1
|
Clarin JD, Bouras NN, Gao WJ. Genetic Diversity in Schizophrenia: Developmental Implications of Ultra-Rare, Protein-Truncating Mutations. Genes (Basel) 2024; 15:1214. [PMID: 39336805 PMCID: PMC11431303 DOI: 10.3390/genes15091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The genetic basis of schizophrenia (SZ) remains elusive despite its characterization as a highly heritable disorder. This incomplete understanding has led to stagnation in therapeutics and treatment, leaving many suffering with insufficient relief from symptoms. However, recent large-cohort genome- and exome-wide association studies have provided insights into the underlying genetic machinery. The scale of these studies allows for the identification of ultra-rare mutations that confer substantial disease risk, guiding clinicians and researchers toward general classes of genes that are central to SZ etiology. One such large-scale collaboration effort by the Schizophrenia Exome Sequencing Meta-Analysis consortium identified ten, high-risk, ultra-rare, protein-truncating variants, providing the clearest picture to date of the dysfunctional gene products that substantially increase risk for SZ. While genetic studies of SZ provide valuable information regarding "what" genes are linked with the disorder, it is an open question as to "when" during brain development these genetic mutations impose deleterious effects. To shed light on this unresolved aspect of SZ etiology, we queried the BrainSpan developmental mRNA expression database for these ten high-risk genes and discovered three general expression trajectories throughout pre- and postnatal brain development. The elusiveness of SZ etiology, we infer, is not only borne out of the genetic heterogeneity across clinical cases, but also in our incomplete understanding of how genetic mutations perturb neurodevelopment during multiple critical periods. We contextualize this notion within the National Institute of Mental Health's Research Domain Criteria framework and emphasize the utility of considering both genetic variables and developmental context in future studies.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
2
|
Ma Q, Chen G, Li Y, Guo Z, Zhang X. The molecular genetics of PI3K/PTEN/AKT/mTOR pathway in the malformations of cortical development. Genes Dis 2024; 11:101021. [PMID: 39006182 PMCID: PMC11245990 DOI: 10.1016/j.gendis.2023.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 07/16/2024] Open
Abstract
Malformations of cortical development (MCD) are a group of developmental disorders characterized by abnormal cortical structures caused by genetic or harmful environmental factors. Many kinds of MCD are caused by genetic variation. MCD is the common cause of intellectual disability and intractable epilepsy. With rapid advances in imaging and sequencing technologies, the diagnostic rate of MCD has been increasing, and many potential genes causing MCD have been successively identified. However, the high genetic heterogeneity of MCD makes it challenging to understand the molecular pathogenesis of MCD and to identify effective targeted drugs. Thus, in this review, we outline important events of cortical development. Then we illustrate the progress of molecular genetic studies about MCD focusing on the PI3K/PTEN/AKT/mTOR pathway. Finally, we briefly discuss the diagnostic methods, disease models, and therapeutic strategies for MCD. The information will facilitate further research on MCD. Understanding the role of the PI3K/PTEN/AKT/mTOR pathway in MCD could lead to a novel strategy for treating MCD-related diseases.
Collapse
Affiliation(s)
- Qing Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Ying Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xue Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
3
|
Lazea C, Vulturar R, Chiș A, Encica S, Horvat M, Belizna C, Damian LO. Macrocephaly and Finger Changes: A Narrative Review. Int J Mol Sci 2024; 25:5567. [PMID: 38791606 PMCID: PMC11122644 DOI: 10.3390/ijms25105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Macrocephaly, characterized by an abnormally large head circumference, often co-occurs with distinctive finger changes, presenting a diagnostic challenge for clinicians. This review aims to provide a current synthetic overview of the main acquired and genetic etiologies associated with macrocephaly and finger changes. The genetic cause encompasses several categories of diseases, including bone marrow expansion disorders, skeletal dysplasias, ciliopathies, inherited metabolic diseases, RASopathies, and overgrowth syndromes. Furthermore, autoimmune and autoinflammatory diseases are also explored for their potential involvement in macrocephaly and finger changes. The intricate genetic mechanisms involved in the formation of cranial bones and extremities are multifaceted. An excess in growth may stem from disruptions in the intricate interplays among the genetic, epigenetic, and hormonal factors that regulate human growth. Understanding the underlying cellular and molecular mechanisms is important for elucidating the developmental pathways and biological processes that contribute to the observed clinical phenotypes. The review provides a practical approach to delineate causes of macrocephaly and finger changes, facilitate differential diagnosis and guide for the appropriate etiological framework. Early recognition contributes to timely intervention and improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Cecilia Lazea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400370 Cluj-Napoca, Romania;
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Melinda Horvat
- Department of Infectious Diseases and Epidemiology, The Clinical Hospital of Infectious Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400348 Cluj-Napoca, Romania;
| | - Cristina Belizna
- UMR CNRS 6015, INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Laura-Otilia Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
- Department of Rheumatology, Center for Rare Musculoskeletal Autoimmune and Autoinflammatory Diseases, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 400002 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Magnati S, Alladio E, Bracco E. A Survey on the Expression of the Ubiquitin Proteasome System Components HECT- and RBR-E3 Ubiquitin Ligases and E2 Ubiquitin-Conjugating and E1 Ubiquitin-Activating Enzymes during Human Brain Development. Int J Mol Sci 2024; 25:2361. [PMID: 38397039 PMCID: PMC10889685 DOI: 10.3390/ijms25042361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Human brain development involves a tightly regulated sequence of events that starts shortly after conception and continues up to adolescence. Before birth, neurogenesis occurs, implying an extensive differentiation process, sustained by changes in the gene expression profile alongside proteome remodeling, regulated by the ubiquitin proteasome system (UPS) and autophagy. The latter processes rely on the selective tagging with ubiquitin of the proteins that must be disposed of. E3 ubiquitin ligases accomplish the selective recognition of the target proteins. At the late stage of neurogenesis, the brain starts to take shape, and neurons migrate to their designated locations. After birth, neuronal myelination occurs, and, in parallel, neurons form connections among each other throughout the synaptogenesis process. Due to the malfunctioning of UPS components, aberrant brain development at the very early stages leads to neurodevelopmental disorders. Through deep data mining and analysis and by taking advantage of machine learning-based models, we mapped the transcriptomic profile of the genes encoding HECT- and ring-between-ring (RBR)-E3 ubiquitin ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating enzymes during human brain development, from early post-conception to adulthood. The inquiry outcomes unveiled some implications for neurodevelopment-related disorders.
