1
|
Maksiutenko EM, Barbitoff YA, Nasykhova YA, Pachuliia OV, Lazareva TE, Bespalova ON, Glotov AS. The Landscape of Point Mutations in Human Protein Coding Genes Leading to Pregnancy Loss. Int J Mol Sci 2023; 24:17572. [PMID: 38139401 PMCID: PMC10743817 DOI: 10.3390/ijms242417572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Pregnancy loss is the most frequent complication of a pregnancy which is devastating for affected families and poses a significant challenge for the health care system. Genetic factors are known to play an important role in the etiology of pregnancy loss; however, despite advances in diagnostics, the causes remain unexplained in more than 30% of cases. In this review, we aggregated the results of the decade-long studies into the genetic risk factors of pregnancy loss (including miscarriage, termination for fetal abnormality, and recurrent pregnancy loss) in euploid pregnancies, focusing on the spectrum of point mutations associated with these conditions. We reviewed the evolution of molecular genetics methods used for the genetic research into causes of pregnancy loss, and collected information about 270 individual genetic variants in 196 unique genes reported as genetic cause of pregnancy loss. Among these, variants in 18 genes have been reported by multiple studies, and two or more variants were reported as causing pregnancy loss for 57 genes. Further analysis of the properties of all known pregnancy loss genes showed that they correspond to broadly expressed, highly evolutionary conserved genes involved in crucial cell differentiation and developmental processes and related signaling pathways. Given the features of known genes, we made an effort to construct a list of candidate genes, variants in which may be expected to contribute to pregnancy loss. We believe that our results may be useful for prediction of pregnancy loss risk in couples, as well as for further investigation and revealing genetic etiology of pregnancy loss.
Collapse
Affiliation(s)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| | | | | | | | | | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| |
Collapse
|
2
|
Xiang H, Wang C, Pan H, Hu Q, Wang R, Xu Z, Li T, Su Y, Ma X, Cao Y, Wang B. Exome-Sequencing Identifies Novel Genes Associated with Recurrent Pregnancy Loss in a Chinese Cohort. Front Genet 2021; 12:746082. [PMID: 34925444 PMCID: PMC8674582 DOI: 10.3389/fgene.2021.746082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a common reproductive problem affecting around 5% of couples worldwide. At present, about half of RPL cases remained unexplained. Previous studies have suggested an important role for genetic determinants in the etiology of RPL. Here, we performed whole-exome sequencing (WES) analysis on 100 unrelated Han Chinese women with a history of two or more spontaneous abortions. We identified 6736 rare deleterious nonsynonymous variants across all patients. To focus on possible candidate genes, we generated a list of 95 highly relevant genes that were functionally associated with miscarriage according to human and mouse model studies, and found 35 heterozygous variants of 28 RPL-associated genes in 32 patients. Four genes (FOXA2, FGA, F13A1, and KHDC3L) were identified as being strong candidates. The FOXA2 nonsense variant was for the first time reported here in women with RPL. FOXA2 knockdown in HEK-293T cells significantly diminished the mRNA and protein expression levels of LIF, a pivotal factor for maternal receptivity and blastocyst implantation. The other genes, with 29 variants, were involved in angiogenesis, the immune response and inflammation, cell growth and proliferation, which are functionally important processes for implantation and pregnancy. Our study identified several potential causal genetic variants in women with RPL by WES, highlighting the important role of genes controlling coagulation, confirming the pathogenic role of KHDC3L and identifying FOXA2 as a newly identified causal gene in women with RPL.
Collapse
Affiliation(s)
- Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Hong Pan
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Qian Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Ruyi Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yezhou Su
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Xu Ma
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Center for Genetics, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
3
|
Abstract
Primary immunodeficiencies (PIDs) have become a prime target for gene therapy given the morbidity, mortality, and the single gene etiology. Given that outcomes are better the earlier gene therapy is implemented, it is possible that fetal gene therapy may be an important future direction for the treatment of PIDs. In this chapter, the current treatments available for several PIDs will be reviewed, as well as the history and current status of gene therapy for PIDs. The possibility of in utero gene therapy as a possibility will then be discussed.
