1
|
Zhang Y, Xing X, Huang L, Su Y, Liu G, Zhang X, Yang Y. WDR64, a testis-specific protein, is involved in the manchette and flagellum formation by interacting with ODF1. Heliyon 2024; 10:e38263. [PMID: 39386799 PMCID: PMC11462348 DOI: 10.1016/j.heliyon.2024.e38263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
The WD40 repeat (WDR) domain is present in a wide range of proteins, providing sites for protein‒protein interactions. Recent studies have shown that WDR proteins play indispensable roles in spermatogenesis, such as in spermatocyte division, sperm head formation and flagellar assembly. In this study, we identified a novel testis-specific gene, WDR64, which has the typical characteristics of WD40 proteins with two β-propellers, and is highly conserved in Mammalia. RT-PCR and Western blot results revealed that WDR64 was highly expressed in testis. WDR64 protein was weakly expressed at postnatal Day 7, increased substantially at postnatal Day 28 and maintained at high levels thereafter. Further immunofluorescence demonstrated that WDR64 was localized posterior to the nucleus in steps 8-14 spermatids in line with the dynamic localization of manchette, moved to the flagella in steps 15-16 spermatids, and localized at the midpiece of the flagellum in mature spermatozoa. To explore the function of WDR64, we performed immunoprecipitation‒mass spectrometry (IP‒MS) to screen its interacting proteins and found that WDR64 interacted with ODF1 to form a complex. The WDR64/ODF1 complex is located at the manchette during nucleus shaping and finally at the midpiece of the mature spermatozoa tail, suggesting that it may be involved in the assembly of the manchette and flagella during spermiogenesis. Our findings provide the first understanding of the expression pattern of WDR64 and its potential molecular mechanism in spermiogenesis.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xinxing Zhang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Youbo Yang
- Department of Endocrinology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Guo H, Wang Z, Yin K, Ma R, Zhang Y, Yin F, Li H, Yin D. Sciellin promotes the development and progression of thyroid cancer through the JAK2/STAT3 signaling pathway. Mol Carcinog 2024; 63:701-713. [PMID: 38411346 DOI: 10.1002/mc.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
Thyroid cancer (TC) is one of the most common endocrine tumors worldwide. Sciellin (SCEL) is involved in various disease processes, including burn wound healing and neutrophil extracellular traps (NETs); it is highly expressed in TC. However, its biological impact on TC and related mechanisms remain unclear. This study aimed to investigate the effect of SCEL on the function of human TC cell lines B-CPAP and OCUT-2C (cancer cell lines with BRAF V600E mutations). Analyses of data sets and clinical samples revealed enhanced expression of SCEL in TC than in adjacent normal tissue. SCEL knockout suppresses proliferation and cell cycle progression in TC cells, and these results were reversed by the upregulated SCEL expression in TC. SCEL knockout inhibited tumor development in xenograft mouse models. Western blot (WB) demonstrated that the expression of p-JAK2 and p-STAT3 was reduced in SCEL-knockdown TC. These results suggest that SCEL plays a key role in TC progression through the JAK2-STAT3 pathway. Therefore, SCEL can be considered a potential diagnostic biomarker and therapeutic target for TC.