Collapse
Affiliation(s)
- Stefano Magnati
- Centro Regionale Anti Doping—A. Bertinaria, Orbassano, 10043 Turin, Italy;
- Politecnico di Torino, 10129, Turin, Italy
| | - Eugenio Alladio
- Centro Regionale Anti Doping—A. Bertinaria, Orbassano, 10043 Turin, Italy;
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10043 Orbassano, Italy
- Istituto Nazionale Ricerca Metrologica, 10135 Turin, Italy
| |
Collapse
|
5
|
Sala-Gaston J, Costa-Sastre L, Pedrazza L, Martinez-Martinez A, Ventura F, Rosa JL. Regulation of MAPK Signaling Pathways by the Large HERC Ubiquitin Ligases. Int J Mol Sci 2023; 24:ijms24054906. [PMID: 36902336 PMCID: PMC10003351 DOI: 10.3390/ijms24054906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Protein ubiquitylation acts as a complex cell signaling mechanism since the formation of different mono- and polyubiquitin chains determines the substrate's fate in the cell. E3 ligases define the specificity of this reaction by catalyzing the attachment of ubiquitin to the substrate protein. Thus, they represent an important regulatory component of this process. Large HERC ubiquitin ligases belong to the HECT E3 protein family and comprise HERC1 and HERC2 proteins. The physiological relevance of the Large HERCs is illustrated by their involvement in different pathologies, with a notable implication in cancer and neurological diseases. Understanding how cell signaling is altered in these different pathologies is important for uncovering novel therapeutic targets. To this end, this review summarizes the recent advances in how the Large HERCs regulate the MAPK signaling pathways. In addition, we emphasize the potential therapeutic strategies that could be followed to ameliorate the alterations in MAPK signaling caused by Large HERC deficiencies, focusing on the use of specific inhibitors and proteolysis-targeting chimeras.
Collapse
|
6
|
Workalemahu T, Avery C, Lopez S, Blue NR, Wallace A, Quinlan AR, Coon H, Warner D, Varner MW, Branch DW, Jorde LB, Silver RM. Whole-genome sequencing analysis in families with recurrent pregnancy loss: A pilot study. PLoS One 2023; 18:e0281934. [PMID: 36800380 PMCID: PMC9937472 DOI: 10.1371/journal.pone.0281934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
One to two percent of couples suffer recurrent pregnancy loss and over 50% of the cases are unexplained. Whole genome sequencing (WGS) analysis has the potential to identify previously unrecognized causes of pregnancy loss, but few studies have been performed, and none have included DNA from families including parents, losses, and live births. We conducted a pilot WGS study in three families with unexplained recurrent pregnancy loss, including parents, healthy live births, and losses, which included an embryonic loss (<10 weeks' gestation), fetal deaths (10-20 weeks' gestation) and stillbirths (≥ 20 weeks' gestation). We used the Illumina platform for WGS and state-of-the-art protocols to identify single nucleotide variants (SNVs) following various modes of inheritance. We identified 87 SNVs involving 75 genes in embryonic loss (n = 1), 370 SNVs involving 228 genes in fetal death (n = 3), and 122 SNVs involving 122 genes in stillbirth (n = 2). Of these, 22 de novo, 6 inherited autosomal dominant and an X-linked recessive SNVs were pathogenic (probability of being loss-of-function intolerant >0.9), impacting known genes (e.g., DICER1, FBN2, FLT4, HERC1, and TAOK1) involved in embryonic/fetal development and congenital abnormalities. Further, we identified inherited missense compound heterozygous SNVs impacting genes (e.g., VWA5B2) in two fetal death samples. The variants were not identified as compound heterozygous SNVs in live births and population controls, providing evidence for haplosufficient genes relevant to pregnancy loss. In this pilot study, we provide evidence for de novo and inherited SNVs relevant to pregnancy loss. Our findings provide justification for conducting WGS using larger numbers of families and warrant validation by targeted sequencing to ascertain causal variants. Elucidating genes causing pregnancy loss may facilitate the development of risk stratification strategies and novel therapeutics.
Collapse
Affiliation(s)
- Tsegaselassie Workalemahu
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Cecile Avery
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Sarah Lopez
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
| | - Nathan R. Blue
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
- Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, Utah, United States of America
| | - Amelia Wallace
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States of America
| | - Hilary Coon
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, United States of America
| | - Derek Warner
- DNA Sequencing Core, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael W. Varner
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
- Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, Utah, United States of America
| | - D. Ware Branch
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
- Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, Utah, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Robert M. Silver
- Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, Utah, United States of America
- Intermountain Healthcare, Maternal-Fetal Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
7
|
Pedrazza L, Martinez-Martinez A, Sánchez-de-Diego C, Valer JA, Pimenta-Lopes C, Sala-Gaston J, Szpak M, Tyler-Smith C, Ventura F, Rosa JL. HERC1 deficiency causes osteopenia through transcriptional program dysregulation during bone remodeling. Cell Death Dis 2023; 14:17. [PMID: 36635269 PMCID: PMC9837143 DOI: 10.1038/s41419-023-05549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Bone remodeling is a continuous process between bone-forming osteoblasts and bone-resorbing osteoclasts, with any imbalance resulting in metabolic bone disease, including osteopenia. The HERC1 gene encodes an E3 ubiquitin ligase that affects cellular processes by regulating the ubiquitination of target proteins, such as C-RAF. Of interest, an association exists between biallelic pathogenic sequence variants in the HERC1 gene and the neurodevelopmental disorder MDFPMR syndrome (macrocephaly, dysmorphic facies, and psychomotor retardation). Most pathogenic variants cause loss of HERC1 function, and the affected individuals present with features related to altered bone homeostasis. Herc1-knockout mice offer an excellent model in which to study the role of HERC1 in bone remodeling and to understand its role in disease. In this study, we show that HERC1 regulates osteoblastogenesis and osteoclastogenesis, proving that its depletion increases gene expression of osteoblastic makers during the osteogenic differentiation of mesenchymal stem cells. During this process, HERC1 deficiency increases the levels of C-RAF and of phosphorylated ERK and p38. The Herc1-knockout adult mice developed imbalanced bone homeostasis that presented as osteopenia in both sexes of the adult mice. By contrast, only young female knockout mice had osteopenia and increased number of osteoclasts, with the changes associated with reductions in testosterone and dihydrotestosterone levels. Finally, osteocytes isolated from knockout mice showed a higher expression of osteocytic genes and an increase in the Rankl/Opg ratio, indicating a relevant cell-autonomous role of HERC1 when regulating the transcriptional program of bone formation. Overall, these findings present HERC1 as a modulator of bone homeostasis and highlight potential therapeutic targets for individuals affected by pathological HERC1 variants.