Collapse
Affiliation(s)
- Anne H Mardy
- Department of Obstetrics, Gynecology, and Reproductive Services, University of California, San Francisco, California
| | | |
Collapse
|
4
|
Shangaris P, Ho A, Marnerides A, George S, AlAdnani M, Yau S, Jansson M, Hoyle J, Ahn JW, Ellard S, Irving M, Wellesley D, Pasupathy D, Holder-Espinasse M. A hemizygous mutation in the FOXP3 gene (IPEX syndrome) resulting in recurrent X-linked fetal hydrops: a case report. BMC Med Genomics 2021; 14:58. [PMID: 33637067 PMCID: PMC7908803 DOI: 10.1186/s12920-021-00901-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fetal hydrops is excessive extravasation of fluid into the third space in a fetus, which could be due to a wide differential of underlying pathology. IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome primarily affects males. It is a monogenic primary immunodeficiency syndrome of X-linked recessive inheritance due to FOXP3 gene variants. It is characterised by the development of multiple autoimmune disorders in affected individuals. CASE PRESENTATION We present a rare cause of male fetal hydrops in the context of IPEX syndrome and discuss FOXP3 gene variants as a differential for 'unexplained' fetal hydrops that may present after the first trimester. DISCUSSION AND CONCLUSIONS In all similar cases, the pathological process begins during intrauterine life. Furthermore, there are no survivors described. Consequently, this variant should be considered as a severe one, associated with intrauterine life onset and fatal course, i.e., the most severe IPEX phenotype.
Collapse
Affiliation(s)
- Panicos Shangaris
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, 10th Floor North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Alison Ho
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, 10th Floor North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Andreas Marnerides
- Department of Histopathology, St Thomas Hospital, Westminster Bridge Road, London, SE17EH, UK
| | - Simi George
- Department of Histopathology, St Thomas Hospital, Westminster Bridge Road, London, SE17EH, UK
| | - Mudher AlAdnani
- Department of Histopathology, St Thomas Hospital, Westminster Bridge Road, London, SE17EH, UK
| | - Shu Yau
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Mattias Jansson
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jacqueline Hoyle
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joo Wook Ahn
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Melita Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Diana Wellesley
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, SO16 5YA, UK
| | - Dharmintra Pasupathy
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, 10th Floor North Wing, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
- Discipline of Obstetrics, Gynaecology and Neonatology, Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | |
Collapse
|
5
|
Fang Y, Luo Y, Lou J, Chen J. Atypical late-onset severe gastritis in immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome: 2 case reports. Medicine (Baltimore) 2021; 100:e24318. [PMID: 33546062 PMCID: PMC7837857 DOI: 10.1097/md.0000000000024318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/24/2020] [Indexed: 11/26/2022] Open
Abstract
RATIONALE The immune dysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome is a rare disorder that most often manifests in the early stages of life. IPEX syndrome with a late onset, presenting with severe gastritis has rarely been reported. PATIENT CONCERNS Two male adolescents presented with recurrent vomiting, severe malnutrition, and growth retardation due to severe gastritis. DIAGNOSES Esophagogastroduodenoscopy of the 2 patients revealed rare presentations of severe gastritis with multiple ulcers and stenosis of the pylorus. Next-generation sequencing revealed 2 novel variants in gene FOXP3 in the patients who were diagnosed with the IPEX syndrome. INTERVENTIONS Both patients were treated with a high calorie formular enteral nutritional therapy. In addition, the pylorus of patient 1 was enlarged by balloon dilation, while patient 2 was treated with mercaptopurine and low dose prednisone. OUTCOMES Symptoms and nutritional status of the patients improved after treatment. LESSONS Chronic severe gastritis with stenosis of the pylorus could be an atypical manifestation of the IPEX syndrome. The use of next-generation sequencing is highly suitable for the diagnosis of atypical IPEX syndromes.