Collapse
Affiliation(s)
- Haohao Guo
- Department of Thyroid Surgery, Zhengzhou, Henan, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
| | - Ziyang Wang
- Department of Thyroid Surgery, Zhengzhou, Henan, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Runsheng Ma
- Department of Thyroid Surgery, Zhengzhou, Henan, China
| | - Yifei Zhang
- Department of Thyroid Surgery, Zhengzhou, Henan, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
| | - Fanxiang Yin
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongqiang Li
- Department of Thyroid Surgery, Zhengzhou, Henan, China
| | - Detao Yin
- Department of Thyroid Surgery, Zhengzhou, Henan, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Ehlinger JV, Goodrich JM, Dolinoy DC, Watkins DJ, Cantoral A, Mercado-García A, Téllez-Rojo MM, Peterson KE. Associations between blood leukocyte DNA methylation and sustained attention in mid-to-late childhood. Epigenomics 2023; 15:965-981. [PMID: 37942546 PMCID: PMC10718163 DOI: 10.2217/epi-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Aims: To identify associations between DNA methylation (DNAm) across the epigenome and symptoms related to attention-deficit/hyperactivity disorder in a population of Hispanic children. Materials & methods: Among 517 participants in the ELEMENT study aged 9-18 years, we conducted an epigenome-wide association study examining associations between blood leukocyte DNAm and performance on the Conners' continuous performance test (CPT3). Results: DNAm at loci in or near ZNF814, ELF4 and OR6K6 and functional enrichment for gene pathways pertaining to ferroptosis, inflammation, immune response and neurotransmission were significantly related to CPT3 scores. Conclusion: DNAm was associated with CPT3 performance. Further analysis is warranted to understand how these genes and enriched pathways contribute to attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jessa V Ehlinger
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah J Watkins
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Karen E Peterson
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Taher MM, Bantan NA, Alwalily MH, Saeed M, Taher NM, Bouzidi M, Jastania RA, Balkhoyour KB. Supratentorial Sporadic Hemangioblastoma: A Case Report With Mutation Profiling Using Next-Generation DNA Sequencing. Cureus 2023; 15:e39818. [PMID: 37273678 PMCID: PMC10233511 DOI: 10.7759/cureus.39818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/06/2023] Open
Abstract
The present study aimed to determine genomic changes in sporadic intracranial hemangioblastoma (HBL), and the mutation patterns were analyzed using next-generation DNA sequencing (NGS). In this NGS analysis of the HBL tumor, 67 variants of 41 genes were identified. Of these, 64 were single-nucleotide variants (SNVs), two were exonic insertions and deletions (INDEL), and one was an intronic INDEL. In total, 15 were missense exonic variants, including an insertion variant in the NRAS gene, c.1_2insA, and a deletion variant, c.745delT, in the HNF1A gene, both of these mutations produced a termination codon. Other exonic missense variants found in the tumor were CTNNB1, FGFR3, KDR, SMO, HRAS, RAI1, and a TP53 variant (c.430C>G). Moreover, the results of the present study revealed a novel variant, c.430C>G, in TP53 and two missense variants of SND1 (c.1810G>C and c.1814G>C), which were also novel. ALK (rs760315884) and FGFR2 (rs1042522) missense variants were reported previously. Notably, a total of 10 previously reported single-nucleotide polymorphisms (SNPs) were found in this tumor in genes including MLH1 (rs769364808), FGFR3 (rs769364808), two variants (rs1873778 and rs2228230) in PDGFRA, KIT (rs55986963), APC (rs41115), and RET (rs1800861). The results of this study revealed a synonymous mutation (SNP) in c.1104 G>T; p. (Ser368Ser) in the MLH1 gene. In this amino acid (AA) codon, two other variants are also known to cause missense substitutions, c.1103C>G; p. (Ser368Trp); COSM6986674) and c.1103C>T; p.(Ser368Leu; COSM3915870), were found in hematopoietic and urinary tract tissue, respectively. However, three SNPs found in genes such as ALK, KDR, and ABL1 in the HBL tumor in this study were not reported in UCSC, COSMIC, and ClinVar databases. Additionally, 19 intronic variants were identified in this tumor. One intronic SNV was present in each of the following genes: EGFR, ERBB4, KDR, SMO, CDKN2B, PTEN, PTPN11, RB1, AKT1, and ERBB2. In PIK3CA and FBXL18 genes, two intronic variants were present, and in the SND1 gene, three intronic variants were detected in the HBL tumor presented in this study. Notably, only one of these was reported in the catalog of somatic mutations in cancer. Only one 3'-untranslated region (UTR) insertion variant in the NRAS gene (c.*2010T>AT) was detected in the tumor of the present study, and this was a splice site acceptor. A TP53 intronic mutation (c.782+1G>T) was the only pathogenic splice_donor_variant found in this HBL tumor. The frequency of variants and Phred scores were markedly high, and the p-values were significant for all of the aforementioned mutations. In summary, a total of 15 missense, 10 synonymous, and 19 intronic variants were identified in the HBL tumor. Results of the present study detected one novel insertion in NRAS and one novel deletion in HNF1A genes, a novel missense variant in the TP53 gene, and two novel missense variants of SND1. Hotspot mutations in other cancer driver genes, such as PTEN, ATM, SMAD4, SMARCB1, STK11, NPM1, CDKN2A, and EGFR, which are frequently affected in gliomas, were not found in the tumor of the present study. Future studies should aim to validate oncogenic mutations that may act as novel targets for the treatment of these tumors.