Collapse
Affiliation(s)
- Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Joan Sala-Gaston
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Michal Szpak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
8
|
Pérez-Villegas EM, Ruiz R, Bachiller S, Ventura F, Armengol JA, Rosa JL. The HERC proteins and the nervous system. Semin Cell Dev Biol 2022; 132:5-15. [PMID: 34848147 DOI: 10.1016/j.semcdb.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
The HERC protein family is one of three subfamilies of Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases. Six HERC genes have been described in humans, two of which encode Large HERC proteins -HERC1 and HERC2- with molecular weights above 520 kDa that are constitutively expressed in the brain. There is a large body of evidence that mutations in these Large HERC genes produce clinical syndromes in which key neurodevelopmental events are altered, resulting in intellectual disability and other neurological disorders like epileptic seizures, dementia and/or signs of autism. In line with these consequences in humans, two mice carrying mutations in the Large HERC genes have been studied quite intensely: the tambaleante mutant for Herc1 and the Herc2+/530 mutant for Herc2. In both these mutant mice there are clear signs that autophagy is dysregulated, eliciting cerebellar Purkinje cell death and impairing motor control. The tambaleante mouse was the first of these mice to appear and is the best studied, in which the Herc1 mutation elicits: (i) delayed neural transmission in the peripheral nervous system; (ii) impaired learning, memory and motor control; and (iii) altered presynaptic membrane dynamics. In this review, we discuss the information currently available on HERC proteins in the nervous system and their biological activity, the dysregulation of which could explain certain neurodevelopmental syndromes and/or neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Sevilla, Virgen del Rocío University Hospital, CSIC, University of Sevilla, Sevilla, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
9
|
Nagai Y, Nishioka M, Tanaka T, Shimano T, Kirino E, Suzuki T, Kato T. Identification of 22q11.2 deletion in a patient with schizophrenia and clinically diagnosed Rubinstein-Taybi syndrome. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2022; 1:e34. [PMID: 38868697 PMCID: PMC11114328 DOI: 10.1002/pcn5.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 06/14/2024]
Abstract
Background Rubinstein-Taybi syndrome (RTS) is a rare autosomal-dominant disease. Almost all cases are sporadic and attributed to de novo variant. Psychotic symptoms in RTS are rare and have been reported in only a few published cases. On the other hand, 22q11.2 deletion syndrome is the most common chromosomal microdeletion in humans. The 22q11.2 deletion is well recognized as a risk factor for schizophrenia. Here, we present a schizophrenic psychosis case clinically diagnosed as RTS but resolved as carrying 22q11.2 deletion by genomic analysis. Case presentation A 38-year-old Japanese male was admitted to our hospital due to psychotic symptoms. He had been diagnosed with RTS based on physical characteristics at the age of 9 months. On admission, we performed whole exome sequencing. He had no pathogenic variant in CREBBP or EP300. We detected 2.5 Mb deletion on 22q11.2 and one rare loss-of-function variant in a loss-of-function-constrained gene (MTSS1) and three rare missense variants in missense-constrained genes (CELSR3, HERC1, and TLN1). Psychotic symptoms were ameliorated by the treatment of risperidone. Conclusion The psychiatric manifestation and genomic analysis may be a clue to detecting 22q11.2 deletion syndrome in undiagnosed patients. The reason for similarity in physical characteristics in 22q11.2 deletion syndrome and RTS remains unresolved. The 22q11.2 deletion and HERC1 contribute to the patient's phenotype.
