1
|
Sadeesh EM, Malik A, Lahamge MS, Singh P. Differential expression of nuclear-derived mitochondrial succinate dehydrogenase genes in metabolically active buffalo tissues. Mol Biol Rep 2024; 51:1071. [PMID: 39425877 DOI: 10.1007/s11033-024-10022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Buffaloes are crucial to agriculture, yet mitochondrial biology in these animals is less studied compared to humans and laboratory animals. This research examines tissue-specific variations in mitochondrial succinate dehydrogenase (SDH) gene expression across buffalo kidneys, hearts, brains, and ovaries. Understanding these variations sheds light on mitochondrial energy metabolism and its impact on buffalo health and productivity, revealing insights into enzyme regulation and potential improvements in livestock management. MATERIALS AND METHODS RNA-seq data from buffalo kidney, heart, brain, and ovary tissues were reanalyzed to explore mitochondrial SDH gene expression. The expression of SDH subunits (SDHA, SDHB, SDHC, SDHD) and assembly factors (SDHAF1, SDHAF2, SDHAF3, SDHAF4) was assessed using a log2 fold-change threshold of + 1 for up-regulated and - 1 for down-regulated transcripts, with significance set at p < 0.05. Hierarchical clustering and differential expression analyses were performed to identify tissue-specific expression patterns and regulatory mechanisms, while Gene Ontology and KEGG pathway analyses were conducted to uncover functional attributes and pathway enrichments across different tissues. RESULTS Reanalysis of RNA-seq data from different tissues of healthy female buffaloes revealed distinct expression patterns for SDH subunits and assembly factors. While SDHA, SDHB, and SDHC showed variable expression across tissues, SDHAF2, SDHAF3, and SDHAF4 exhibited tissue-specific profiles. Significant up-regulation of SDHA, SDHB, and several assembly factors was observed in specific tissue comparisons, with fewer down-regulated transcripts. Gene ontology and KEGG pathway analyses linked the up-regulated transcripts to mitochondrial ATP synthesis and the respiratory electron transport chain. Notably, tissue-specific variations in mitochondrial function were particularly evident in the ovary. CONCLUSION This study identifies distinct SDH gene expression patterns in buffalo tissues, highlighting significant down-regulation of SDHA, SDHB, SDHC, and assembly factors in the ovary. These findings underscore the critical role of mitochondria in tissue-specific energy production and metabolic regulation, suggest potential metabolic adaptations, and emphasize the importance of mitochondrial complex II. The insights gained offer valuable implications for improving feed efficiency and guiding future research and therapies for energy metabolism disorders.
Collapse
Affiliation(s)
- E M Sadeesh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Anuj Malik
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
- University of Bonn, Institute of Animal Sciences, Katzenburgweg 7-9, 53115, Bonn, Germany
| | - Madhuri S Lahamge
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Pratiksha Singh
- Laboratory of Mitochondrial Biology of Farm Animals, Animal Biochemistry Division, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
2
|
Aguilar K, Jakubek P, Zorzano A, Wieckowski MR. Primary mitochondrial diseases: The intertwined pathophysiology of bioenergetic dysregulation, oxidative stress and neuroinflammation. Eur J Clin Invest 2024; 54:e14217. [PMID: 38644687 DOI: 10.1111/eci.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVES AND SCOPE Primary mitochondrial diseases (PMDs) are rare genetic disorders resulting from mutations in genes crucial for effective oxidative phosphorylation (OXPHOS) that can affect mitochondrial function. In this review, we examine the bioenergetic alterations and oxidative stress observed in cellular models of primary mitochondrial diseases (PMDs), shedding light on the intricate complexity between mitochondrial dysfunction and cellular pathology. We explore the diverse cellular models utilized to study PMDs, including patient-derived fibroblasts, induced pluripotent stem cells (iPSCs) and cybrids. Moreover, we also emphasize the connection between oxidative stress and neuroinflammation. INSIGHTS The central nervous system (CNS) is particularly vulnerable to mitochondrial dysfunction due to its dependence on aerobic metabolism and the correct functioning of OXPHOS. Similar to other neurodegenerative diseases affecting the CNS, individuals with PMDs exhibit several neuroinflammatory hallmarks alongside neurodegeneration, a pattern also extensively observed in mouse models of mitochondrial diseases. Based on histopathological analysis of postmortem human brain tissue and findings in mouse models of PMDs, we posit that neuroinflammation is not merely a consequence of neurodegeneration but a potential pathogenic mechanism for disease progression that deserves further investigation. This recognition may pave the way for novel therapeutic strategies for this group of devastating diseases that currently lack effective treatments. SUMMARY In summary, this review provides a comprehensive overview of bioenergetic alterations and redox imbalance in cellular models of PMDs while underscoring the significance of neuroinflammation as a potential driver in disease progression.