Collapse
|
6
|
Ng MSF, Roth TL, Mendoza VF, Marson A, Burt TD. Helios enhances the preferential differentiation of human fetal CD4 + naïve T cells into regulatory T cells. Sci Immunol 2020; 4:4/41/eaav5947. [PMID: 31757834 DOI: 10.1126/sciimmunol.aav5947] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
T cell receptor (TCR) stimulation and cytokine cues drive the differentiation of CD4+ naïve T cells into effector T cell populations with distinct proinflammatory or regulatory functions. Unlike adult naïve T cells, human fetal naïve CD4+ T cells preferentially differentiate into FOXP3+ regulatory T (Treg) cells upon TCR activation independent of exogenous cytokine signaling. This cell-intrinsic predisposition for Treg differentiation is implicated in the generation of tolerance in utero; however, the underlying mechanisms remain largely unknown. Here, we identify epigenetic and transcriptional programs shared between fetal naïve T and committed Treg cells that are inactive in adult naïve T cells and show that fetal-derived induced Treg (iTreg) cells retain this transcriptional program. We show that a subset of Treg-specific enhancers is accessible in fetal naïve T cells, including two active superenhancers at Helios Helios is expressed in fetal naïve T cells but not in adult naïve T cells, and fetal iTreg cells maintain Helios expression. CRISPR-Cas9 ablation of Helios in fetal naïve T cells impaired their differentiation into iTreg cells upon TCR stimulation, reduced expression of immunosuppressive genes in fetal iTreg cells such as IL10, and increased expression of proinflammatory genes including IFNG Consequently, Helios knockout fetal iTreg cells had reduced IL-10 and increased IFN-γ cytokine production. Together, our results reveal important roles for Helios in enhancing preferential fetal Treg differentiation and fine-tuning eventual Treg function. The Treg-biased programs identified within fetal naïve T cells could potentially be used to engineer enhanced iTreg populations for adoptive cellular therapies.
Collapse
Affiliation(s)
- Melissa S F Ng
- Biomedical Sciences Graduate Program, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.,Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore 138648, Singapore
| | - Theodore L Roth
- Biomedical Sciences Graduate Program, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.,Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA.,Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | - Ventura F Mendoza
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, UCSF, San Francisco, CA 94143, USA.,Diabetes Center, UCSF, San Francisco, CA 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.,Department of Medicine, UCSF, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Trevor D Burt
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA. .,Department of Pediatrics, Division of Neonatology, UCSF, San Francisco, CA 94110, USA
| |
Collapse
|
7
|
Jamee M, Zaki-Dizaji M, Lo B, Abolhassani H, Aghamahdi F, Mosavian M, Nademi Z, Mohammadi H, Jadidi-Niaragh F, Rojas M, Anaya JM, Azizi G. Clinical, Immunological, and Genetic Features in Patients with Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) and IPEX-like Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2747-2760.e7. [PMID: 32428713 DOI: 10.1016/j.jaip.2020.04.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare inborn error of immunity caused by mutations in the forkhead box P3 (FOXP3) gene. OBJECTIVE In this study, we conducted a systematic review of patients with IPEX and IPEX-like syndrome to delineate differences in these 2 major groups. METHODS The literature search was performed in PubMed, Web of Science, and Scopus databases, and demographic, clinical, immunologic, and molecular data were compared between the IPEX and IPEX-like groups. RESULTS A total of 459 patients were reported in 148 eligible articles. Major clinical differences between patients with IPEX and IPEX-like syndrome were observed in rates of pneumonia (11% vs 31%, P < .001), bronchiectasis (0.3% vs 14%, P < .001), diarrhea (56% vs 42%, P = .020), and organomegaly (10% vs 23%, P = .001), respectively. Eosinophilia (95% vs 100%), low regulatory T-cell count (68% vs 50%), and elevated IgE (87% vs 61%) were the most prominent laboratory findings in patients with IPEX and IPEX-like syndrome, respectively. In the IPEX group, a lower mortality rate was observed among patients receiving hematopoietic stem cell transplantation (HSCT) (24%) compared with other patients (43%), P = .008; however, in the IPEX-like group, it was not significant (P = .189). CONCLUSIONS Patients with IPEX syndrome generally suffer from enteropathy, autoimmunity, dermatitis, eosinophilia, and elevated serum IgE. Despite similarities in their clinical presentations, patients with IPEX-like syndrome are more likely to present common variable immunodeficiency-like phenotype such as respiratory tract infections, bronchiectasis, and organomegaly. HSCT is currently the only curative therapy for both IPEX and IPEX-like syndrome and may result in favorable outcome.
