1
|
Malecki SL, Heung T, Wodchis WP, Saskin R, Palma L, Verma AA, Bassett AS. Young adults with a 22q11.2 microdeletion and the cost of aging with complexity in a population-based context. Genet Med 2024; 26:101088. [PMID: 38310401 DOI: 10.1016/j.gim.2024.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
PURPOSE Information about the impact on the adult health care system is limited for complex rare pediatric diseases, despite their increasing collective prevalence that has paralleled advances in clinical care of children. Within a population-based health care context, we examined costs and multimorbidity in adults with an exemplar of contemporary genetic diagnostics. METHODS We estimated direct health care costs over an 18-year period for adults with molecularly confirmed 22q11.2 microdeletion (cases) and matched controls (total 60,459 person-years of data) by linking the case cohort to health administrative data for the Ontario population (∼15 million people). We used linear regression to compare the relative ratio (RR) of costs and to identify baseline predictors of higher costs. RESULTS Total adult (age ≥ 18) health care costs were significantly higher for cases compared with population-based (RR 8.5, 95% CI 6.5-11.1) controls, and involved all health care sectors. At study end, when median age was <30 years, case costs were comparable to population-based individuals aged 72 years, likelihood of being within the top 1st percentile of health care costs for the entire (any age) population was significantly greater for cases than controls (odds ratio [OR], for adults 17.90, 95% CI 7.43-43.14), and just 8 (2.19%) cases had a multimorbidity score of zero (vs 1483 (40.63%) controls). The 22q11.2 microdeletion was a significant predictor of higher overall health care costs after adjustment for baseline variables (RR 6.9, 95% CI 4.6-10.5). CONCLUSION The findings support the possible extension of integrative models of complex care used in pediatrics to adult medicine and the potential value of genetic diagnostics in adult clinical medicine.
Collapse
Affiliation(s)
- Sarah L Malecki
- Internal Medicine Residency Program, University of Toronto, Toronto, Ontario, Canada; Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tracy Heung
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
| | - Walter P Wodchis
- Professor, Institute of Health Policy Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Senior Scientist and Research Chair, Implementation and Evaluation Science, Institute for Better Health, Trillium Health Partners, Toronto, Ontario, Canada; ICES, Toronto, Ontario, Canada
| | | | | | - Amol A Verma
- Li Ka Shing Knowledge Institute and Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada; Division of Cardiology, Centre for Mental Health & Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Freud LR, Galloway S, Crowley TB, Moldenhauer J, Swillen A, Breckpot J, Borrell A, Vora NL, Cuneo B, Hoffman H, Gilbert L, Nowakowska B, Geremek M, Kutkowska-Kaźmierczak A, Vermeesch JR, Devriendt K, Busa T, Sigaudy S, Vigneswaran T, Simpson JM, Dungan J, Gotteiner N, Gloning KP, Digilio MC, Unolt M, Putotto C, Marino B, Repetto G, Fadic M, Garcia-Minaur S, Achón Buil A, Thomas MA, Fruitman D, Beecroft T, Hui PW, Oskarsdottir S, Bradshaw R, Criebaum A, Norton ME, Lee T, Geiger M, Dunnington L, Isaac J, Wilkins-Haug L, Hunter L, Izzi C, Toscano M, Ghi T, McGlynn J, Romana Grati F, Emanuel BS, Gaiser K, Gaynor JW, Goldmuntz E, McGinn DE, Schindewolf E, Tran O, Zackai EH, Yan Q, Bassett AS, Wapner R, McDonald-McGinn DM. Prenatal vs postnatal diagnosis of 22q11.2 deletion syndrome: cardiac and noncardiac outcomes through 1 year of age. Am J Obstet Gynecol 2024; 230:368.e1-368.e12. [PMID: 37717890 DOI: 10.1016/j.ajog.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The 22q11.2 deletion syndrome is the most common microdeletion syndrome and is frequently associated with congenital heart disease. Prenatal diagnosis of 22q11.2 deletion syndrome is increasingly offered. It is unknown whether there is a clinical benefit to prenatal detection as compared with postnatal diagnosis. OBJECTIVE This study aimed to determine differences in perinatal and infant outcomes between patients with prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. STUDY DESIGN This was a retrospective cohort study across multiple international centers (30 sites, 4 continents) from 2006 to 2019. Participants were fetuses, neonates, or infants with a genetic diagnosis of 22q11.2 deletion syndrome by 1 year of age with or without congenital heart disease; those with prenatal diagnosis or suspicion (suggestive ultrasound findings and/or high-risk cell-free fetal DNA screen for 22q11.2 deletion syndrome with postnatal confirmation) were compared with those with postnatal diagnosis. Perinatal management, cardiac and noncardiac morbidity, and mortality by 1 year were assessed. Outcomes were adjusted for presence of critical congenital heart