1
|
De Leon DD, Arnoux JB, Banerjee I, Bergada I, Bhatti T, Conwell LS, Fu J, Flanagan SE, Gillis D, Meissner T, Mohnike K, Pasquini TL, Shah P, Stanley CA, Vella A, Yorifuji T, Thornton PS. International Guidelines for the Diagnosis and Management of Hyperinsulinism. Horm Res Paediatr 2023; 97:279-298. [PMID: 37454648 PMCID: PMC11124746 DOI: 10.1159/000531766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hyperinsulinism (HI) due to dysregulation of pancreatic beta-cell insulin secretion is the most common and most severe cause of persistent hypoglycemia in infants and children. In the 65 years since HI in children was first described, there has been a dramatic advancement in the diagnostic tools available, including new genetic techniques and novel radiologic imaging for focal HI; however, there have been almost no new therapeutic modalities since the development of diazoxide. SUMMARY Recent advances in neonatal research and genetics have improved our understanding of the pathophysiology of both transient and persistent forms of neonatal hyperinsulinism. Rapid turnaround of genetic test results combined with advanced radiologic imaging can permit identification and localization of surgically-curable focal lesions in a large proportion of children with congenital forms of HI, but are only available in certain centers in "developed" countries. Diazoxide, the only drug currently approved for treating HI, was recently designated as an "essential medicine" by the World Health Organization but has been approved in only 16% of Latin American countries and remains unavailable in many under-developed areas of the world. Novel treatments for HI are emerging, but they await completion of safety and efficacy trials before being considered for clinical use. KEY MESSAGES This international consensus statement on diagnosis and management of HI was developed in order to assist specialists, general pediatricians, and neonatologists in early recognition and treatment of HI with the ultimate aim of reducing the prevalence of brain injury caused by hypoglycemia. A previous statement on diagnosis and management of HI in Japan was published in 2017. The current document provides an updated guideline for management of infants and children with HI and includes potential accommodations for less-developed regions of the world where resources may be limited.
Collapse
Affiliation(s)
- Diva D. De Leon
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, AP-HP, University of Paris-Cité, Paris, France
| | - Indraneel Banerjee
- Paediatric Endocrinology, Royal Manchester Children’s Hospital, University of Manchester, Manchester, UK
| | - Ignacio Bergada
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CONICET – FEI), Division de Endrocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Tricia Bhatti
- Department of Clinical Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Louise S. Conwell
- Australia and Children’s Health Queensland Clinical Unit, Department of Endocrinology and Diabetes, Queensland Children’s Hospital, Children’s Health Queensland, Greater Brisbane Clinical School, Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Junfen Fu
- National Clinical Research Center for Child Health, Department of Endocrinology, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - David Gillis
- Hadassah Medical Center, Department of Pediatrics, Ein-Kerem, Jerusalem and Faculty of Medicine, Hebrew-University, Jerusalem, Israel
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Klaus Mohnike
- Department of General Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tai L.S. Pasquini
- Research and Policy Director, Congenital Hyperinsulinism International, Glen Ridge, NJ, USA
| | - Pratik Shah
- Pediatric Endocrinology, The Royal London Children’s Hospital, Queen Mary University of London, London, UK
| | - Charles A. Stanley
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian Vella
- Division of Diabetes, Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Paul S. Thornton
- Congenital Hyperinsulinism Center, Cook Children’s Medical Center and Texas Christian University Burnett School of Medicine, Fort Worth, TX, USA
| |
Collapse
|
2
|
Zenker M, Mohnike K, Palm K. Syndromic forms of congenital hyperinsulinism. Front Endocrinol (Lausanne) 2023; 14:1013874. [PMID: 37065762 PMCID: PMC10098214 DOI: 10.3389/fendo.2023.1013874] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Congenital hyperinsulinism (CHI), also called hyperinsulinemic hypoglycemia (HH), is a very heterogeneous condition and represents the most common cause of severe and persistent hypoglycemia in infancy and childhood. The majority of cases in which a genetic cause can be identified have monogenic defects affecting pancreatic β-cells and their glucose-sensing system that regulates insulin secretion. However, CHI/HH has also been observed in a variety of syndromic disorders. The major categories of syndromes that have been found to be associated with CHI include overgrowth syndromes (e.g. Beckwith-Wiedemann and Sotos syndromes), chromosomal and monogenic developmental syndromes with postnatal growth failure (e.g. Turner, Kabuki, and Costello syndromes), congenital disorders of glycosylation, and syndromic channelopathies (e.g. Timothy syndrome). This article reviews syndromic conditions that have been asserted by the literature to be associated with CHI. We assess the evidence of the association, as well as the prevalence of CHI, its possible pathophysiology and its natural course in the respective conditions. In many of the CHI-associated syndromic conditions, the mechanism of dysregulation of glucose-sensing and insulin secretion is not completely understood and not directly related to known CHI genes. Moreover, in most of those syndromes the association seems to be inconsistent and the metabolic disturbance is transient. However, since neonatal hypoglycemia is an early sign of possible compromise in the newborn, which requires immediate diagnostic efforts and intervention, this symptom may be the first to bring a patient to medical attention. As a consequence, HH in a newborn or infant with associated congenital anomalies or additional medical issues remains a differential diagnostic challenge and may require a broad genetic workup.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Martin Zenker,