Collapse
Affiliation(s)
- Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran; Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Bernice Lo
- Sidra Medicine, Division of Translational Medicine, Research Branch, Doha, Qatar
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fatemeh Aghamahdi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mosavian
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zohreh Nademi
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle, United Kingdom
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
8
|
Abstract
Primary immunodeficiency disorders (PIDs) are genetic diseases that lead to increased susceptibility to infection. Hundreds of PIDs have now been described, but a select subset commonly presents in the neonatal period. Neonates, especially premature newborns, have relative immune immaturity that makes it challenging to differentiate PIDs from intrinsic immaturity. Nonetheless, early identification and appropriate management of PIDs are critical, and the neonatal clinician should be familiar with a range of PIDs and their presentations. The neonatal clinician should also be aware of the importance of consulting with an immunologist when a PID is suspected. The role of newborn screening for severe combined immunodeficiency, as well as the initial steps of laboratory evaluation for a PID should be familiar to those caring for neonates. Finally, it is important for providers to be familiar with the initial management steps that can be taken to reduce the risk of infection in affected patients.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
El-Sayed ZA, Radwan N. Newborn Screening for Primary Immunodeficiencies: The Gaps, Challenges, and Outlook for Developing Countries. Front Immunol 2020; 10:2987. [PMID: 32082296 PMCID: PMC7002357 DOI: 10.3389/fimmu.2019.02987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023] Open
Abstract
Primary immunodeficiency diseases (PIDs) are genetically inherited diseases characterized by an increased susceptibility to infections, autoimmunity, lymphoproliferation, and malignancies. PIDs are under-diagnosed and the registered cases and reported prevalence are far below the estimated numbers especially in countries with large population and high consanguinity rates. Delays in diagnosis yield major morbidities and mortalities with resultant increased economic burden. Newborn screening using TRECs and KRECs, currently being implemented in some countries, is aimed through early diagnosis, to overcome the delays in the diagnosis and hence the poor outcome of some of the severe PIDs. However, the limited resources in developing countries challenges the implementation of newborn PID screening programs. There are considerable gaps in our knowledge that must be bridged. Setting the norms of TRECs and KRECs for each country is needed. Furthermore, some PIDs that might present in the neonatal period could not be detected by the current screening programs, and their diagnosis requires clinical expertise. Not to mention, local guidelines for the management of patients diagnosed by NBS should be set forth. Also, in the absence of NBS, clinicians should be aware of the early manifestations of PID. All these mandate conducting studies genuine to each country, developing programs for raising public awareness and clinical training of physicians to attain the required immunological skills.
Collapse
Affiliation(s)
- Zeinab A El-Sayed
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Nesrine Radwan
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Carneiro-Sampaio M, Moreira-Filho CA, Bando SY, Demengeot J, Coutinho A. Intrauterine IPEX. Front Pediatr 2020; 8:599283. [PMID: 33330291 PMCID: PMC7714920 DOI: 10.3389/fped.2020.599283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
IPEX is one of the few Inborn Errors of Immunity that may manifest in the fetal period, and its intrauterine forms certainly represent the earliest human autoimmune diseases. Here, we review the clinical, histopathologic, and genetic findings from 21 individuals in 11 unrelated families, with nine different mutations, described as cases of intrauterine IPEX. Recurrent male fetal death (multigenerational in five families) due to hydrops in the midsemester of pregnancy was the commonest presentation (13/21). Noteworthy, in the affected families, there were only fetal- or perinatal-onset cases, with no affected individuals presenting milder forms with later-life manifestation. Most alive births were preterm (5/6). Skin desquamation and intrauterine growth restriction were observed in part of the cases. Fetal ultrasonography showed hyperechoic bowel or dilated bowel loops in the five cases with available imaging data. Histopathology showed multi-visceral infiltrates with T lymphocytes and