Collapse
Affiliation(s)
- Yasuhito Nagai
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo Tokyo Koto Geriatric Medical CenterTokyoJapan
| | - Masaki Nishioka
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University HospitalTokyoJapan
| | - Tatsuki Tanaka
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University Koshigaya HospitalKoshigayaJapan
| | | | - Eiji Kirino
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University Shizuoka HospitalIzunokuniJapan
| | - Toshihito Suzuki
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University Koshigaya HospitalKoshigayaJapan
| | - Tadafumi Kato
- Department of PsychiatryJuntendo University School of MedicineTokyoJapan
- Department of PsychiatryJuntendo University HospitalTokyoJapan
| |
Collapse
|
10
|
Lambert N, Moïse M, Nguyen L. E3 Ubiquitin ligases and cerebral cortex development in health and disease. Dev Neurobiol 2022; 82:392-407. [PMID: 35476229 DOI: 10.1002/dneu.22877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Cerebral cortex development involves the sequential progression of biological steps driven by molecular pathways whose tight regulation often relies on ubiquitination. Ubiquitination is a post-translational modification involved in all aspects of cellular homeostasis through the attachment of a ubiquitin moiety on proteins. Over the past years, an increasing amount of research has highlighted the crucial role played by ubiquitin ligases in every step of cortical development and whose impairment often leads to various neurodevelopmental disorders. In this review, we focus on the key contributions of E3 ubiquitin ligases for the progression of the different steps of corticogenesis, as well as the pathological consequences of their mutations, often resulting in malformations of cortical development. Finally, we discuss some promising targeted treatment strategies for these diseases based on recent advances in the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nicolas Lambert
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Martin Moïse
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium.,Department of Radiology, University Hospital of Liège, Liège, Belgium
| | - Laurent Nguyen
- Laboratory of molecular regulation of neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, 4000, Belgium
| |
Collapse
|
11
|
Lalonde R, Strazielle C. The Herc1 gene in neurobiology. Gene X 2022; 814:146144. [PMID: 34990797 DOI: 10.1016/j.gene.2021.146144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022] Open
Abstract
The function of the HERC1 gene has mainly been delineated by studying Herc1tbl (tambaleante) mutant mice, characterized by losses in cerebellar Purkinje cells, a lower number of synaptic vesicles in the hippocampus, and anomalies in climbing fiber projections from the inferior olive as well as alpha-motoneuron projections to the skeletal muscle. The salient behavioral phenotypes include cerebellar ataxia, a loss in motor coordination, muscle weakness, and spatial deficits. Similar neuropathological and behavioral profiles have been described in childhood-onset subjects with HERC1 variants, including cerebellar ataxia and hypotonia.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Rouen, Dept Psychology, 76821 Mont-Saint-Aignan, France; Laboratory of Stress, Immunity, Pathogens (EA7300), University of Lorraine Medical School, Vandœuvre-les-Nancy, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), University of Lorraine Medical School, Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
12
|
Pena-Couso L, Ercibengoa M, Mercadillo F, Gómez-Sánchez D, Inglada-Pérez L, Santos M, Lanillos J, Gutiérrez-Abad D, Hernández A, Carbonell P, Letón R, Robledo M, Rodríguez-Antona C, Perea J, Urioste M, Alonso MÁ, Andrés R, Arévalo S, del Mar Arias M, Balmaña J, Beristain E, Blanco I, Boronat M, Brunet J, Cózar MV, del Campo M, Díaz A, Gabau E, Barcina MJ, González M, Guitart M, Hernán I, Hernández HS, Hernando S, Lacambra C, Lasa A, Lastra E, Llort G, del Rosario Marín M, Marrupe D, Martínez F, Martínez V, Martorell L, Orera M, Pedrinaci S, Pérez P, Pineda M, Plasencia AM, Cajal TRY, Robles L, Rodà D, Rodríguez N, Rosell J, Sáez R, Salvat M, Sánchez A, Santana A, Soto JL, Toll A, Tuneu A, Vázquez C. Considerations on diagnosis and surveillance measures of PTEN hamartoma tumor syndrome: clinical and genetic study in a series of Spanish patients. Orphanet J Rare Dis 2022; 17:85. [PMID: 35227301 PMCID: PMC8886852 DOI: 10.1186/s13023-021-02079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background The limited knowledge about the PTEN hamartoma tumor syndrome (PHTS) makes its diagnosis a challenging task. We aimed to define the clinical and genetic characteristics of this syndrome in the Spanish population and to identify new genes potentially associated with the disease. Results We reviewed the clinical data collected through a specific questionnaire in a series of 145 Spanish patients with a phenotypic features compatible with PHTS and performed molecular characterization through several approaches including next generation sequencing and whole exome sequencing (WES). Macrocephaly, mucocutaneous lesions, gastrointestinal polyposis and obesity are prevalent phenotypic features in PHTS and help predict the presence of a PTEN germline variant in our population. We also find that PHTS patients are at risk to develop cancer in childhood or adolescence. Furthermore, we observe a high frequency of variants in exon 1 of PTEN, which are associated with renal cancer and overexpression of KLLN and PTEN. Moreover, WES revealed variants in genes like NEDD4 that merit further research. Conclusions This study expands previously reported findings in other PHTS population studies and makes new contributions regarding clinical and molecular aspects of PHTS, which are useful for translation to the clinic and for new research lines. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02079-7.
Collapse
|
13
|
Yang Y, Zhou X, Liu X, Song R, Gao Y, Wang S. Implications of FBXW7 in Neurodevelopment and Neurodegeneration: Molecular Mechanisms and Therapeutic Potential. Front Cell Neurosci 2021; 15:736008. [PMID: 34512273 PMCID: PMC8424092 DOI: 10.3389/fncel.2021.736008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) mediated protein degradation is crucial to maintain quantitive and functional homeostasis of diverse proteins. Balanced cellular protein homeostasis controlled by UPS is fundamental to normal neurological functions while impairment of UPS can also lead to some neurodevelopmental and neurodegenerative disorders. Functioning as the substrate recognition component of the SCF-type E3 ubiquitin ligase, FBXW7 is essential to multiple aspects of cellular processes via targeting a wide range of substrates for proteasome-mediated degradation. Accumulated evidence shows that FBXW7 is fundamental to neurological functions and especially implicated in neurodevelopment and the nosogenesis of neurodegeneration. In this review, we describe general features of FBXW7 gene and proteins, and mainly present recent findings that highlight the vital roles and molecular mechanisms of FBXW7 in neurodevelopment such as neurogenesis, myelination and cerebral vasculogenesis and in the pathogenesis of some typical neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Additionally, we also provide a prospect on focusing FBXW7 as a potential therapeutic target to rescue neurodevelopmental and neurodegenerative impairment.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuan Zhou
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Research Center for Quality of Life and Applied Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Xinpeng Liu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Ruying Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yiming Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
14
|
Zavodszky E, Peak-Chew SY, Juszkiewicz S, Narvaez AJ, Hegde RS. Identification of a quality-control factor that monitors failures during proteasome assembly. Science 2021; 373:998-1004. [PMID: 34446601 PMCID: PMC7611656 DOI: 10.1126/science.abc6500] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022]
Abstract
In eukaryotic cells, half of all proteins function as subunits within multiprotein complexes. Imbalanced synthesis of subunits leads to unassembled intermediates that must be degraded to minimize cellular toxicity. Here, we found that excess PSMC5, a subunit of the proteasome base, was targeted for degradation by the HERC1 ubiquitin ligase in mammalian cells. HERC1 identified unassembled PSMC5 by its cognate assembly chaperone PAAF1. Because PAAF1 only dissociates after assembly, HERC1 could also engage later assembly intermediates such as the PSMC4-PSMC5-PAAF1 complex. A missense mutant of HERC1 that causes neurodegeneration in mice was impaired in the recognition and ubiquitination of the PSMC5-PAAF1 complex. Thus, proteasome assembly factors can serve as adaptors for ubiquitin ligases to facilitate elimination of unassembled intermediates and maintain protein homeostasis.