Collapse
Affiliation(s)
- Mohiuddin M Taher
- Science and Technology Unit, Deanship of Scientific Research, Umm Al-Qura University, Makkah, SAU
- Department of Medical Genetics, Umm Al-Qura University College of Medicine, Makkah, SAU
| | - Najwa A Bantan
- Department of Radiology, Al-Noor Specialty Hospital, Makkah, SAU
| | | | - Muhammad Saeed
- Department of Radiology, Al-Noor Specialty Hospital, Makkah, SAU
| | - Nuha M Taher
- Department of Medical Genetics, Umm Al-Qura University College of Medicine, Makkah, SAU
| | - Meriem Bouzidi
- Department of Laboratory Medicine, Division of Histopathology, Al-Noor Specialty Hospital, Makkah, SAU
| | - Raid A Jastania
- Department of Pathology, Umm Al-Qura University College of Medicine, Makkah, SAU
| | | |
Collapse
|
5
|
Wu P, Guo Y. Susceptibility Loci in SLC15A1, UGT1A3, and CWC27 Genes Associated with Bladder Cancer in the Northeast Chinese Population. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2988159. [PMID: 36124064 PMCID: PMC9482523 DOI: 10.1155/2022/2988159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
Abstract
Bladder cancer (BCa) is an increasingly severe clinical and public health issue. Therefore, we aim to investigate BCa susceptibility loci in the Chinese population. In this study, 487 BCa patients and 563 controls were recruited from the First Affiliated Hospital of China Medical University from July 2015 to September 2020. A total of ten single-nucleotide polymorphisms (SNPs) in solute carrier family 15 member 1 (SLC15A1), CWC27 spliceosome associated cyclophilin (CWC27), or UDP glucuronosyltransferase family 1 member A3 (UGT1A3) genes were genotyped. The associations between the candidate SNPs and BCa were analyzed using genotype and haplotype analysis. The results demonstrated that Rs4646227 of SLC15A1 has a significant association with BCa. The patients with CG (OR =2.513, p < 0.05) and GG (OR =2.859, p < 0.05) genotypes had an increasing risk of BCa compared with the CC genotype. For the CWC27 gene, genotypic frequency analysis revealed that the GT or TT genotype of rs2042329 and the CT or TT genotype of rs1870437 were more frequent in BCa patients than those in the control group, indicating that these genotypes were associated with a higher risk of BCa (all p < 0.05). Haplotypes of SLC15A1, UGT1A3, and CWC27 genes found that the C-C-C haplotype of SLC15A1 was associated with a lower risk of BCa while the C-G-C haplotype was associated with a higher risk. For the UGT1A3 gene, a moderate protective effect was observed with the most frequent T-T-C haplotype, and for the CWC27 gene, most of the haplotypes showed no association with BCa, except the G-G-C-T haplotype (order of SNPs: rs2042329-rs7735338-rs1870437-rs2278351, OR =0.81, p =0.038). In sum, this study indicated that rs2042329 and rs1870437 in the CWC27 gene and rs4646227 in the SLC15A1 gene are independent indicators for BCa risk in Chinese people. Further large-scale studies are required to validate these findings. Also, this study provided the theoretical basis for developing new therapeutic drug targeting of BCa.