other cells, including eosinophils, the pancreas being affected in most of the cases (11/21) and as early as at 18 weeks of gestational age. Regarding the nine FOXP3 mutations found in these cases, six determine protein truncation and three predictably impair protein function. Having found distinct presentations for the same FOXP3 mutation in different families, we resorted to the mouse system and showed that the scurfy mutation also shows divergent severity of phenotype and age of death in C57BL/6 and BALB/c backgrounds. We also reviewed age-of-onset data from other monogenic Tregopathies leading to IPEX-like phenotypes. In monogenic IPEX-like syndromes, the intrauterine onset was only observed in two kindreds with IL2RB mutations, with two stillbirths and two premature neonates who did not survive. In conclusion, intrauterine IPEX cases seem to constitute a particular IPEX subgroup, certainly with the most severe clinical presentation, although no strict mutation-phenotype correlations could be drawn for these cases.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Yumi Bando
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Guo W, Lai Y, Yan Z, Wang Y, Nie Y, Guan S, Kuo Y, Zhang W, Zhu X, Peng M, Zhi X, Wei Y, Yan L, Qiao J. Trio-whole-exome sequencing and preimplantation genetic diagnosis for unexplained recurrent fetal malformations. Hum Mutat 2019; 41:432-448. [PMID: 31680349 DOI: 10.1002/humu.23935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/19/2019] [Accepted: 10/16/2019] [Indexed: 01/18/2023]
Abstract
Whole-exome sequencing (WES) is widely used to detect genetic mutations that cause Mendelian diseases, and has been successfully applied in combination with preimplantation genetic diagnosis (PGD) to avoid the transmission of genetic defects. We investigated 40 nonconsanguineous families with unexplained, recurrent fetal malformations (two or more malformed fetuses) from May 2016 to December 2018. Using Trio-WES, we identified 32 disease-associated variants in 40 families (80% positive rate), which were subsequently verified. Known Mendelian diseases were identified in 12 families (30%), highly suspected Mendelian diseases in 12 families (30%), variants with uncertain significance in 8 families (20%), and no noticeable variants for 8 families (20%). Further analysis showed variants in 22 genes may cause fetal malformations. Four gene variants were detected in fetuses for the first time, which expanded the spectrum of the disease phenotype. Two novel candidate genes may be related to fetal malformations. Of 26 couples receiving PGD on disease-associated genes, 3 healthy newborns were delivered, and 4 couples are undergoing pregnancies. We reported the fetal data and developed an optimized genetic testing strategy. Our finding strongly suggests the presence of single gene Mendelian disorders in 60% of those families, and PGD services for couples to have healthy babies.
Collapse
Affiliation(s)
- Wei Guo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Yuchen Lai
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhiqiang Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuqian Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Yanli Nie
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Shuo Guan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Ying Kuo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Wenxin Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Xiaohui Zhu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | | | - Xu Zhi
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Yuan Wei
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| |
Collapse
|
12
|
Shanes E, Propst L, Ouyang DW, Ernst LM. Recurrent Non Immune Fetal Hydrops Associated With IPEX Syndrome. Pediatr Dev Pathol 2019; 22:465-471. [PMID: 30813833 DOI: 10.1177/1093526619834809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) is a clinical syndrome associated with mutations in FOXP3 and consequent abnormalities of T regulatory cells. Affected males typically die in infancy or early childhood from a variety of autoimmune conditions. Reports of recurrent pregnancy loss of male fetuses in these families have been accompanied by descriptions of nonimmune fetal hydrops, with or without additional fetal anomalies. Here, we report an additional family affected by IPEX with a novel mutation leading to recurrent second trimester fetal hydrops and intrauterine fetal demise with associated fetal anomalies. This report underscores how careful genetic and pathologic analysis of even midtrimester fetuses can provide important information impacting an entire family. It also further substantiates the use of broad, symptom-targeted genetic screening panels in cases of recurrent pregnancy loss even in the absence of a remarkable pedigree.