disease, gestational age at birth, and site. RESULTS A total of 625 fetuses, neonates, or infants with 22q11.2 deletion syndrome (53.4% male) were included: 259 fetuses were prenatally diagnosed (156 [60.2%] were live-born) and 122 neonates were prenatally suspected with postnatal confirmation, whereas 244 infants were postnatally diagnosed. In the live-born cohort (n=522), 1-year mortality was 5.9%, which did not differ between groups but differed by the presence of critical congenital heart disease (hazard ratio, 4.18; 95% confidence interval, 1.56-11.18; P<.001) and gestational age at birth (hazard ratio, 0.78 per week; 95% confidence interval, 0.69-0.89; P<.001). Adjusting for critical congenital heart disease and gestational age at birth, the prenatal cohort was less likely to deliver at a local community hospital (5.1% vs 38.2%; odds ratio, 0.11; 95% confidence interval, 0.06-0.23; P<.001), experience neonatal cardiac decompensation (1.3% vs 5.0%; odds ratio, 0.11; 95% confidence interval, 0.03-0.49; P=.004), or have failure to thrive by 1 year (43.4% vs 50.3%; odds ratio, 0.58; 95% confidence interval, 0.36-0.91; P=.019). CONCLUSION Prenatal detection of 22q11.2 deletion syndrome was associated with improved delivery management and less cardiac and noncardiac morbidity, but not mortality, compared with postnatal detection.
Collapse
Affiliation(s)
- Lindsay R Freud
- Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Stephanie Galloway
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY
| | | | - Julie Moldenhauer
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ann Swillen
- University Hospitals Leuven, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Jeroen Breckpot
- University Hospitals Leuven, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Antoni Borrell
- Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Neeta L Vora
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bettina Cuneo
- Children's Hospital Colorado, University of Colorado, Denver, CO
| | - Hilary Hoffman
- Children's Hospital Colorado, University of Colorado, Denver, CO
| | - Lisa Gilbert
- Children's Hospital Colorado, University of Colorado, Denver, CO
| | | | | | | | - Joris R Vermeesch
- University Hospitals Leuven, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Koen Devriendt
- University Hospitals Leuven, Department of Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Tiffany Busa
- Hôpital de la Timone, Marseille University, Marseille, France
| | - Sabine Sigaudy
- Hôpital de la Timone, Marseille University, Marseille, France
| | - Trisha Vigneswaran
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust and Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - John M Simpson
- Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust and Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Jeffrey Dungan
- Prentice Women's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nina Gotteiner
- Prentice Women's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | - Marta Unolt
- Children's Hospital of Philadelphia, Philadelphia, PA; Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | | - Gabriela Repetto
- Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Magdalena Fadic
- Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | | | - Mary Ann Thomas
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Deborah Fruitman
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Taylor Beecroft
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Pui Wah Hui
- Queen Mary Hospital, Tsan Yuk Hospital, University of Hong Kong, Hong Kong, China
| | | | - Rachael Bradshaw
- SSM Health Cardinal Glennon St. Louis Fetal Care Institute, Saint Louis University, St. Louis, MO
| | - Amanda Criebaum
- SSM Health Cardinal Glennon St. Louis Fetal Care Institute, Saint Louis University, St. Louis, MO
| | - Mary E Norton
- University of California, San Francisco, San Francisco, CA
| | - Tiffany Lee
- University of California, San Francisco, San Francisco, CA
| | - Miwa Geiger
- Kravis Children's Hospital, Mount Sinai Medical Center, New York City, NY
| | - Leslie Dunnington
- Memorial Hermann-Texas Medical Center, University of Texas Health Science Center at Houston, Houston, TX
| | | | | | - Lindsey Hunter
- Royal Hospital for Children, University of Glasgow, Glasgow, United Kingdom
| | - Claudia Izzi
- Children's Hospital of Philadelphia, Philadelphia, PA; Azienda Socio Sanitaria Territoriale (ASST) degli Spedali Civili di Brescia, Brescia, Italy
| | | | - Tullio Ghi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Beverly S Emanuel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kimberly Gaiser
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - J William Gaynor
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Goldmuntz
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel E McGinn
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica Schindewolf
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Oanh Tran