Collapse
|
15
|
HERC1 Regulates Breast Cancer Cells Migration and Invasion. Cancers (Basel) 2021; 13:cancers13061309. [PMID: 33804079 PMCID: PMC8061768 DOI: 10.3390/cancers13061309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Breast cancer has the highest incidence and mortality in women worldwide, and, despite formidable advances in its prevention, detection, and treatment, the development of metastasis foci still represents a significant reduction in patients’ survival and life quality. The Ubiquitin-Proteasome System plays a fundamental role in the maintenance of protein balance, and its dysregulation has been associated with malignant transformation and tumor cells invasive potential. The objective of our work was focused on the identification of ubiquitination-related genes that could represent putative molecular targets for the treatment of breast cancer dissemination. For that purpose, we performed a genetic study and identified and validated HERC1 (HECT and RLD Domain Containing E3 Ubiquitin Protein Ligase Family Member 1) as a regulator of migration and invasion. We confirmed that its depletion reduces tumorigenicity and the appearance of metastasis foci and determined that HERC1 protein expression inversely correlates with breast cancer patients’ overall survival. Altogether, we demonstrate that HERC1 might represent a novel therapeutic target in breast cancer. Abstract Tumor cell migration and invasion into adjacent tissues is one of the hallmarks of cancer and the first step towards secondary tumors formation, which represents the leading cause of cancer-related deaths. This process is considered an unmet clinical need in the treatment of this disease, particularly in breast cancers characterized by high aggressiveness and metastatic potential. To identify and characterize genes with novel functions as regulators of tumor cell migration and invasion, we performed a genetic loss-of-function screen using a shRNA library directed against the Ubiquitin Proteasome System (UPS) in a highly invasive breast cancer derived cell line. Among the candidates, we validated HERC1 as a gene regulating cell migration and invasion. Furthermore, using animal models, our results indicate that HERC1 silencing affects primary tumor growth and lung colonization. Finally, we conducted an in silico analysis using publicly available protein expression data and observed an inverse correlation between HERC1 expression levels and breast cancer patients’ overall survival. Altogether, our findings demonstrate that HERC1 might represent a novel therapeutic target for the development or improvement of breast cancer treatment.
Collapse
|
16
|
Pérez-Villegas EM, Pérez-Rodríguez M, Negrete-Díaz JV, Ruiz R, Rosa JL, de Toledo GA, Rodríguez-Moreno A, Armengol JA. HERC1 Ubiquitin Ligase Is Required for Hippocampal Learning and Memory. Front Neuroanat 2020; 14:592797. [PMID: 33328904 PMCID: PMC7710975 DOI: 10.3389/fnana.2020.592797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Mutations in the human HERC1 E3 ubiquitin ligase protein develop intellectual disability. The tambaleante (tbl) mouse carries a HERC1 mutation characterized by cerebellar ataxia due of adult cerebellar Purkinje cells death by extensive autophagy. Our previous studies demonstrated that both the neuromuscular junction and the peripheral nerve myelin sheaths are also affected in this mutant. Moreover, there are signs of dysregulated autophagy in the central nervous system in the tbl mouse, affecting spinal cord motor neurons, and pyramidal neurons of the neocortex and the hippocampal CA3 region. The tbl mutation affects associative learning, with absence of short- and long-term potentiation in the lateral amygdala, altered spinogenesis in their neurons, and a dramatic decrease in their glutamatergic input. To assess whether other brain areas engaged in learning processes might be affected by the tbl mutation, we have studied the tbl hippocampus using behavioral tests, ex vivo electrophysiological recordings, immunohistochemistry, the Golgi-Cox method and transmission electron microscopy. The tbl mice performed poorly in the novel-object recognition, T-maze and Morris water maze tests. In addition, there was a decrease in glutamatergic input while the GABAergic one remains unaltered in the hippocampal CA1 region of tbl mice, accompanied by changes in the dendritic spines, and signs of cellular damage. Moreover, the proportions of immature and mature neurons in the dentate gyrus of the tbl hippocampus differ relative to the control mice. Together, these observations demonstrate the important role of HERC1 in regulating synaptic activity during learning.
Collapse
Affiliation(s)
- Eva M. Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Mikel Pérez-Rodríguez
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - José V. Negrete-Díaz
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
- División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Guanajuato, Mexico
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, Barcelona, Spain
| | | | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - José A. Armengol
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
17
|
Schwarz JM, Pedrazza L, Stenzel W, Rosa JL, Schuelke M, Straussberg R. A new homozygous HERC1 gain-of-function variant in MDFPMR syndrome leads to mTORC1 hyperactivation and reduced autophagy during cell catabolism. Mol Genet Metab 2020; 131:126-134. [PMID: 32921582 DOI: 10.1016/j.ymgme.2020.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
The giant 532 kDa HERC1 protein is a ubiquitin ligase that interacts with tuberous sclerosis complex subunit 2 (TSC2), a negative upstream regulator of the mammalian target of rapamycin complex 1 (mTORC1). TSC2 regulates anabolic cell growth through its influence on protein synthesis, cell growth, proliferation, autophagy, and differentiation. TSC subunit 1 (TSC1) stabilizes TSC2 by inhibiting the interaction between TSC2 and HERC1, forming a TSC1-TSC2 complex that negatively regulates mTORC1. HERC1-TSC2 interaction destabilizes and degrades TSC2. Recessive mutations in HERC1 have been reported in patients with intellectual disability. Some patients exhibit epilepsy, macrocephaly, somatic overgrowth, and dysmorphic facial features as well. Here we describe two sisters from a consanguineous marriage with a novel homozygous missense variant in the C-terminal HECT domain of HERC1 [chr15:g63,907,989C>G GRCh37.p11 | c.14,072G>C NM_003922 | p.(Arg4,691Pro)]. Symptoms compris global developmental delay, macrocephaly, somatic overgrowth, intellectual disability, seizures, schizoaffective disorder, and pyramidal tract signs. We functionally assessed the HERC1 mutation by investigation of patient and control fibroblasts under normal and nutrient starving conditions. During catabolic state, mTORC1 activity remained high in patient fibroblasts, which stands in stark contrast to its downregulation in controls. This was corroborated by an abnormally high phosphorylation of S6K1-kinase, a direct downstream target of mTORC1, in patients. Moreover, autophagy, usually enhanced in catabolic states, was down-regulated in patient fibroblasts. These data confirm that the missense variant found in both patients results in a gain-of-function for the mutant HERC1 protein.