Collapse
Affiliation(s)
- Peihong Wu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| | - Yaoxing Guo
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang 110001, China
| |
Collapse
|
6
|
Talukdar FR, Soares Lima SC, Khoueiry R, Laskar RS, Cuenin C, Sorroche BP, Boisson AC, Abedi-Ardekani B, Carreira C, Menya D, Dzamalala CP, Assefa M, Aseffa A, Miranda-Gonçalves V, Jerónimo C, Henrique RM, Shakeri R, Malekzadeh R, Gasmelseed N, Ellaithi M, Gangane N, Middleton DRS, Le Calvez-Kelm F, Ghantous A, Roux ML, Schüz J, McCormack V, Parker MI, Pinto LFR, Herceg Z. Genome-Wide DNA Methylation Profiling of Esophageal Squamous Cell Carcinoma from Global High-Incidence Regions Identifies Crucial Genes and Potential Cancer Markers. Cancer Res 2021; 81:2612-2624. [PMID: 33741694 DOI: 10.1158/0008-5472.can-20-3445] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/04/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms such as aberrant DNA methylation (DNAme) are known to drive esophageal squamous cell carcinoma (ESCC), yet they remain poorly understood. Here, we studied tumor-specific DNAme in ESCC cases from nine high-incidence countries of Africa, Asia, and South America. Infinium MethylationEPIC array was performed on 108 tumors and 51 normal tissues adjacent to the tumors (NAT) in the discovery phase, and targeted pyrosequencing was performed on 132 tumors and 36 NAT in the replication phase. Top genes for replication were prioritized by weighting methylation results using RNA-sequencing data from The Cancer Genome Atlas and GTEx and validated by qPCR. Methylome analysis comparing tumor and NAT identified 6,796 differentially methylated positions (DMP) and 866 differential methylated regions (DMR), with a 30% methylation (Δβ) difference. The majority of identified DMPs and DMRs were hypermethylated in tumors, particularly in promoters and gene-body regions of genes involved in transcription activation. The top three prioritized genes for replication, PAX9, SIM2, and THSD4, had similar methylation differences in the discovery and replication sets. These genes were exclusively expressed in normal esophageal tissues in GTEx and downregulated in tumors. The specificity and sensitivity of these DNAme events in discriminating tumors from NAT were assessed. Our study identified novel, robust, and crucial tumor-specific DNAme events in ESCC tumors across several high-incidence populations of the world. Methylome changes identified in this study may serve as potential targets for biomarker discovery and warrant further functional characterization. SIGNIFICANCE: This largest genome-wide DNA methylation study on ESCC from high-incidence populations of the world identifies functionally relevant and robust DNAme events that could serve as potential tumor-specific markers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2612/F1.large.jpg.
Collapse
Affiliation(s)
| | - Sheila C Soares Lima
- Department of Molecular Carcinogenesis, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Rita Khoueiry
- International Agency for Research on Cancer, Lyon, France
| | | | - Cyrille Cuenin
- International Agency for Research on Cancer, Lyon, France
| | - Bruna Pereira Sorroche
- International Agency for Research on Cancer, Lyon, France
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Vera Miranda-Gonçalves
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Rui M Henrique
- Department of Pathology and Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Biomedical Sciences Institute of University of Porto, Porto, Portugal
| | - Ramin Shakeri
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nagla Gasmelseed
- Department of Molecular Biology, National Cancer Institute, University of Gezira, Gezira, Sudan
| | - Mona Ellaithi
- Department of Histopathology and Cytology, Al-Neelain University, Khartoum, Sudan
| | - Nitin Gangane
- Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | | | | | - Akram Ghantous
- International Agency for Research on Cancer, Lyon, France
| | | | - Joachim Schüz
- International Agency for Research on Cancer, Lyon, France
| | | | - M Iqbal Parker
- Integrative Biomedical Sciences and IDM, University of Cape Town, Cape Town, South Africa
| | | | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
7
|
Jamin SP, Hikmet F, Mathieu R, Jégou B, Lindskog C, Chalmel F, Primig M. Combined RNA/tissue profiling identifies novel Cancer/testis genes. Mol Oncol 2021; 15:3003-3023. [PMID: 33426787 PMCID: PMC8564638 DOI: 10.1002/1878-0261.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/19/2020] [Accepted: 12/24/2020] [Indexed: 11/14/2022] Open
Abstract