Collapse
Affiliation(s)
- Kevin Aguilar
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| |
Collapse
|
3
|
Amore G, Romagnoli M, Carbonelli M, Cascavilla ML, De Negri AM, Carta A, Parisi V, Di Renzo A, Schiavi C, Lenzetti C, Zenesini C, Ormanbekova D, Palombo F, Fiorini C, Caporali L, Carelli V, Barboni P, La Morgia C. AFG3L2 and ACO2-Linked Dominant Optic Atrophy: Genotype-Phenotype Characterization Compared to OPA1 Patients. Am J Ophthalmol 2024; 262:114-124. [PMID: 38278202 DOI: 10.1016/j.ajo.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE Heterozygous mutations in the AFG3L2 gene (encoding a mitochondrial protease indirectly reflecting on OPA1 cleavage) and ACO2 gene (encoding the mitochondrial enzyme aconitase) are associated with isolated forms of Dominant Optic Atrophy (DOA). We aimed at describing their neuro-ophthalmological phenotype as compared with classic OPA1-related DOA. DESIGN Cross-sectional study. METHODS The following neuro-ophthalmological parameters were collected: logMAR visual acuity (VA), color vision, mean deviation and foveal threshold at visual fields, average and sectorial retinal nerve fiber layer (RNFL), and ganglion cell layer (GCL) thickness on optical coherence tomography. ACO2 and AFG3L2 patients were compared with an age- and sex-matched group of OPA1 patients with a 1:2 ratio. All eyes were analyzed using a clustered Wilcoxon rank sum test with the Rosner-Glynn-Lee method. RESULTS A total of 44 eyes from 23 ACO2 patients and 26 eyes from 13 AFG3L2 patients were compared with 143 eyes from 72 OPA1 patients. All cases presented with bilateral temporal-predominant optic atrophy with various degree of visual impairment. Comparison between AFG3L2 and OPA1 failed to reveal any significant difference. ACO2 patients compared to both AFG3L2 and OPA1 presented overall higher values of nasal RNFL thickness (P = .029, P = .023), average thickness (P = .012, P = .0007), and sectorial GCL thickness. These results were confirmed also comparing separately affected and subclinical patients. CONCLUSIONS Clinically, DOA remains a fairly homogeneous entity despite the growing genetic heterogeneity. ACO2 seems to be associated with an overall better preservation of retinal ganglion cells, probably depending on the different pathogenic mechanism involving mtDNA maintenance, as opposed to AFG3L2, which is involved in OPA1 processing and is virtually indistinguishable from classic OPA1-DOA.
Collapse
Affiliation(s)
- Giulia Amore
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; Ophthalmology Unit (G.A., C.S.), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Michele Carbonelli
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology (M.L.C., P.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Arturo Carta
- Ophthalmology Unit (A.C.), University Hospital of Parma, University of Parma, Parma, Italy
| | | | | | - Costantino Schiavi
- Ophthalmology Unit (G.A., C.S.), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Lenzetti
- Department of Surgery and Translational Medicine (C.L.), Eye Clinic, Careggi University Hospital, University of Florence, Florence, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.Z.), Unità di Epidemiologia e Statistica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Valerio Carelli
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Piero Barboni
- Department of Ophthalmology (M.L.C., P.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara La Morgia
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M.), UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
4
|
Katsumata Y, Fardo DW, Shade LMP, Wu X, Karanth SD, Hohman TJ, Schneider JA, Bennett DA, Farfel JM, Gauthreaux K, Mock C, Kukull WA, Abner EL, Nelson PT. Genetic associations with dementia-related proteinopathy: Application of item response theory. Alzheimers Dement 2024; 20:2906-2921. [PMID: 38460116 PMCID: PMC11032554 DOI: 10.1002/alz.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Although dementia-related proteinopathy has a strong negative impact on public health, and is highly heritable, understanding of the related genetic architecture is incomplete. METHODS We applied multidimensional generalized partial credit modeling (GPCM) to test genetic associations with dementia-related proteinopathies. Data were analyzed to identify candidate single nucleotide variants for the following proteinopathies: Aβ, tau, α-synuclein, and TDP-43. RESULTS Final included data comprised 966 participants with neuropathologic and WGS data. Three continuous latent outcomes were constructed, corresponding to TDP-43-, Aβ/Tau-, and α-synuclein-related neuropathology endophenotype scores. This approach helped validate known genotype/phenotype associations: for example, TMEM106B and GRN were risk alleles for TDP-43 pathology; and GBA for α-synuclein/Lewy bodies. Novel suggestive proteinopathy-linked alleles were also discovered, including several (SDHAF1, TMEM68, and ARHGEF28) with colocalization analyses and/or high degrees of biologic credibility. DISCUSSION A novel methodology using GPCM enabled insights into gene candidates for driving misfolded proteinopathies. HIGHLIGHTS Latent factor scores for proteinopathies were estimated using a generalized partial credit model. The three latent continuous scores corresponded well with proteinopathy severity. Novel genes associated with proteinopathies were identified. Several genes had high degrees of biologic credibility for dementia risk factors.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - David W. Fardo
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Xian Wu
- Department of BiostatisticsUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Shama D. Karanth
- Department of SurgeryCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
- UF Health Cancer CenterUniversity of FloridaGainesvilleFloridaUSA
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer's CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Julie A. Schneider
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Jose M. Farfel
- Department of PathologyRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Kathryn Gauthreaux
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Charles Mock
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Walter A. Kukull
- National Alzheimer's Coordinating CenterDepartment of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Erin L. Abner