Collapse
Affiliation(s)
- Jana Marie Schwarz
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d'Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d'Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Markus Schuelke
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - Rachel Straussberg
- Schneider Children's Medical Center, Petach Tikva, Israel; Department of Child Neurology, Neurogenetic Service, Affiliated to Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
18
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
19
|
Montes-Fernández MA, Pérez-Villegas EM, Garcia-Gonzalo FR, Pedrazza L, Rosa JL, de Toledo GA, Armengol JA. The HERC1 ubiquitin ligase regulates presynaptic membrane dynamics of central synapses. Sci Rep 2020; 10:12057. [PMID: 32694577 PMCID: PMC7374096 DOI: 10.1038/s41598-020-68970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
HERC1 is a ubiquitin ligase protein, which, when mutated, induces several malformations and intellectual disability in humans. The animal model of HERC1 mutation is the mouse tambaleante characterized by: (1) overproduction of the protein; (2) cerebellar Purkinje cells death by autophagy; (3) dysregulation of autophagy in spinal cord motor neurons, and CA3 and neocortical pyramidal neurons; (4) impairment of associative learning, linked to altered spinogenesis and absence of LTP in the lateral amygdala; and, (5) motor impairment due to delayed action potential transmission, decrease synaptic transmission efficiency and altered myelination in the peripheral nervous system. To investigate the putative role of HERC1 in the presynaptic dynamics we have performed a series of experiments in cultured tambaleante hippocampal neurons by using transmission electron microscopy, FM1-43 destaining and immunocytochemistry. Our results show: (1) a decrease in the number of synaptic vesicles; (2) reduced active zones; (3) less clathrin immunoreactivity and less presynaptic endings over the hippocampal main dendritic trees; which contrast with (4) a greater number of endosomes and autophagosomes in the presynaptic endings of the tambaleante neurons relative to control ones. Altogether these results show an important role of HERC1 in the regulation of presynaptic membrane dynamics.
Collapse
Affiliation(s)
| | - Eva Mª Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | | | - Leonardo Pedrazza
- Department of Physiological Sciences, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Department of Physiological Sciences, IDIBELL, University of Barcelona, Barcelona, Spain
| | | | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain.
| |
Collapse
|
20
|
García-Cano J, Martinez-Martinez A, Sala-Gaston J, Pedrazza L, Rosa JL. HERCing: Structural and Functional Relevance of the Large HERC Ubiquitin Ligases. Front Physiol 2019; 10:1014. [PMID: 31447701 PMCID: PMC6692442 DOI: 10.3389/fphys.2019.01014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Homologous to the E6AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing proteins (HERCs) belong to the superfamily of ubiquitin ligases. HERC proteins are divided into two subfamilies, Large and Small HERCs. Despite their similarities in terms of both structure and domains, these subfamilies are evolutionarily very distant and result from a convergence phenomenon rather than from a common origin. Large HERC genes, HERC1 and HERC2, are present in most metazoan taxa. They encode very large proteins (approximately 5,000 amino acid residues in a single polypeptide chain) that contain more than one RCC1-like domain as a structural characteristic. Accumulating evidences show that these unusually large proteins play key roles in a wide range of cellular functions which include neurodevelopment, DNA damage repair, and cell proliferation. To better understand the origin, evolution, and function of the Large HERC family, this minireview provides with an integrated overview of their structure and function and details their physiological implications. This study also highlights and discusses how dysregulation of these proteins is associated with severe human diseases such as neurological disorders and cancer.
Collapse
Affiliation(s)
- Jesús García-Cano
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Joan Sala-Gaston
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Pedrazza
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
22
|
Schneider T, Martinez-Martinez A, Cubillos-Rojas M, Bartrons R, Ventura F, Rosa JL. The E3 ubiquitin ligase HERC1 controls the ERK signaling pathway targeting C-RAF for degradation. Oncotarget 2018; 9:31531-31548. [PMID: 30140388 PMCID: PMC6101136 DOI: 10.18632/oncotarget.25847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
The RAF/MEK/ERK cascade is a conserved intracellular signaling pathway that controls fundamental cellular processes including growth, proliferation, differentiation, survival and migration. Aberrant regulation of this signaling pathway has long been associated with human cancers. A major point of regulation of this pathway occurs at the level of the serine/threonine protein kinase C-RAF. Here, we show how the E3 ubiquitin ligase HERC1 regulates ERK signaling. HERC1 knockdown induced cellular proliferation, which is associated with an increase in ERK phosphorylation and in C-RAF protein levels. We demonstrate that overexpression of wild-type C-RAF is sufficient to increase ERK phosphorylation. Experiments with pharmacological inhibitors of RAF activity, or with interference RNA, show that the regulation of ERK phosphorylation by HERC1 is RAF-dependent. Immunoprecipitation, pull-down and confocal fluorescence microscopy experiments demonstrate an interaction between HERC1 and C-RAF proteins. Mechanistically, HERC1 controls C-RAF stability by regulating its polyubiquitylation in a lysine 48-linked chain. In vitro ubiquitylation assays indicate that C-RAF is a substrate of the E3 ubiquitin ligase HERC1. Altogether, we show how HERC1 can regulate cell proliferation through the activation of ERK signaling by a mechanism that affects C-RAF’s stability.