Cancer/Testis (CT) genes are induced in germ cells, repressed in somatic cells, and derepressed in somatic tumors, where these genes can contribute to cancer progression. CT gene identification requires data obtained using standardized protocols and technologies. This is a challenge because data for germ cells, gonads, normal somatic tissues, and a wide range of cancer samples stem from multiple sources and were generated over substantial periods of time. We carried out a GeneChip‐based RNA profiling analysis using our own data for testis and enriched germ cells, data for somatic cancers from the Expression Project for Oncology, and data for normal somatic tissues from the Gene Omnibus Repository. We identified 478 candidate loci that include known CT genes, numerous genes associated with oncogenic processes, and novel candidates that are not referenced in the Cancer/Testis Database (www.cta.lncc.br). We complemented RNA expression data at the protein level for SPESP1, GALNTL5, PDCL2, and C11orf42 using cancer tissue microarrays covering malignant tumors of breast, uterus, thyroid, and kidney, as well as published RNA profiling and immunohistochemical data provided by the Human Protein Atlas (www.proteinatlas.org). We report that combined RNA/tissue profiling identifies novel CT genes that may be of clinical interest as therapeutical targets or biomarkers. Our findings also highlight the challenges of detecting truly germ cell‐specific mRNAs and the proteins they encode in highly heterogenous testicular, somatic, and tumor tissues.
Collapse
Affiliation(s)
- Soazik P Jamin
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France
| | - Feria Hikmet
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Sweden
| | - Romain Mathieu
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France.,Department of Urology, University Hospital, Rennes, France
| | - Bernard Jégou
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Sweden
| | - Frédéric Chalmel
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France
| | - Michael Primig
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S, Univ Rennes, France
| |
Collapse
|
8
|
Li Y, Yuan R, Ren T, Yang B, Miao H, Liu L, Li Y, Cai C, Yang Y, Hu Y, Jiang C, Xu Q, Zhang Y, Liu Y. Role of Sciellin in gallbladder cancer proliferation and formation of neutrophil extracellular traps. Cell Death Dis 2021; 12:30. [PMID: 33414368 PMCID: PMC7791032 DOI: 10.1038/s41419-020-03286-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Apart from primary tumor development and metastasis, cancer-associated thrombosis is the second cause of cancer death in solid tumor malignancy. However, the mechanistic insight into the development of gallbladder cancer (GBC) and cancer-associated thrombosis remains unclear. This study aimed to investigate the mechanistic role of Sciellin (SCEL) in GBC cell proliferation and the development of venous thromboembolism. The expression level of SCEL was determined by immunohistochemical staining. Roles of SCEL in gallbladder cancer cell were determined by molecular and cell biology methods. SCEL was markedly upregulated in GBC and associated with advanced TNM stages and a poor prognosis. Furthermore, SCEL interacted with EGFR and stabilized EGFR expression that activates downstream PI3K and Akt pathway, leading to cell proliferation. In addition, SCEL induces tumor cell IL-8 production that stimulates the formation of neutrophil extracellular traps (NETs), accelerating thromboembolism. In xenografts, SCEL-expressing GBCs developed larger tumors and thrombosis compared with control cells. The present results indicate that SCEL promotes GBC cell proliferation and induces NET-associated thrombosis, thus serving as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Ruiyan Yuan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Tai Ren
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Bo Yang
- Department of General Surgery, First Affiliated Hospital of Wenzhou Medical University, Baixiang Road, Wenzhou, 325000, China
| | - Huijie Miao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Liguo Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yongsheng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chen Cai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yang Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yunping Hu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chengkai Jiang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qindie Xu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, 279 Zhouzhugong Road, Shanghai, 201318, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China. .,Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
9
|