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Epidemiology and Environmental HealthUniversity of KentuckyLexingtonKentuckyUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyDivision of NeuropathologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
5
|
Bajpai AK, Gu Q, Orgil BO, Alberson NR, Towbin JA, Martinez HR, Lu L, Purevjav E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes (Basel) 2023; 15:53. [PMID: 38254943 PMCID: PMC10815855 DOI: 10.3390/genes15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cardiomyopathies, diseases affecting the myocardium, are common causes of congestive heart failure (CHF) and sudden cardiac death. Recently, biallelic variants in ribosomal protein L3-like (RPL3L) have been reported to be associated with severe neonatal dilated cardiomyopathy (DCM) and CHF. This study employs a systems genetics approach to gain understanding of the regulatory mechanisms underlying the role of RPL3L in DCM. METHODS Genetic correlation, expression quantitative trait loci (eQTL) mapping, differential expression analysis and comparative functional analysis were performed using cardiac gene expression data from the patients and murine genetic reference populations (GRPs) of BXD mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice). Additionally, immune infiltration analysis was performed to understand the relationship between DCM, immune cells and RPL3L expression. RESULTS Systems genetics analysis identified high expression of Rpl3l mRNA, which ranged from 11.31 to 12.16 across murine GRPs of BXD mice, with an ~1.8-fold difference. Pathways such as "diabetic cardiomyopathy", "focal adhesion", "oxidative phosphorylation" and "DCM" were significantly associated with Rpl3l. eQTL mapping suggested Myl4 (Chr 11) and Sdha (Chr 13) as the upstream regulators of Rpl3l. The mRNA expression of Rpl3l, Myl4 and Sdha was significantly correlated with multiple echocardiography traits in BXD mice. Immune infiltration analysis revealed a significant association of RPL3L and SDHA with seven immune cells (CD4, CD8-naive T cell, CD8 T cell, macrophages, cytotoxic T cell, gamma delta T cell and exhausted T cell) that were also differentially infiltrated between heart samples obtained from DCM patients and normal individuals. CONCLUSIONS RPL3L is highly expressed in the heart tissue of humans and mice. Expression of Rpl3l and its upstream regulators, Myl4 and Sdha, correlate with multiple cardiac function traits in murine GRPs of BXD mice, while RPL3L and SDHA correlate with immune cell infiltration in DCM patient hearts, suggesting important roles for RPL3L in DCM and CHF pathogenesis via immune inflammation, necessitating experimental validations of Myl4 and Sdha in Rpl3l regulation.
Collapse
Affiliation(s)
- Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Enkhsaikhan Purevjav
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
6
|
Cao K, Xu J, Cao W, Wang X, Lv W, Zeng M, Zou X, Liu J, Feng Z. Assembly of mitochondrial succinate dehydrogenase in human health and disease. Free Radic Biol Med 2023; 207:247-259. [PMID: 37490987 DOI: 10.1016/j.freeradbiomed.2023.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
Mitochondrial succinate dehydrogenase (SDH), also known as electron transport chain (ETC) Complex II, is the only enzyme complex engaged in both oxidative phosphorylation and the tricarboxylic acid (TCA) cycle. SDH has received increasing attention due to its crucial role in regulating mitochondrial metabolism and human health. Despite having the fewest subunits among the four ETC complexes, functional SDH is formed via a sequential and well-coordinated assembly of subunits. Along with the discovery of subunit-specific assembly factors, the dynamic involvement of the SDH assembly process in a broad range of diseases has been revealed. Recently, we reported that perturbation of SDH assembly in different tissues leads to interesting and distinct pathophysiological changes in mice, indicating a need to understand the intricate SDH assembly process in human health and diseases. Thus, in this review, we summarize recent findings on SDH pathogenesis with respect to disease and a focus on SDH assembly.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Wenli Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xueqiang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Mengqi Zeng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China
| | - Xuan Zou
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
7
|
Bancel LP, Masso V, Dessein AF, Aubert S, Leteurtre E, Coppin L, Odou MF, Cao CD, Cardot-Bauters C, Pigny P. Serum Succinate/Fumarate Ratio in Patients With Paraganglioma/Pheochromocytoma Attending an Endocrine Oncogenetic Unit. J Clin Endocrinol Metab 2023; 108:2343-2352. [PMID: 36848172 DOI: 10.1210/clinem/dgad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
CONTEXT Pheochromocytomas and paragangliomas (PPGLs) with SDHx pathogenic variants (PVs) are characterized by a higher intratissular succinate/fumarate ratio (RS/F) than non-SDHx-mutated ones. Also, an increase in serum succinate levels has been reported in patients with germline SDHB or SDHD PV. OBJECTIVE To assess whether measurement of serum succinate, fumarate levels, and RS/F might aid identification of an SDHx germline PV/likely pathogenic variant (LPV) in patients with PPGL or in asymptomatic relatives; and to guide identification of a PV/LPV among the variants of unknown significance (VUS) identified in SDHx by next-generation sequencing. METHODS This prospective monocentric study included 93 patients attending an endocrine oncogenetic unit for genetic testing. Succinate and fumarate were measured in serum by gas chromatography coupled to mass spectrometry. The RS/F was calculated to assess SDH enzymatic function. Diagnostic performance was assessed by receiver operating characteristic analysis. RESULTS RS/F had a higher discriminant power than succinate alone to identify an SDHx PV/LPV in patients with PPGL. However, SDHD PVs/LPVs are frequently missed. Only RS/F differed between asymptomatic SDHB/SDHD PV/LPV carriers and SDHB/SDHD-linked patients with PPGL. Finally RS/F could be helpful to easily evaluate the functional impact of VUS in SDHx. CONCLUSION Measurement of serum RS/F in patients with PPGL and in asymptomatic relatives is a valuable initial workup tool to detect those carrying a germline PV/LPV in SDHx. Its discriminative power is equal or superior to those of succinate measured alone. SDHD PVs/LPVs are less frequently identified by these biochemical tools. Use of RS/F for SDHx VUS reclassification needs to be evaluated further.
