardeau-Frachon S, Guibaud L, Pagan C, Pettazzoni M, Piraud M, Lamazière A, Froissart R. Antenatal manifestations of inborn errors of metabolism: biological diagnosis. J Inherit Metab Dis 2016; 39:611-624. [PMID: 27393412 DOI: 10.1007/s10545-016-9947-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022]
Abstract
Inborn errors of metabolism (IEMs) that present with abnormal imaging findings in the second half of pregnancy are mainly lysosomal storage disorders (LSDs), cholesterol synthesis disorders (CSDs), glycogen storage disorder type IV (GSD IV), peroxisomal disorders, mitochondrial fatty acid oxidation defects (FAODs), organic acidurias, aminoacidopathies, congenital disorders of glycosylation (CDGs), and transaldolase deficiency. Their biological investigation requires fetal material. The supernatant of amniotic fluid (AF) is useful for the analysis of mucopolysaccharides, oligosaccharides, sialic acid, lysosphingolipids and some enzyme activities for LSDs, 7- and 8-dehydrocholesterol, desmosterol and lathosterol for CSDs, acylcarnitines for FAODs, organic acids for organic acidurias, and polyols for transaldolase deficiency. Cultured AF or fetal cells allow the measurement of enzyme activities for most IEMs, whole-cell assays, or metabolite measurements. The cultured cells or tissue samples taken after fetal death can be used for metabolic profiling, enzyme activities, and DNA extraction. Fetal blood can also be helpful. The identification of vacuolated cells orients toward an LSD, and plasma is useful for diagnosing peroxisomal disorders, FAODs, CSDs, some LSDs, and possibly CDGs and aminoacidopathies. We investigated AF of 1700 pregnancies after exclusion of frequent etiologies of nonimmune hydrops fetalis and identified 108 fetuses affected with LSDs (6.3 %), 29 of them with mucopolysaccharidosis type VII (MPS VII), and six with GSD IV (0.3 %). In the AF of 873 pregnancies, investigated because of intrauterine growth restriction and/or abnormal genitalia, we diagnosed 32 fetuses affected with Smith-Lemli-Opitz syndrome (3.7 %).
Collapse
Affiliation(s)
- Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France.
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France.
| | - Cécile Acquaviva
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| | - David Cheillan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
| | - Sophie Collardeau-Frachon
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
- Département de Pathologie, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant CHU de Lyon, Lyon, France
| | - Cécile Pagan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Lyon Neuroscience Research Center, CNRS UMR5292; INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Magali Pettazzoni
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Monique Piraud
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Antonin Lamazière
- Département PM2, Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, APHP, Hôpital Saint Antoine, Paris, France, Laboratoire de spectrométrie de masse, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités-UPMC, Paris, France
| | - Roseline Froissart
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| |
Collapse
|
20
|
Collardeau-Frachon S, Cordier MP, Rossi M, Guibaud L, Vianey-Saban C. Antenatal manifestations of inborn errors of metabolism: autopsy findings suggestive of a metabolic disorder. J Inherit Metab Dis 2016; 39:597-610. [PMID: 27106218 DOI: 10.1007/s10545-016-9937-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
This review highlights the importance of performing an autopsy when faced with fetal abortion or termination of pregnancy with suspicion of an inborn error of metabolism. Radiological, macroscopic and microscopic features found at autopsy as well as placental anomalies that can suggest such a diagnosis are detailed. The following metabolic disorders encountered in fetuses are discussed: lysosomal storage diseases, peroxisomal disorders, cholesterol synthesis disorders, congenital disorders of glycosylation, glycogenosis type IV, mitochondrial respiratory chain disorders, transaldolase deficiency, generalized arterial calcification of infancy, hypophosphatasia, arylsulfatase E deficiency, inborn errors of serine metabolism, asparagine synthetase deficiency, hyperphenylalaninemia, glutaric aciduria type I, non-ketotic hyperglycinemia, pyruvate dehydrogenase deficiency, pyruvate carboxylase deficiency, glutamine synthase deficiency, sulfite oxidase and molybdenum cofactor deficiency.
Collapse
Affiliation(s)
- Sophie Collardeau-Frachon
- Department of Pathology, Hôpital-Femme-Mère-Enfant, Hospices Civils de Lyon, 59 bd Pinel, 69677, Bron cedex, France.
- Université Claude Bernard Lyon I, CHU de Lyon, France.
- SOFFOET, Société Française de Fœtopathologie, Lyon, France.
| | - Marie-Pierre Cordier
- Department of Genetics, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 bd Pinel, 69677, Bron cedex, France
| | - Massimiliano Rossi
- Department of Genetics, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 bd Pinel, 69677, Bron cedex, France
| | - Laurent Guibaud
- Université Claude Bernard Lyon I, CHU de Lyon, France
- Department of Fetal and Pediatric Imaging, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 bd Pinel, 69677, Bron cedex, France
| | - Christine Vianey-Saban
- Department of Department of Biochemistry, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 bd Pinel, 69677, Bron cedex, France
| |
Collapse
|
21
|
Further Delineation of the ALG9-CDG Phenotype. JIMD Rep 2015; 27:107-12. [PMID: 26453364 DOI: 10.1007/8904_2015_504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/14/2015] [Accepted: 09/18/2015] [Indexed: 12/13/2022] Open
Abstract
ALG9-CDG is one of the less frequently reported types of CDG. Here, we summarize the features of six patients with ALG9-CDG reported in the literature and report the features of four additional patients. The patients presented with drug-resistant infantile epilepsy, hypotonia, dysmorphic features, failure to thrive, global developmental disability, and skeletal dysplasia. One patient presented with nonimmune hydrops fetalis. A brain MRI revealed global atrophy with delayed myelination. Exome sequencing identified a novel homozygous mutation c.1075G>A, p.E359K of the ALG9 gene. The results of our analysis of these patients expand the knowledge of ALG9-CDG phenotype.
Collapse
|