Collapse
Affiliation(s)
- Elisheva Shanes
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois.,Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Lauren Propst
- Center for Maternal and Fetal Health, NorthShore University HealthSystem, Evanston, Illinois
| | - David W Ouyang
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois.,Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois
| | - Linda M Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois.,Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Robbins SM, Thimm MA, Valle D, Jelin AC. Genetic diagnosis in first or second trimester pregnancy loss using exome sequencing: a systematic review of human essential genes. J Assist Reprod Genet 2019; 36:1539-1548. [PMID: 31273585 DOI: 10.1007/s10815-019-01499-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Non-aneuploid recurrent pregnancy loss (RPL) affects approximately 100,000 pregnancies worldwide annually. Exome sequencing (ES) may help uncover the genetic etiology of RPL and, more generally, pregnancy loss as a whole. Previous studies have attempted to predict the genes that, when disrupted, may cause human embryonic lethality. However, predictions by these early studies rarely point to the same genes. Case reports of pathogenic variants identified in RPL cases offer another clue. We evaluated known genetic etiologies of RPL identified by ES. METHODS We gathered primary research articles from PubMed and Embase involving case reports of RPL reporting variants identified by ES. Two authors independently reviewed all articles for eligibility and extracted data based on predetermined criteria. Preliminary and amended analysis isolated 380 articles; 15 met all inclusion criteria. RESULTS These 15 articles described 74 families with 279 reported RPLs with 34 candidate pathogenic variants in 19 genes (NOP14, FOXP3, APAF1, CASP9, CHRNA1, NLRP5, MMP10, FGA, FLT1, EPAS1, IDO2, STIL, DYNC2H1, IFT122, PADI6, CAPS, MUSK, NLRP2, NLRP7) and 26 variants of unknown significance in 25 genes. These genes cluster in four essential pathways: (1) gene expression, (2) embryonic development, (3) mitosis and cell cycle progression, and (4) inflammation and immunity. CONCLUSIONS For future studies of RPL, we recommend trio-based ES in cases with normal parental karyotypes. In vitro fertilization with preimplantation genetic diagnosis can be pursued if causative variants are found. Utilization of other sequencing technologies in concert with ES should improve understanding of the causes of early embryonic lethality in humans.
Collapse
Affiliation(s)
- Sarah M Robbins
- McKusick-Nathans Institute in the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Matthew A Thimm
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Valle
- McKusick-Nathans Institute in the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Mardy AH, Chetty SP, Norton ME, Sparks TN. A system-based approach to the genetic etiologies of non-immune hydrops fetalis. Prenat Diagn 2019; 39:732-750. [PMID: 31087399 DOI: 10.1002/pd.5479] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
A wide spectrum of genetic causes may lead to nonimmune hydrops fetalis (NIHF), and a thorough phenotypic and genetic evaluation are essential to determine the underlying etiology, optimally manage these pregnancies, and inform discussions about anticipated prognosis. In this review, we outline the known genetic etiologies of NIHF by fetal organ system affected, and provide a systematic approach to the evaluation of NIHF. Some of the underlying genetic disorders are associated with characteristic phenotypic features that may be seen on prenatal ultrasound, such as hepatomegaly with lysosomal storage disorders, hyperechoic kidneys with congenital nephrosis, or pulmonary valve stenosis with RASopathies. However, this is not always the case, and the approach to evaluation must include prenatal ultrasound findings as well as genetic testing and many other factors. Genetic testing that has been utilized for NIHF ranges from standard chromosomal microarray or karyotype to gene panels and broad approaches such as whole exome sequencing. Family and obstetric history, as well as pathology examination, can yield additional clues that are helpful in establishing a diagnosis. A systematic approach to evaluation can guide a more targeted approach to genetic evaluation, diagnosis, and management of NIHF.
Collapse
Affiliation(s)
- Anne H Mardy
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, US
| | - Shilpa P Chetty
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, US
| | - Mary E Norton
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, US
| | - Teresa N Sparks
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, US
| |
Collapse
|
15
|
Agakidis C, Agakidou E, Sarafidis K, Papoulidis I, Xinias I, Farmaki E. Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked Syndrome Associated With a Novel Mutation of FOXP3 Gene. Front Pediatr 2019; 7:20. [PMID: 30805323 PMCID: PMC6370736 DOI: 10.3389/fped.2019.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/17/2019] [Indexed: 12/05/2022] Open
Abstract
The immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare, x-linked, recessive disorder characterized by dysfunction of the T regulatory (Treg) lymphocytes leading to autoimmune diseases. Herein we report a male patient with IPEX syndrome who presented with severe diarrhea, eczema, and malabsorption leading to failure to thrive and necessitating total parenteral nutrition, as well as with liver dysfunction. Laboratory investigation showed elevated liver enzymes that declined following treatment with glucocorticosteroids and immunosuppressive drugs, marked eosinophilia, increased total IgE, and decreased Treg cells. DNA analysis revealed that the patient himself was hemizygous and his mother heterozygous for the exon 10, c.1015C>T (p.Pro339Ser) mutation of the FOXP3 gene, which has not been previously reported. The current case indicates that mutations resulting in substitution of a certain amino-acid (i.e., proline 339) by different amino-acids are manifested with different IPEX phenotypes.