Collapse
Affiliation(s)
- Léo-Paul Bancel
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Vincent Masso
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Anne-Frederique Dessein
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Sébastien Aubert
- CHU Lille, Service d'Anatomie Pathologique, Centre de Biologie Pathologie, F-59037 Lille Cedex, France
| | - Emmanuelle Leteurtre
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity, Plasticity and Resistance to therapies, F-59000 Lille, France
| | - Lucie Coppin
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Marie-Françoise Odou
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| | - Christine Do Cao
- CHU Lille, Service d'Endocrinologie, Diabétologie, Métabolisme, Nutrition, Hôpital Claude Huriez, F-59037 Lille Cedex, France
| | - Catherine Cardot-Bauters
- CHU Lille, Service d'Endocrinologie, Diabétologie, Métabolisme, Nutrition, Hôpital Claude Huriez, F-59037 Lille Cedex, France
| | - Pascal Pigny
- CHU Lille, Laboratoire de Biochimie-Hormonologie, Métabolisme, Nutrition, Oncologie, Centre de Biologie Pathologie, F.59037 Lille Cedex, France
| |
Collapse
|
8
|
Xing J, Wang H, Xie Y, Fan T, Cui C, Li Y, Wang S, Gu W, Wang C, Tang H, Liu L. Novel rare genetic variants of familial and sporadic pulmonary atresia identified by whole-exome sequencing. Open Life Sci 2023; 18:20220593. [PMID: 37215497 PMCID: PMC10199322 DOI: 10.1515/biol-2022-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 05/24/2023] Open
Abstract
Pulmonary atresia (PA) is a severe cyanotic congenital heart disease. Although some genetic mutations have been described to be associated with PA, the knowledge of pathogenesis is insufficient. The aim of this research was to use whole-exome sequencing (WES) to determine novel rare genetic variants in PA patients. We performed WES in 33 patients (27 patient-parent trios and 6 single probands) and 300 healthy control individuals. By applying an enhanced analytical framework to incorporate de novo and case-control rare variation, we identified 176 risk genes (100 de novo variants and 87 rare variants). Protein‒protein interaction (PPI) analysis and Genotype-Tissue Expression analysis revealed that 35 putative candidate genes had PPIs with known PA genes with high expression in the human heart. Expression quantitative trait loci analysis revealed that 27 genes that were identified as novel PA genes that could be affected by the surrounding single nucleotide polymorphism were screened. Furthermore, we screened rare damaging variants with a threshold of minor allele frequency at 0.5% in the ExAC_EAS and GnomAD_exome_EAS databases, and the deleteriousness was predicted by bioinformatics tools. For the first time, 18 rare variants in 11 new candidate genes have been identified that may play a role in the pathogenesis of PA. Our research provides new insights into the pathogenesis of PA and helps to identify the critical genes for PA.
Collapse
Affiliation(s)
- Junyue Xing
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
| | - Hongdan Wang
- Medical Genetics Institute of Henan Province, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China
| | - Yuanyuan Xie
- Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Taibing Fan
- Department of Children’s Heart Center, Henan Provincial People’s Hospital, Department of Children’s Heart Center of Central China Fuwai Hospital, Henan Key Medical Laboratory of Tertiary Prevention and Treatment for Congenital Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Cunying Cui
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, China
| | - Yanan Li
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, China
| | - Shuai Wang
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
| | - Weiyue Gu
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
| | - Chengzeng Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hao Tang
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
| | - Lin Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
9
|
Du Z, Zhou X, Lai Y, Xu J, Zhang Y, Zhou S, Feng Z, Yu L, Tang Y, Wang W, Yu L, Tian C, Ran T, Chen H, Guddat LW, Liu F, Gao Y, Rao Z, Gong H. Structure of the human respiratory complex II. Proc Natl Acad Sci U S A 2023; 120:e2216713120. [PMID: 37098072 PMCID: PMC10161127 DOI: 10.1073/pnas.2216713120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
Human complex II is a key protein complex that links two essential energy-producing processes: the tricarboxylic acid cycle and oxidative phosphorylation. Deficiencies due to mutagenesis have been shown to cause mitochondrial disease and some types of cancers. However, the structure of this complex is yet to be resolved, hindering a comprehensive understanding of the functional aspects of this molecular machine. Here, we have determined the structure of human complex II in the presence of ubiquinone at 2.86 Å resolution by cryoelectron microscopy, showing it comprises two water-soluble subunits, SDHA and SDHB, and two membrane-spanning subunits, SDHC and SDHD. This structure allows us to propose a route for electron transfer. In addition, clinically relevant mutations are mapped onto the structure. This mapping provides a molecular understanding to explain why these variants have the potential to produce disease.