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elaine H Zackai
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Qi Yan
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY
| | - Anne S Bassett
- Centre for Addiction and Mental Health and Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Ronald Wapner
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York City, NY
| | - Donna M McDonald-McGinn
- Children's Hospital of Philadelphia, Philadelphia, PA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Urschel D, Hernandez-Trujillo VP. Spectrum of Genetic T-Cell Disorders from 22q11.2DS to CHARGE. Clin Rev Allergy Immunol 2022; 63:99-105. [PMID: 35133619 DOI: 10.1007/s12016-022-08927-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 01/12/2023]
Abstract
Improved genetic testing has led to recognition of a diverse group of disorders of inborn errors of immunity that present as primarily T-cell defects. These disorders present with variable degrees of immunodeficiency, autoimmunity, multiple organ system dysfunction, and neurocognitive defects. 22q11.2 deletion syndrome, commonly known as DiGeorge syndrome, represents the most common disorder on this spectrum. In most individuals, a 3 Mb deletion of 22q11 results in haploinsufficiency of 90 known genes and clinical complications of varying severity. These include cardiac, endocrine, gastrointestinal, renal, palatal, genitourinary, and neurocognitive anomalies. Multidisciplinary treatment also includes pediatrics/general practitioners, genetic counseling, surgery, interventional therapy, and psychology/psychiatry. Chromosome 10p deletion, TBX1 mutation, CHD7 mutation, Jacobsen syndrome, and FOXN1 deficiency manifest with similar overlapping clinical presentations and T-cell defects. Recognition of the underlying disorder and pathogenesis is essential for improved outcomes. Diagnosing and treating these heterogenous conditions are a challenge and rapidly improving with new diagnostic tools. Collectively, these disorders are an example of the complex penetrance and severity of genetic disorders, importance of translational diagnostics, and a guide for multidisciplinary treatment.
Collapse
Affiliation(s)
- Daniel Urschel
- Department of Medical Education, Nicklaus Children's Hospital, Miami, FL, USA. .,Division of Allergy and Immunology, Nicklaus Children's Hospital, Miami, FL, USA. .,Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA.
| | - Vivian P Hernandez-Trujillo
- Department of Medical Education, Nicklaus Children's Hospital, Miami, FL, USA.,Division of Allergy and Immunology, Nicklaus Children's Hospital, Miami, FL, USA.,Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| |
Collapse
|
4
|
Sullivan KE. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol Rev 2019; 287:186-201. [PMID: 30565249 DOI: 10.1111/imr.12701] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
Chromosome 22q11.2 deletion syndrome is the most common microdeletion syndrome in humans. The effects are protean and highly variable, making a unified approach difficult. Nevertheless, commonalities have been identified and white papers with recommended evaluations and anticipatory guidance have been published. This review will cover the immune system in detail and discuss both the primary features and the secondary features related to thymic hypoplasia. A brief discussion of the other organ system involvement will be provided for context. The immune system, percolating throughout the body can impact the function of other organs through allergy or autoimmune disease affecting organs in deleterious manners. Our work has shown that the primary effect of thymic hypoplasia is to restrict T cell production. Subsequent homeostatic proliferation and perhaps other factors drive a Th2 polarization, most obvious in adulthood. This contributes to atopic risk in this population. Thymic hypoplasia also contributes to low regulatory T cells and this may be part of the overall increased risk of autoimmunity. Collectively, the effects are complex and often age-dependent. Future goals of improving thymic function or augmenting thymic volume may offer a direct intervention to ameliorate infections, atopy, and autoimmunity.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- The Children's Hospital of Philadelphia, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
DiGeorge syndrome (Chromosome 22q11.2 deletion syndrome): A historical perspective with review of 66 patients. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.513859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Sullivan KE, Crowley TB, Maurer K, Goldmuntz E, Gaynor JW, Zackai E, McDonald-McGinn D. T-cell lymphopenia in 22q11.2 deletion syndrome: Relationship to cardiac disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 6:690-691. [PMID: 28964704 DOI: 10.1016/j.jaip.2017.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, the Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa.