Collapse
Affiliation(s)
- Charalampos Agakidis
- Pediatric Gastroenterology Section, First Department of Pediatrics, Ippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Agakidou
- First Department of Neonatology, Ippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kosmas Sarafidis
- First Department of Neonatology, Ippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Papoulidis
- Access to Genome P.C., Clinical Genetics Laboratory, Thessaloniki, Greece
| | - Ioannis Xinias
- Pediatric Gastroenterology Section, Third Department of Pediatrics, Ippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Farmaki
- Immunology Laboratory, First Department of Pediatrics, Ippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
16
|
Datkhaeva I, Arboleda VA, Senaratne TN, Nikpour G, Meyerson C, Geng Y, Afshar Y, Scibetta E, Goldstein J, Quintero-Rivera F, Crandall BF, Grody WW, Deignan J, Janzen C. Identification of novel PIEZO1 variants using prenatal exome sequencing and correlation to ultrasound and autopsy findings of recurrent hydrops fetalis. Am J Med Genet A 2018; 176:2829-2834. [PMID: 30244526 DOI: 10.1002/ajmg.a.40533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023]
Abstract
Nonimmune hydrops fetalis (NIHF) is a rare disorder with a high perinatal mortality of at least 50%. One cause of NIHF is generalized lymphatic dysplasia (GLD), a rare form of primary lymphedema of the extremities and systemic involvement including chylothoraces and pericardial effusions. An autosomal recessive form of GLD has been described, caused by variants in the PIEZO1 gene. It has been reported clinically to cause NIHF and childhood onset of facial and limb lymphedema, most of which were diagnosed postnatally. We present a case of a woman with recurrent pregnancies affected by NIHF because of novel compound heterozygous variants in the PIEZO1 gene diagnosed prenatally using exome sequencing (ES). Two variants in PIEZO1 (c.3206G>A and c.6208A>C) were identified that were inherited from the father and mother, and are predicted to cause a nonsense and missense change, respectively, in the PIEZO1 subunits. Ultrasound demonstrated severe bilateral pleural effusions, whole body edema and polyhydramnios. Histopathology revealed an increased number of lymphatic channels, many of which showed failure of luminal canalization. Sanger sequencing confirmed the same variants in a prior fetal demise. We provide phenotypic correlation with ultrasound and autopsy finding, review PIEZO1 variants as a cause of GLD and discuss the uses of prenatal ES to date.
Collapse
Affiliation(s)
- Ilina Datkhaeva
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Gelareh Nikpour
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Cherise Meyerson
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yipeng Geng
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Yalda Afshar
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Emily Scibetta
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Jeffrey Goldstein
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Barbara F Crandall
- Department of Psychiatry, Prenatal Diagnosis Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Wayne W Grody
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Joshua Deignan
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
Shehab O, Tester DJ, Ackerman NC, Cowchock FS, Ackerman MJ. Whole genome sequencing identifies etiology of recurrent male intrauterine fetal death. Prenat Diagn 2017; 37:1040-1045. [DOI: 10.1002/pd.5142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/28/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Omar Shehab
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory; Mayo Clinic; Rochester MN USA
| | - David J. Tester
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory; Mayo Clinic; Rochester MN USA
- Department of Cardiovascular Diseases/Division of Heart Rhythm Services; Mayo Clinic; Rochester MN USA
| | - Nicholas C. Ackerman
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory; Mayo Clinic; Rochester MN USA
| | - F. Susan Cowchock
- Center for Spirituality and Health; Duke University School of Medicine; Durham NC USA
| | - Michael J. Ackerman
- Mayo Clinic Graduate School of Biomedical Sciences, Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory; Mayo Clinic; Rochester MN USA
- Department of Cardiovascular Diseases/Division of Heart Rhythm Services; Mayo Clinic; Rochester MN USA