Collapse
Affiliation(s)
- Zhanqiang Du
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Xiaoting Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yuezheng Lai
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Jinxu Xu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Yuying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Shan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Ziyan Feng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Long Yu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Yanting Tang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| | - Weiwei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Ting Ran
- Innovative Center For Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Hongming Chen
- Innovative Center For Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fengjiang Liu
- Innovative Center For Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Hongri Gong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300353, China
| |
Collapse
|
10
|
Wang L, Cybula M, Rostworowska M, Wang L, Mucha P, Bulicz M, Bieniasz M. Upregulation of Succinate Dehydrogenase (SDHA) Contributes to Enhanced Bioenergetics of Ovarian Cancer Cells and Higher Sensitivity to Anti-Metabolic Agent Shikonin. Cancers (Basel) 2022; 14:5097. [PMID: 36291881 PMCID: PMC9599980 DOI: 10.3390/cancers14205097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
We discovered that the overexpression of mitochondrial enzyme succinate dehydrogenase (SDHA) is particularly prevalent in ovarian carcinoma and promotes highly metabolically active phenotype. Succinate dehydrogenase deficiency has been previously studied in some rare disorders. However, the role of SDHA upregulation and its impact on ovarian cancer metabolism has never been investigated, emphasizing the need for further research. We investigated the functional consequences of SDHA overexpression in ovarian cancer. Using proteomics approaches and biological assays, we interrogated protein content of metabolic pathways, cell proliferation, anchorage-independent growth, mitochondrial respiration, glycolytic function, and ATP production rates in those cells. Lastly, we performed a drug screening to identify agents specifically targeting the SDHA overexpressing tumor cells. We showed that SDHA overexpressing cells are characterized by enhanced energy metabolism, relying on both glycolysis and oxidative phosphorylation to meet their energy needs. In addition, SDHA-high phenotype was associated with cell vulnerability to glucose and glutamine deprivation, which led to a substantial reduction of ATP yield. We also identified an anti-metabolic compound shikonin with a potent efficacy against SDHA overexpressing ovarian cancer cells. Our data underline the unappreciated role of SDHA in reprogramming of ovarian cancer metabolism, which represents a new opportunity for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Magdalena Bieniasz
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Hadrava Vanova K, Kraus M, Neuzil J, Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep 2021; 25:26-32. [PMID: 32290794 PMCID: PMC7178880 DOI: 10.1080/13510002.2020.1752002] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence points to the respiratory Complex II (CII) as a source and modulator of reactive oxygen species (ROS). Both functional loss of CII as well as its pharmacological inhibition can lead to ROS generation in cells, with a relevant impact on the development of pathophysiological conditions, i.e. cancer and neurodegenerative diseases. While the basic framework of CII involvement in ROS production has been defined, the fine details still await clarification. It is important to resolve these aspects to fully understand the role of CII in pathology and to explore its therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
| | - Michal Kraus
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prague-West, Czech Republic
| |
Collapse
|
12
|
Sturrock BRH, Macnamara EF, McGuire P, Kruk S, Yang I, Murphy J, Tifft CJ, Gordon‐Lipkin E. Progressive cerebellar atrophy in a patient with complex II and III deficiency and a novel deleterious variant in SDHA: A Counseling Conundrum. Mol Genet Genomic Med 2021; 9:e1692. [PMID: 33960148 PMCID: PMC8222855 DOI: 10.1002/mgg3.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Complex II is an essential component of the electron transport chain, linking it with the tricarboxylic acid cycle. Its four subunits are encoded in the nuclear genome, and deleterious variants in these genes, including SDHA (OMIM 600857), are associated with a wide range of symptoms including neurological disease, cardiomyopathy, and neoplasia (paraganglioma-pheochromocytomas (PGL/PCC), and gastrointestinal stromal tumors). Deleterious variants of SDHA are most frequently associated with Leigh and Leigh-like syndromes. METHODS AND RESULTS Here, we describe a case of a 9-year-old boy with tremor, nystagmus, hypotonia, developmental delay, significant ataxia, and progressive cerebellar atrophy. He was found to have biallelic variants in SDHA, a known pathogenic variant (c.91C>T (p.R31*)), and a variant of unknown significance (c.454G>A (p.E152K)). Deficient activity of complexes II and III was detected in fibroblasts from the patient consistent with a diagnosis of a respiratory chain disorder. CONCLUSION We, therefore, consider whether c.454G>A (p.E152K) is, indeed, a pathogenic variant, and what implications it has for family members who carry the same variant.
Collapse
Affiliation(s)
- Beattie R. H. Sturrock
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
- Brighton and Sussex University Hospitals NHS TrustBrightonEngland
| | - Ellen F. Macnamara
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
| | - Peter McGuire
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Shannon Kruk
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Ivan Yang
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Jennifer Murphy
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
| | - Cyndi J. Tifft
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
- Office of the Clinical DirectorNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Eliza Gordon‐Lipkin
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| |
Collapse
|
13
|
Mazzaccara C, Mirra B, Barretta F, Caiazza M, Lombardo B, Scudiero O, Tinto N, Limongelli G, Frisso G. Molecular Epidemiology of Mitochondrial Cardiomyopathy: A Search Among Mitochondrial and Nuclear Genes. Int J Mol Sci 2021; 22:ijms22115742. [PMID: 34072184 PMCID: PMC8197938 DOI: 10.3390/ijms22115742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial Cardiomyopathy (MCM) is a common manifestation of multi-organ Mitochondrial Diseases (MDs), occasionally present in non-syndromic cases. Diagnosis of MCM is complex because of wide clinical and genetic heterogeneity and requires medical, laboratory, and neuroimaging investigations. Currently, the molecular screening for MCM is fundamental part of MDs management and allows achieving the definitive diagnosis. In this article, we review the current genetic knowledge associated with MDs, focusing on diagnosis of MCM and MDs showing cardiac involvement. We searched for publications on mitochondrial and nuclear genes involved in MCM, mainly focusing on genetic screening based on targeted gene panels for the molecular diagnosis of the MCM, by using Next Generation Sequencing. Here we report twelve case reports, four case-control studies, eleven retrospective studies, and two prospective studies, for a total of twenty-nine papers concerning the evaluation of cardiac manifestations in mitochondrial diseases. From the analysis of published causal mutations, we identified 130 genes to be associated with mitochondrial heart diseases. A large proportion of these genes (34.3%) encode for key proteins involved in the oxidative phosphorylation system (OXPHOS), either as directly OXPHOS subunits (22.8%), and as OXPHOS assembly factors (11.5%). Mutations in several mitochondrial tRNA genes have been also reported in multi-organ or isolated MCM (15.3%). This review highlights the main disease-genes, identified by extensive genetic analysis, which could be included as target genes in next generation panels for the molecular diagnosis of patients with clinical suspect of mitochondrial cardiomyopathies.