| | - T Blaine Crowley
- Division of Human Genetics, 22q and You Center, and Clinical Genetics Center, the Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Kelly Maurer
- Division of Allergy Immunology, Department of Pediatrics, the Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - Elizabeth Goldmuntz
- Division of Cardiology, Department of Pediatrics, the Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Department of Surgery, the Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Elaine Zackai
- Division of Human Genetics, 22q and You Center, and Clinical Genetics Center, the Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Donna McDonald-McGinn
- Division of Human Genetics, 22q and You Center, and Clinical Genetics Center, the Children's Hospital of Philadelphia and the Department of Pediatrics at the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| |
Collapse
|
7
|
Benn P, Iyengar S, Crowley TB, Zackai EH, Burrows EK, Moshkevich S, McDonald-McGinn DM, Sullivan KE, Demko Z. Pediatric healthcare costs for patients with 22q11.2 deletion syndrome. Mol Genet Genomic Med 2017; 5:631-638. [PMID: 29178641 PMCID: PMC6234953 DOI: 10.1002/mgg3.310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The 22q11.2 deletion syndrome is a variably expressed disorder that can include cardiac, palate, and other physical abnormalities, immunodeficiency, and hypocalcemia. Because of the extreme variability in phenotype, there has been no available estimate of the total medical expenditure associated with the average case. METHODS We have developed a model to estimate the cost from the time of diagnosis to age 20. Costs were based on patients seen at a specialty center but also considered those components of care expected to have been provided by external healthcare facilities. Expense was based on billed medical charges extracted from the electronic medical billing system for all patients with a diagnosis of DiGeorge or velocardiofacial syndrome from 1993-2015. Expenditures included maternal prenatal care directly related to an affected pregnancy, molecular/cytogenetic diagnosis, consultations, surgery, and/or other treatment and management. Most mental health services (except inpatient), therapy related to cognitive, behavioral, speech, pharmacy, and nonmedical costs (special education, vocational, respite, lost earnings) were not included. RESULTS Data were available for 642 patients with 50.7% diagnosed prenatally or in the first year of life. The average cost for a patient was $727,178. Costs were highest for patients ascertained prenatally ($2,599,955) or in the first year of life ($1,043,096), those with cardiac abnormalities or referred for cardiac evaluation ($751,535), and patients with low T-cell counts ($1,382,222). CONCLUSION This study demonstrates that there are significant medical costs associated with 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Peter Benn
- University of Connecticut Health Center, Farmington, Connecticut
| | | | - Terrence Blaine Crowley
- Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elaine H Zackai
- Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evanette K Burrows
- Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Donna M McDonald-McGinn
- Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen E Sullivan
- Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
8
|
Morsheimer M, Brown Whitehorn TF, Heimall J, Sullivan KE. The immune deficiency of chromosome 22q11.2 deletion syndrome. Am J Med Genet A 2017. [PMID: 28627729 DOI: 10.1002/ajmg.a.38319] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The syndrome originally described by Dr. Angelo DiGeorge had immunodeficiency as a central component. When a 22q11.2 deletion was identified as the cause in the majority of patients with DiGeorge syndrome, the clinical features of 22q11.2 deletion syndrome became so expansive that the immunodeficiency became less prominent in our thinking about the syndrome. This review will focus on the immune system and the changes in our understanding over the past 50 years. Initially characterized as a pure defect in T cell development, we now appreciate that many of the clinical features related to the immunodeficiency are well downstream of the limitation imposed by a small thymus. Dysfunctional B cells presumed to be secondary to compromised T cell help, issues related to T cell exhaustion, and high rates of atopy and autoimmunity are aspects of management that require consideration for optimal clinical care and for designing a cogent monitoring approach. New data on atopy are presented to further demonstrate the association.