Collapse
Affiliation(s)
- Taiane Schneider
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IDIBELL, Campus Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
23
|
Aggarwal S, Das Bhowmik A, Tandon A, Dalal A. Exome sequencing reveals blended phenotype of double heterozygous FBN1 and FBN2 variants in a fetus. Eur J Med Genet 2018; 61:399-402. [DOI: 10.1016/j.ejmg.2018.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/13/2018] [Accepted: 02/26/2018] [Indexed: 02/03/2023]
|
24
|
Bachiller S, Roca-Ceballos MA, García-Domínguez I, Pérez-Villegas EM, Martos-Carmona D, Pérez-Castro MÁ, Real LM, Rosa JL, Tabares L, Venero JL, Armengol JÁ, Carrión ÁM, Ruiz R. HERC1 Ubiquitin Ligase Is Required for Normal Axonal Myelination in the Peripheral Nervous System. Mol Neurobiol 2018; 55:8856-8868. [PMID: 29603094 DOI: 10.1007/s12035-018-1021-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022]
Abstract
A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.
Collapse
Affiliation(s)
- Sara Bachiller
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - María Angustias Roca-Ceballos
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Irene García-Domínguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Eva María Pérez-Villegas
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - David Martos-Carmona
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Miguel Ángel Pérez-Castro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - Luis Miguel Real
- Unit of Infectious Diseases and Microbiology, Valme University Hospital, Seville, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, E-08907, Barcelona, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain
| | - José Luis Venero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Ángel Manuel Carrión
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain
| | - Rocío Ruiz
- Department of Physiology, Anatomy and Cellular Biology, University of Pablo de Olavide, Seville, Spain. .,Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Calle Profesor García González 2, 41012, Sevilla, Spain.
| |
Collapse
|
25
|
Aggarwal S, Tandon A, Das Bhowmik A, Safarulla JMNJ, Dalal A. A Dysmorphology Based Systematic Approach Toward Perinatal Genetic Diagnosis in a Fetal Autopsy Series. Fetal Pediatr Pathol 2018; 37:49-68. [PMID: 29336636 DOI: 10.1080/15513815.2017.1397070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND This retrospective study assesses the contribution of genetic disorders in fetuses undergoing postmortem evaluation and the performance of a clinical dysmorphology based systematic approach toward genetic diagnosis. MATERIALS AND METHODS Ninety fetuses, including spontaneous losses and terminated pregnancies, underwent a postmortem evaluation including dysmorphological examination, radiological studies, and histopathological examination. Genetic testing including karyotyping, biochemical testing, Sanger sequencing, and exome sequencing were performed selectively. RESULTS A genetic etiology was concluded in 48 fetuses (55%). As a standalone test, dysmorphological examination was able to ascertain a definite genetic diagnosis in sixteen cases, histopathology in six; and karyotyping, biochemical testing and exome sequencing in two cases each (Total 28). Additionally, dysmorphology findings indicated possible genetic disorder in 20 cases. CONCLUSION Genetic etiologies contribute significantly to fetuses undergoing autopsy in this series. A systematic approach to postmortem fetal evaluation guided by dysmorphological examination provides high diagnostic yield toward perinatal genetic diagnosis.
Collapse
Affiliation(s)
- Shagun Aggarwal
- a Department of Medical Genetics , Nizam's Institute of Medical Sciences , Punjagutta, Hyderabad , Telangana , India.,b Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana , India
| | - Ashwani Tandon
- c Department of Pathology , Nizam's Institute of Medical Sciences , Hyderabad , Telangana , India
| | - Aneek Das Bhowmik
- b Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana , India
| | | | - Ashwin Dalal
- b Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics , Hyderabad , Telangana , India
| |
Collapse
|
26
|
Kamien B, Ronan A, Poke G, Sinnerbrink I, Baynam G, Ward M, Gibson WT, Dudding-Byth T, Scott RJ. A Clinical Review of Generalized Overgrowth Syndromes in the Era of Massively Parallel Sequencing. Mol Syndromol 2018; 9:70-82. [PMID: 29593474 DOI: 10.1159/000484532] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
The overgrowth syndromes are important to diagnose, not just for accurate genetic counseling, but also for knowledge surrounding cancer surveillance and prognosis. There has been a recent expansion in the number of genes associated with a mendelian overgrowth phenotype, so this review updates previous classifications of overgrowth syndromes. We also describe a clinical and molecular approach to the investigation of individuals presenting with overgrowth. This review aims to assist the clinical diagnosis of generalized overgrowth syndromes by outlining the salient features of well-known overgrowth syndromes alongside the many syndromes that have been discovered and classified more recently. We provide key clinical "handles" to aid clinical diagnosis and a list of genes to aid with panel design when using next generation sequencing, which we believe is frequently needed due to the overlapping phenotypic features seen between overgrowth syndromes.