- Department of Pediatrics/Division of Pediatric Cardiology; Mayo Clinic; Rochester MN USA
| |
Collapse
|
18
|
New Insights and Perspectives in Congenital Diarrheal Disorders. CURRENT PEDIATRICS REPORTS 2017. [DOI: 10.1007/s40124-017-0136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Westerfield LE, Braxton AA, Walkiewicz M. Prenatal Diagnostic Exome Sequencing: a Review. CURRENT GENETIC MEDICINE REPORTS 2017. [DOI: 10.1007/s40142-017-0120-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Louie RJ, Tan QKG, Gilner JB, Rogers RC, Younge N, Wechsler SB, McDonald MT, Gordon B, Saski CA, Jones JR, Chapman SJ, Stevenson RE, Sleasman JW, Friez MJ. Novel pathogenic variants in FOXP3 in fetuses with echogenic bowel and skin desquamation identified by ultrasound. Am J Med Genet A 2017; 173:1219-1225. [PMID: 28317311 DOI: 10.1002/ajmg.a.38144] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/05/2016] [Accepted: 12/30/2016] [Indexed: 11/12/2022]
Abstract
Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) syndrome is a rare, X-linked recessive disease that affects regulatory T cells (Tregs) resulting in diarrhea, enteropathy, eczema, and insulin-dependent diabetes mellitus. IPEX syndrome is caused by pathogenic alterations in FOXP3 located at Xp11.23. FOXP3 encodes a transcription factor that interacts with several partners, including NFAT and NF-κB, and is necessary for the proper cellular differentiation of Tregs. Although variable, the vast majority of IPEX syndrome patients have onset of disease during infancy with severe enteropathy. Only five families with prenatal presentation of IPEX syndrome have been reported. Here, we present two additional prenatal onset cases with novel inherited frameshift pathogenic variants in FOXP3 that generate premature stop codons. Ultrasound findings in the first patient identified echogenic bowel, echogenic debris, scalp edema, and hydrops. In the second patient, ultrasound findings included polyhydramnios with echogenic debris, prominent fluid-filled loops of bowel, and echogenic bowel. These cases further broaden the phenotypic spectrum of IPEX syndrome by describing previously unappreciated prenatal ultrasound findings associated with the disease.
Collapse
Affiliation(s)
| | | | | | | | - Noelle Younge
- Duke University School of Medicine, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Allenspach EJ, Finn LS, Rendi MH, Eken A, Singh AK, Oukka M, Taylor SD, Altman MC, Fligner CL, Ochs HD, Rawlings DJ, Torgerson TR. Absence of functional fetal regulatory T cells in humans causes in utero organ-specific autoimmunity. J Allergy Clin Immunol 2017; 140:616-619.e7. [PMID: 28322850 DOI: 10.1016/j.jaci.2017.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Eric J Allenspach
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Laura S Finn
- Department of Laboratories, Seattle Children's Hospital, Seattle, Wash; Department of Pathology, University of Washington School of Medicine, Seattle, Wash
| | - Mara H Rendi
- Department of Pathology, University of Washington School of Medicine, Seattle, Wash
| | - Ahmet Eken
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Akhilesh K Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Mohamed Oukka
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Sean D Taylor
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Matthew C Altman
- Benaroya Research Institute, Seattle, Wash; Department of Medicine, University of Washington School of Medicine, Seattle, Wash
| | - Corinne L Fligner
- Department of Pathology, University of Washington School of Medicine, Seattle, Wash; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Wash
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - David J Rawlings
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash.
| |
Collapse
|
22
|
Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3
mutation: a lesson on immune dysregulation. Ann N Y Acad Sci 2016; 1417:5-22. [DOI: 10.1111/nyas.13011] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/29/2015] [Accepted: 01/06/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Rosa Bacchetta
- Department of Pediatrics; Division of Pediatric Stem Cells, Transplantation and Regenerative Medicine; Stanford University Medical School; Stanford California
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| | - Maria-Grazia Roncarolo
- Department of Pediatrics; Division of Pediatric Stem Cells, Transplantation and Regenerative Medicine; Stanford University Medical School; Stanford California
| |
Collapse
|