Collapse
Affiliation(s)
- Megan Morsheimer
- Nemours Children's Health System, DuPont Hospital for Children, Wilmington, Delaware
| | - Terri F Brown Whitehorn
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Jennifer Heimall
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| | - Kathleen E Sullivan
- The Division of Allergy Immunology, The Children's Hospital of Philadelphia, Philadelphia, Philadelphia
| |
Collapse
|
9
|
Barry JC, Crowley TB, Jyonouchi S, Heimall J, Zackai EH, Sullivan KE, McDonald-McGinn DM. Identification of 22q11.2 Deletion Syndrome via Newborn Screening for Severe Combined Immunodeficiency. J Clin Immunol 2017; 37:476-485. [PMID: 28540525 DOI: 10.1007/s10875-017-0403-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/10/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Chromosome 22q11.2 deletion syndrome (22q11.2DS), the most common cause of DiGeorge syndrome, is quite variable. Neonatal diagnosis traditionally relies on recognition of classic features and cytogenetic testing, but many patients come to attention only following identification of later onset conditions, such as hypernasal speech due to palatal insufficiency and developmental and behavioral differences including speech delay, autism, and learning disabilities that would benefit from early interventions. Newborn screening (NBS) for severe combined immunodeficiency (SCID) is now identifying infants with 22q11.2DS due to T cell lymphopenia. Here, we report findings in such neonates, underscoring the efficacy of early diagnosis. METHODS A retrospective chart review of 1350 patients with 22q11.2DS evaluated at the Children's Hospital of Philadelphia identified 11 newborns with a positive NBS for SCID. RESULTS Five out of 11 would have been diagnosed with 22q11.2DS without NBS, whereas early identification of 22q11.2DS in 6/11 led to the diagnosis of significant associated features including hypocalcemia, congenital heart disease (CHD), and gastroesophageal reflux disease that may have gone unrecognized and therefore untreated. CONCLUSIONS Our findings support rapidly screening infants with a positive NBS for SCID, but without SCID, for 22q11.2DS even when typically associated features such as CHD are absent, particularly when B cells and NK cells are normal. Moreover, direct NBS for 22q11.2DS using multiplex qPCR would be equally, if not more, beneficial, as early identification of 22q11.2DS will obviate a protracted diagnostic odyssey while providing an opportunity for timely assessment and interventions as needed, even in the absence of T cell lymphopenia.
Collapse
Affiliation(s)
- Jessica C Barry
- The 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Terrence Blaine Crowley
- The 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Soma Jyonouchi
- The 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, the Perelman School of Medicine at the University of Pennsylvania School of Medicine, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Jennifer Heimall
- The 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, the Perelman School of Medicine at the University of Pennsylvania School of Medicine, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Elaine H Zackai
- The 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, the Perelman School of Medicine at the University of Pennsylvania School of Medicine, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Kathleen E Sullivan
- The 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, the Perelman School of Medicine at the University of Pennsylvania School of Medicine, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- The 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, the Perelman School of Medicine at the University of Pennsylvania School of Medicine, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Benn P. Expanding non-invasive prenatal testing beyond chromosomes 21, 18, 13, X and Y. Clin Genet 2016; 90:477-485. [PMID: 27283893 DOI: 10.1111/cge.12818] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
Abstract
Non-invasive prenatal testing (NIPT) based on cell-free DNA in maternal plasma is being expanded to include additional chromosome abnormalities beyond those involving chromosomes 21, 18, 13, X and Y. Review of population cytogenetic data provides insight into the likely number of additional abnormalities detectable. Additional clinically significant and cytogenetically recognizable abnormalities are present in less than 0.1% of newborns but clinically significant, or potentially significant, sub-microscopic imbalances are expected to be present in 1.7%. Cytogenetic studies on chorionic villus samples suggests that after excluding abnormalities involving chromosomes 21, 18, 13, X and Y, approximately 0.6% of NIPT results may be positive for an unbalanced abnormality attributable to mosaicism but most of these will not be confirmed at amniocentesis or in newborns. NIPT has also been developed for specific microdeletion syndromes and initial experience is now available. Laboratory procedures such as deeper sequencing and additional data analytics are rapidly evolving but even with existing protocols, it is already clear that NIPT does not necessarily need to be limited to trisomies 21, 18, 13 and the sex-chromosome abnormalities. Patient educational materials and genetic counseling services need to be available for women offered expanded NIPT.
Collapse
Affiliation(s)
- P Benn
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|