Collapse
Affiliation(s)
- Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
- Correspondence: ; Tel.: +39-0817-462-422
| | - Bruno Mirra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Martina Caiazza
- Monaldi Hospital, AO Colli, 80131 Naples, Italy; (M.C.); (G.L.)
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| | - Giuseppe Limongelli
- Monaldi Hospital, AO Colli, 80131 Naples, Italy; (M.C.); (G.L.)
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80134 Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (B.M.); (F.B.); (B.L.); (O.S.); (N.T.); (G.F.)
- CEINGE Advanced Biotechnologies, 80145 Naples, Italy
| |
Collapse
|
14
|
Zehavi Y, Saada A, Jabaly-Habib H, Dessau M, Shaag A, Elpeleg O, Spiegel R. A novel de novo heterozygous pathogenic variant in the SDHA gene results in childhood onset bilateral optic atrophy and cognitive impairment. Metab Brain Dis 2021; 36:581-588. [PMID: 33471299 DOI: 10.1007/s11011-021-00671-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/08/2021] [Indexed: 10/24/2022]
Abstract
Isolated defects in the mitochondrial respiratory chain complex II (CII; succinate-ubiquinone oxidoreductase) are extremely rare and mainly result from bi-allelic mutations in one of the nuclear encoded subunits: SDHA, SDHB and SDHD, which comprise CII and the assembly CII factor SDHAF1. We report an adolescent female who presented with global developmental delay, intellectual disability and childhood onset progressive bilateral optic atrophy. Whole exome sequencing of the patient and her unaffected parents identified the novel heterozygous de novo variant c.1984C > T [NM_004168.4] in the SDHA gene. Biochemical assessment of CII in the patient's derived fibroblasts and lymphocytes displayed considerably decreased CII residual activity compared with normal controls, when normalized to the integral mitochondrial enzyme citrate synthase. Protein modeling of the consequent p.Arg662Cys variant [NP-004159.2] suggested that this substitution will compromise the structural integrity of the FAD-binding protein at the C-terminus that will ultimately impair the FAD binding to SDHA, thus decreasing the entire CII activity. Our study emphasizes the role of certain heterozygous SDHA mutations in a distinct clinical phenotype dominated by optic atrophy and neurological impairment. This is the second mutation that has been reported to cause this phenotype. Furthermore, it adds developmental delay and cognitive disability to the expanding spectrum of the disorder. We propose to add SDHA to next generation sequencing gene panels of optic atrophy.
Collapse
Affiliation(s)
- Yoav Zehavi
- Pediatric Department B' Emek Medical Center, 1834111, Afula, Israel
- Rappaport School of Medicine Technion, Haifa, Israel
| | - Ann Saada
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Department of Human Genetics, Hadassah Medical Center, Jerusalem, Israel
| | | | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Avraham Shaag
- Department of Human Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Orly Elpeleg
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Department of Human Genetics, Hadassah Medical Center, Jerusalem, Israel
| | - Ronen Spiegel
- Pediatric Department B' Emek Medical Center, 1834111, Afula, Israel.
- Rappaport School of Medicine Technion, Haifa, Israel.
| |
Collapse
|
15
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
16
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
17
|
He JP, Qian Y, Liu WJ, Tang J, Qin MH, Luo SJ, Hou JH, Lv MX. Prenatal diagnosis of Cri-du-Chat syndrome with concomitant distal trisomy 10q syndrome in one fetus with ultrasound anomalies. Taiwan J Obstet Gynecol 2021; 60:318-323. [PMID: 33678334 DOI: 10.1016/j.tjog.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE The aim of this work was to characterize the genetic abnormalities and prenatal diagnosis indications in one fetus with Cri-du-Chat syndrome with codependent 10q24.2-q26.3 duplication in prenatal screening. MATERIALS AND METHODS A 31-year-old woman had a second trimester serum screening that indicated the fetus was at low risk. During this pregnancy, the woman underwent amniocentesis at 18+4 weeks' gestation because of adverse fertility history and nuchal fold thickening. Cytogenetic analysis and next-generation sequencing analysis were simultaneously performed to provide genetic analysis of fetal amniotic fluid. According to abnormal results, parental chromosome karyotype of peripheral blood was performed to analysis. RESULTS CNV-seq detected a 14.00 Mb deletion at 5p15.33-p15.2 and a 34.06 Mb duplication at 10q24.2-q26.3 in the fetus. Cytogenetic analysis of the fetus revealed a karyotype of 46, XY, der(5) t(5;10) (p15.2;q26.3). The karyotype of pregnant women was 46,XX,t(5;10) (p15.2;q24.2). The pregnancy was subsequently terminated after sufficient informed consent. CONCLUSION This is the first study that reports prenatal diagnosis of a Cri-du-Chat syndrome with concomitant 10 q24.2-q26.3 duplication. Adverse pregnancy history has to be as an important indicator for prenatal diagnosis, and the genetic factors of abnormal pregnancy should be identified before next pregnancy. Nuchal fold thickening is closely related to fetal abnormalities. Combined with ultrasonography, the use of CNV-seq will improve the diagnosis of submicroscopic chromosomal aberrations in fetuses with congenital anomalies.