| | - Klaus Mohnike
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Palm
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Hewat TI, Johnson MB, Flanagan SE. Congenital Hyperinsulinism: Current Laboratory-Based Approaches to the Genetic Diagnosis of a Heterogeneous Disease. Front Endocrinol (Lausanne) 2022; 13:873254. [PMID: 35872984 PMCID: PMC9302115 DOI: 10.3389/fendo.2022.873254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Congenital hyperinsulinism is characterised by the inappropriate release of insulin during hypoglycaemia. This potentially life-threatening disorder can occur in isolation, or present as a feature of syndromic disease. Establishing the underlying aetiology of the hyperinsulinism is critical for guiding medical management of this condition especially in children with diazoxide-unresponsive hyperinsulinism where the underlying genetics determines whether focal or diffuse pancreatic disease is present. Disease-causing single nucleotide variants affecting over 30 genes are known to cause persistent hyperinsulinism with mutations in the KATP channel genes (ABCC8 and KCNJ11) most commonly identified in children with severe persistent disease. Defects in methylation, changes in chromosome number, and large deletions and duplications disrupting multiple genes are also well described in congenital hyperinsulinism, further highlighting the genetic heterogeneity of this condition. Next-generation sequencing has revolutionised the approach to genetic testing for congenital hyperinsulinism with targeted gene panels, exome, and genome sequencing being highly sensitive methods for the analysis of multiple disease genes in a single reaction. It should though be recognised that limitations remain with next-generation sequencing with no single application able to detect all reported forms of genetic variation. This is an important consideration for hyperinsulinism genetic testing as comprehensive screening may require multiple investigations.
Collapse
|
4
|
Grand K, Gonzalez-Gandolfi C, Ackermann AM, Aljeaid D, Bedoukian E, Bird LM, De Leon DD, Diaz J, Hopkin RJ, Kadakia SP, Keena B, Klein KO, Krantz I, Leon E, Lord K, McDougall C, Medne L, Skraban CM, Stanley CA, Tarpinian J, Zackai E, Deardorff MA, Kalish JM. Hyperinsulinemic hypoglycemia in seven patients with de novo NSD1 mutations. Am J Med Genet A 2019; 179:542-551. [PMID: 30719864 DOI: 10.1002/ajmg.a.61062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 11/07/2022]
Abstract
Sotos syndrome is an overgrowth syndrome characterized by distinctive facial features and intellectual disability caused by haploinsufficiency of the NSD1 gene. Genotype-phenotype correlations have been observed, with major anomalies seen more frequently in patients with 5q35 deletions than those with point mutations in NSD1. Though endocrine features have rarely been described, transient hyperinsulinemic hypoglycemia (HI) of the neonatal period has been reported as an uncommon presentation of Sotos syndrome. Eight cases of 5q35 deletions and one patient with an intragenic NSD1 mutation with transient HI have been reported. Here, we describe seven individuals with HI caused by NSD1 gene mutations with three having persistent hyperinsulinemic hypoglycemia. These patients with persistent HI and Sotos syndrome caused by NSD1 mutations, further dispel the hypothesis that HI is due to the deletion of other genes in the deleted 5q35 region. These patients emphasize that NSD1 haploinsufficiency is sufficient to cause HI, and suggest that Sotos syndrome should be considered in patients presenting with neonatal HI. Lastly, these patients help extend the phenotypic spectrum of Sotos syndrome to include HI as a significant feature.
Collapse
Affiliation(s)
- Katheryn Grand
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Amanda M Ackermann
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Deema Aljeaid
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emma Bedoukian
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lynne M Bird
- Department of Pediatrics, Division of Genetics, University of San Diego, California and Rady Children's Hospital, San Diego, California
| | - Diva D De Leon
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jullianne Diaz
- Rare Disease Institute - Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sejal P Kadakia
- Department of Pediatrics, Division of Endocrinology, University of San Diego, California and Rady Children's Hospital, San Diego, California
| | - Beth Keena
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Karen O Klein
- Department of Pediatrics, Division of Endocrinology, University of San Diego, California and Rady Children's Hospital, San Diego, California
| | - Ian Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eyby Leon
- Rare Disease Institute - Genetics and Metabolism, Children's National Health System, Washington, District of Columbia
| | - Katherine Lord
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carey McDougall
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Livija Medne
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Cara M Skraban
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles A Stanley
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer Tarpinian
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine Zackai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew A Deardorff
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer M Kalish
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|