Collapse
Affiliation(s)
- Benjamin Kamien
- Hunter Genetics, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia
| | - Anne Ronan
- Hunter Genetics, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia
| | - Gemma Poke
- Department of Clinical Genetics, Capital & Coast District Health Board, Wellington, New Zealand
| | - Ingrid Sinnerbrink
- Department of Clinical Genetics, Nepean Hospital, Perth, WA, Australia.,Nepean Clinical School, University of Sydney, Penrith, NSW, Australia
| | - Gareth Baynam
- Genetic Services of Western Australia, Newcastle, NSW, Australia.,Western Australian Register of Developmental Anomalies, Perth, WA, Australia.,Office of Population Health Genomics, Public Health Division, Department of Health, Government of Western Australia, Perth, WA, Australia.,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Spatial Sciences, Department of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Michelle Ward
- Genetic Services of Western Australia, Newcastle, NSW, Australia
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tracy Dudding-Byth
- Hunter Genetics, Perth, WA, Australia.,GrowUpWell Priority Research Center, Perth, WA, Australia.,School of Medicine and Public Health, The University of Newcastle, Perth, WA, Australia.,Hunter Medical Research Institute, Perth, WA, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Molecular Pathology, Hunter Area Pathology Service, Perth, WA, Australia
| |
Collapse
|
27
|
Homozygosity for a nonsense variant in AIMP2 is associated with a progressive neurodevelopmental disorder with microcephaly, seizures, and spastic quadriparesis. J Hum Genet 2017; 63:19-25. [PMID: 29215095 DOI: 10.1038/s10038-017-0363-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/31/2023]
Abstract
We ascertained two unrelated consanguineous families with two affected children each having microcephaly, refractory seizures, intellectual disability, and spastic quadriparesis. Magnetic resonance imaging showed atrophy of cerebrum, cerebellum and spinal cord, prominent cisterna magna, symmetric T2 hypo-intensities in the bilateral basal ganglia and thinning of corpus callosum. Whole-exome sequencing of three affected individuals revealed c.105C>A [p.(Tyr35Ter)] variant in AIMP2. The variant lies in a common homozygous region of 940 kb on chromosome 7 and is likely to have been inherited from a common ancestor. The phenotype noted in our subjects' shares marked similarity with that of hypomyelinating leukodystrophy-3 caused by mutations in closely related gene AIMP1. We hereby report the first human disease associated with deleterious mutations in AIMP2.
Collapse
|
28
|
Duplomb L, Droin N, Bouchot O, Thauvin-Robinet C, Bruel AL, Thevenon J, Callier P, Meurice G, Pata-Merci N, Loffroy R, Vandroux D, Costa RDA, Carmignac V, Solary E, Faivre L. A constitutive BCL2 down-regulation aggravates the phenotype of PKD1-mutant-induced polycystic kidney disease. Hum Mol Genet 2017; 26:4680-4688. [DOI: 10.1093/hmg/ddx349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023] Open
|
29
|
Utine GE, Taşkıran EZ, Koşukcu C, Karaosmanoğlu B, Güleray N, Doğan ÖA, Kiper PÖŞ, Boduroğlu K, Alikaşifoğlu M. HERC1 mutations in idiopathic intellectual disability. Eur J Med Genet 2017; 60:279-283. [PMID: 28323226 DOI: 10.1016/j.ejmg.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/02/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
HERC1 is a member of HERC protein family of ubiquitin ligases and is a negative regulator of the mTOR pathway. It is also a guanine nucleotide exchange factor for ARF and Rab family GTPases. Biallelic mutations in HERC1 were recently shown to cause a human phenotype with overgrowth and intellectual disability as main features. Herein we describe clinical features in another patient with homozygous novel mutation in HERC1. Moderate to severe intellectual disability, hypotonia, macrocephaly, tall stature, and facial features appear as main clinical features of the condition. Kyphoscoliosis and seizures frequently accompany and autistic features might be another feature as recent studies also implicate. HERC1 mutations should be considered in differential diagnosis of severe intellectual disability and behavioural problems, particularly in patients testing negative for fragile X and KANSL1 mutations.
Collapse
Affiliation(s)
- G Eda Utine
- Hacettepe University, Faculty of Medicine, Department of Pediatric Genetics, Ankara, Turkey.
| | - Ekim Z Taşkıran
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Can Koşukcu
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Beren Karaosmanoğlu
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Naz Güleray
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Özlem Akgün Doğan
- Hacettepe University, Faculty of Medicine, Department of Pediatric Genetics, Ankara, Turkey
| | - P Özlem Şimşek Kiper
- Hacettepe University, Faculty of Medicine, Department of Pediatric Genetics, Ankara, Turkey
| | - Koray Boduroğlu
- Hacettepe University, Faculty of Medicine, Department of Pediatric Genetics, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Hacettepe University, Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| |
Collapse
|
30
|
Pérez-Villegas EM, Negrete-Díaz JV, Porras-García ME, Ruiz R, Carrión AM, Rodríguez-Moreno A, Armengol JA. Mutation of the HERC 1 Ubiquitin Ligase Impairs Associative Learning in the Lateral Amygdala. Mol Neurobiol 2017; 55:1157-1168. [PMID: 28102468 DOI: 10.1007/s12035-016-0371-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Tambaleante (tbl/tbl) is a mutant mouse that carries a spontaneous Gly483Glu substitution in the HERC1 (HECT domain and RCC1 domain) E3 ubiquitin ligase protein (HERC1). The tbl/tbl mutant suffers an ataxic syndrome given the almost complete loss of cerebellar Purkinje cells during adult life. More recent analyses have identified alterations at neuromuscular junctions in these mice, as well as in other neurons of the central nervous system, such as motor neurons in the spinal cord, or pyramidal neurons in the hippocampal CA3 region and the neocortex. Accordingly, the effect of the tbl/tbl mutation apparently extends to other regions of the nervous system far from the cerebellum. As HERC1 mutations in humans have been correlated with intellectual impairment, we studied the effect of the tbl/tbl mutation on learning. Using a behavioral test, ex vivo electrophysiological recordings, immunohistochemistry, and Golgi method, we analyzed the associative learning in the lateral amygdala of the tbl/tbl mouse. The tbl/tbl mice perform worse than wild-type animals in the passive avoidance test, and histologically, the tbl/tbl mice have more immature forms of dendritic spines. In addition, LTP cannot be detected in these animals and their STP is dampened, as is their glutamatergic input to the lateral amygdala. Together, these data suggest that HERC1 is probably involved in regulating synaptic function in the amygdala. Indeed, these results indicate that the tbl/tbl mutation is a good model to analyze the effect of alterations to the ubiquitin-proteasome pathway on the synaptic mechanisms involved in learning and its defects.
Collapse
Affiliation(s)
- Eva Mª Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
| | - José V Negrete-Díaz
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
- División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Campus Celaya-Salvatierra, Guanajuato, Mexico
| | - Mª Elena Porras-García
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012, Seville, Spain
| | - Angel M Carrión
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain
| | - José A Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra Utrera km. 1, 41013, Seville, Spain.
| |
Collapse
|