Collapse
Affiliation(s)
- Jian-Ping He
- Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Care Hospital, Yunnan, China
| | - Yuan Qian
- Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Care Hospital, Yunnan, China; Yunnan Provincial Key Laboratory of Laboratory Medicine, First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wei-Jia Liu
- Ultrasound Department, Kunming Maternal and Child Care Hospital, Yunnan, China
| | - Jian Tang
- Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Care Hospital, Yunnan, China
| | - Mao-Hua Qin
- Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Care Hospital, Yunnan, China
| | - Sheng-Jun Luo
- Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Care Hospital, Yunnan, China
| | - Jiang-Hou Hou
- Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Care Hospital, Yunnan, China
| | - Meng-Xin Lv
- Medical Genetics and Prenatal Diagnosis, Kunming Maternal and Child Care Hospital, Yunnan, China.
| |
Collapse
|
18
|
Fernandez-Vizarra E, Zeviani M. Mitochondrial disorders of the OXPHOS system. FEBS Lett 2020; 595:1062-1106. [PMID: 33159691 DOI: 10.1002/1873-3468.13995] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/21/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial disorders are among the most frequent inborn errors of metabolism, their primary cause being the dysfunction of the oxidative phosphorylation system (OXPHOS). OXPHOS is composed of the electron transport chain (ETC), formed by four multimeric enzymes and two mobile electron carriers, plus an ATP synthase [also called complex V (cV)]. The ETC performs the redox reactions involved in cellular respiration while generating the proton motive force used by cV to synthesize ATP. OXPHOS biogenesis involves multiple steps, starting from the expression of genes encoded in physically separated genomes, namely the mitochondrial and nuclear DNA, to the coordinated assembly of components and cofactors building each individual complex and eventually the supercomplexes. The genetic cause underlying around half of the diagnosed mitochondrial disease cases is currently known. Many of these cases result from pathogenic variants in genes encoding structural subunits or additional factors directly involved in the assembly of the ETC complexes. Here, we review the historical and most recent findings concerning the clinical phenotypes and the molecular pathological mechanisms underlying this particular group of disorders.
Collapse
Affiliation(s)
- Erika Fernandez-Vizarra
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Massimo Zeviani
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurosciences, University of Padova, Italy
| |
Collapse
|
19
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
20
|
Fullerton M, McFarland R, Taylor RW, Alston CL. The genetic basis of isolated mitochondrial complex II deficiency. Mol Genet Metab 2020; 131:53-65. [PMID: 33162331 PMCID: PMC7758838 DOI: 10.1016/j.ymgme.2020.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022]
Abstract
Mitochondrial complex II (succinate:ubiquinone oxidoreductase) is the smallest complex of the oxidative phosphorylation system, a tetramer of just 140 kDa. Despite its diminutive size, it is a key complex in two coupled metabolic pathways - it oxidises succinate to fumarate in the tricarboxylic acid cycle and the electrons are used to reduce FAD to FADH2, ultimately reducing ubiquinone to ubiquinol in the respiratory chain. The biogenesis and assembly of complex II is facilitated by four ancillary proteins, all of which are autosomally-encoded. Numerous pathogenic defects have been reported which describe two broad clinical manifestations, either susceptibility to cancer in the case of single, heterozygous germline variants, or a mitochondrial disease presentation, almost exclusively due to bi-allelic recessive variants and associated with an isolated complex II deficiency. Here we present a compendium of pathogenic gene variants that have been documented in the literature in patients with an isolated mitochondrial complex II deficiency. To date, 61 patients are described, harbouring 32 different pathogenic variants in four distinct complex II genes: three structural subunit genes (SDHA, SDHB and SDHD) and one assembly factor gene (SDHAF1). Many pathogenic variants result in a null allele due to nonsense, frameshift or splicing defects however, the missense variants that do occur tend to induce substitutions at highly conserved residues in regions of the proteins that are critical for binding to other subunits or substrates. There is phenotypic heterogeneity associated with defects in each complex II gene, similar to other mitochondrial diseases.
Collapse
Affiliation(s)
- Millie Fullerton
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
21
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
22
|
Wang Y, Wang Z. An Integrated Network Analysis of mRNA and Gene Expression Profiles in Parkinson's Disease. Med Sci Monit 2020; 26:e920846. [PMID: 32210219 PMCID: PMC7115122 DOI: 10.12659/msm.920846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a degenerative neurologic disease. This study aimed to undertake bioinformatics analysis using the publicly available Gene Expression Omnibus (GEO) database to integrate mRNA expression data from patients with PD and to compare differentially expressed genes (DEGs) in tissue from the substantia nigra and whole blood from patients with PD and normal controls. MATERIAL AND METHODS Integrated network analysis included GEO datasets to identify DEGs in the substantia nigra and whole blood of patients with PD. Bioinformatics analysis was used to identify the roles of the DEGs and included the development of protein-protein interaction (PPI) networks and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Expression levels of DEGs were validated using GSE100054. RESULTS In patients with PD, there were 1,076 upregulated DEGs and 1,075 down-regulated DEGs in the substantia nigra tissue, and 699 upregulated and 930 down-regulated DEGs in whole blood samples. The apoptotic process, the mitogen-activated protein kinase (MAPK) signaling pathway, the Wnt signaling pathway, and the Notch signaling pathway were significantly enriched in DEGs in the substantia nigra in PD. In both the substantia nigra and whole blood, the most common DEGs were significantly enriched in lysosomes, PD, Alzheimer's disease, Huntington's disease. SORT1 and CRYAB were the hub proteins in the network of the substantia nigra; PSMA1 and SDHA were the hub proteins in the network of whole blood in PD. CONCLUSIONS DEGs, including SORT1, CRYAB, PSMA1, and SDHA may have roles in the pathogenesis of PD through the MAPK, Wnt, and Notch signaling pathways.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China (mainland)
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China (mainland)
| |
Collapse
|
23
|
Schubert Baldo M, Vilarinho L. Molecular basis of Leigh syndrome: a current look. Orphanet J Rare Dis 2020; 15:31. [PMID: 31996241 PMCID: PMC6990539 DOI: 10.1186/s13023-020-1297-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/05/2020] [Indexed: 01/15/2023] Open
Abstract
Leigh Syndrome (OMIM 256000) is a heterogeneous neurologic disorder due to damage in mitochondrial energy production that usually starts in early childhood. The first description given by Leigh pointed out neurological symptoms in children under 2 years and premature death. Following cases brought some hypothesis to explain the cause due to similarity to other neurological diseases and led to further investigation for metabolic diseases. Biochemical evaluation and specific metabolic profile suggested impairment in energy production (OXPHOS) in mitochondria. As direct approach to involved tissues is not always possible or safe, molecular analysis is a great cost-effective option and, besides biochemical results, is required to confirm the underlying cause of this syndrome face to clinical suspicion. The Next Generation Sequencing (NGS) advance represented a breakthrough in molecular biology allowing simultaneous gene analysis giving short-time results and increasing the variants underlying this syndrome, counting over 75 monogenic causes related so far. NGS provided confirmation of emerging cases and brought up diagnosis in atypical presentations as late-onset cases, which turned Leigh into a heterogeneous syndrome with variable outcomes. This review highlights clinical presentation in both classic and atypical phenotypes, the investigation pathway throughout confirmation emphasizing the underlying genetic heterogeneity and increasing number of genes assigned to this syndrome as well as available treatment.
Collapse
Affiliation(s)
- Manuela Schubert Baldo
- Newborn screening, metabolism and genetics unit - human genetics department, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Porto, Portugal.
| | - Laura Vilarinho
- Newborn screening, metabolism and genetics unit - human genetics department, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Porto, Portugal
| |
Collapse
|
24
|
Wegrzyn AB, Stolle S, Rienksma RA, Martins Dos Santos VAP, Bakker BM, Suarez-Diez M. Cofactors revisited - Predicting the impact of flavoprotein-related diseases on a genome scale. Biochim Biophys Acta Mol Basis Dis 2018; 1865:360-370. [PMID: 30385409 DOI: 10.1016/j.bbadis.2018.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
Flavin adenine dinucleotide (FAD) and its precursor flavin mononucleotide (FMN) are redox cofactors that are required for the activity of more than hundred human enzymes. Mutations in the genes encoding these proteins cause severe phenotypes, including a lack of energy supply and accumulation of toxic intermediates. Ideally, patients should be diagnosed before they show symptoms so that treatment and/or preventive care can start immediately. This can be achieved by standardized newborn screening tests. However, many of the flavin-related diseases lack appropriate biomarker profiles. Genome-scale metabolic models can aid in biomarker research by predicting altered profiles of potential biomarkers. Unfortunately, current models, including the most recent human metabolic reconstructions Recon and HMR, typically treat enzyme-bound flavins incorrectly as free metabolites. This in turn leads to artificial degrees of freedom in pathways that are strictly coupled. Here, we present a reconstruction of human metabolism with a curated and extended flavoproteome. To illustrate the functional consequences, we show that simulations with the curated model - unlike simulations with earlier Recon versions - correctly predict the metabolic impact of multiple-acyl-CoA-dehydrogenase deficiency as well as of systemic flavin-depletion. Moreover, simulations with the new model allowed us to identify a larger number of biomarkers in flavoproteome-related diseases, without loss of accuracy. We conclude that adequate inclusion of cofactors in constraint-based modelling contributes to higher precision in computational predictions.
Collapse
Affiliation(s)
- Agnieszka B Wegrzyn
- Systems Medicine of Metabolism and Signaling, Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands; Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Sarah Stolle
- Systems Medicine of Metabolism and Signaling, Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands; Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Rienk A Rienksma
- Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, the Netherlands
| | - Vítor A P Martins Dos Santos
- Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, the Netherlands; Lifeglimmer GmbH., 12163 Berlin, Germany
| | - Barbara M Bakker
- Systems Medicine of Metabolism and Signaling, Laboratory of Pediatrics, University Medical Center Groningen, University of Groningen, 9713, AV, Groningen, the Netherlands; Systems Biology Centre for Energy Metabolism and Ageing, University of Groningen, 9713, AV, Groningen, the Netherlands.
| | - Maria Suarez-Diez
- Systems and Synthetic Biology, Wageningen University & Research, 6708, WE, Wageningen, the Netherlands.
| |
Collapse
|
25
|
Defective mitochondrial ATPase due to rare mtDNA m.8969G>A mutation-causing lactic acidosis, intellectual disability, and poor growth. Neurogenetics 2018; 19:49-53. [PMID: 29350304 DOI: 10.1007/s10048-018-0537-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/09/2018] [Indexed: 01/22/2023]
Abstract
Mutations in mitochondrial ATP synthase 6 (MT-ATP6) are a frequent cause of NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) or Leigh syndromes, especially a point mutation at nucleotide position 8993. M.8969G>A is a rare MT-ATP6 mutation, previously reported only in three individuals, causing multisystem disorders with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia or IgA nephropathy. We present two siblings with the m.8969G>A mutation and a novel, substantially milder phenotype with lactic acidosis, poor growth, and intellectual disability. Our findings expand the phenotypic spectrum and show that mtDNA mutations should be taken account also with milder, stable phenotypes.
Collapse
|