Yang Y, Gao H, Zhen T, Tuo Y, Chen S, Liang J, Han A. Hemangioblastoma: clinicopathologic study of 42 cases with emphasis on TFE3 expression. Am J Transl Res 2020; 12:4498-4510. [PMID: 32913523 PMCID: PMC7476158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Hemangioblastomas (HBs) histologically overlap with TFE3 rearrangement-associated tumors, which present as alveolar architecture and clear or eosinophilic granular cytoplasm. However, whether TFE3 is expressed in HBs remains unexplored. Herein, we analyzed the clinicopathologic features of 42 HBs emphasizing studies of TFE3 expression. Of 42 cases, 38 were sporadic and 4 were regarded as a part of von Hippel-Lindau (VHL) syndrome according to clinical presentation. Nineteen patients were male and 23 were female. Patient age ranged from 17 to 70 years (median 43). Tumor size ranged from 0.4 to 4.8 cm (mean 2.2 cm). Follow-up ranged from 1 to 60 months and 6 patients developed recurrence. Immunohistochemistry staining showed that 36 (86%) of 42 HBs expressed TFE3 in nuclei of tumor cells, of which 21 were evaluated as high TFE3 expression levels. Increased TFE3 expression was significantly associated with older ages (P=0.018) and larger tumor size (P=0.001). Seventeen HBs with high TFE3 expression were negative for rearrangement and amplification of TFE3 by FISH analysis, 3 of which including 2 sporadic and 1 VHL-related HBs demonstrated trisomies or tetrasomies of X-chromosome in 7%~18% of tumor cells. All 3 cases occurred in female, presented with a larger tumor size and displayed a similar morphologic appearance with high cellularity and hyperchromatic nuclei. Our study first reports TFE3 expression and its clinicopathological relevance in HBs. We hypothesize that TFE3 might be involved in the pathogenesis of non-VHL-related HBs. Furthermore, HBs with strong TFE3 expression should be differentiated from brain-metastatic TFE3-rearranged tumors.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Huabin Gao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Tiantian Zhen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Ying Tuo
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Shaoyu Chen
- Guangzhou LBP Medical Technology Co., Ltd.Guangzhou 510530, P. R. China
| | - Jiangtao Liang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| |
Collapse
|
10
|
Luo A, Jung J, Longley M, Rosoff DB, Charlet K, Muench C, Lee J, Hodgkinson CA, Goldman D, Horvath S, Kaminsky ZA, Lohoff FW. Epigenetic aging is accelerated in alcohol use disorder and regulated by genetic variation in APOL2. Neuropsychopharmacology 2020; 45:327-336. [PMID: 31466081 PMCID: PMC6901591 DOI: 10.1038/s41386-019-0500-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
To investigate the potential role of alcohol use disorder (AUD) in aging processes, we employed Levine's epigenetic clock (DNAm PhenoAge) to estimate DNA methylation age in 331 individuals with AUD and 201 healthy controls (HC). We evaluated the effects of heavy, chronic alcohol consumption on epigenetic age acceleration (EAA) using clinical biomarkers, including liver function test enzymes (LFTs) and clinical measures. To characterize potential underlying genetic variation contributing to EAA in AUD, we performed genome-wide association studies (GWAS) on EAA, including pathway analyses. We followed up on relevant top findings with in silico expression quantitative trait loci (eQTL) analyses for biological function using the BRAINEAC database. There was a 2.22-year age acceleration in AUD compared to controls after adjusting for gender and blood cell composition (p = 1.85 × 10-5). This association remained significant after adjusting for race, body mass index, and smoking status (1.38 years, p = 0.02). Secondary analyses showed more pronounced EAA in individuals with more severe AUD-associated phenotypes, including elevated gamma-glutamyl transferase (GGT) and alanine aminotransferase (ALT), and higher number of heavy drinking days (all ps < 0.05). The genome-wide meta-analysis of EAA in AUD revealed a significant single nucleotide polymorphism (SNP), rs916264 (p = 5.43 × 10-8), in apolipoprotein L2 (APOL2) at the genome-wide level. The minor allele A of rs916264 was associated with EAA and with increased mRNA expression in hippocampus (p = 0.0015). Our data demonstrate EAA in AUD and suggest that disease severity further accelerates epigenetic aging. EAA was associated with genetic variation in APOL2, suggesting potential novel biological mechanisms for age acceleration in AUD.
Collapse
Affiliation(s)
- Audrey Luo
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Jeesun Jung
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Martha Longley
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Daniel B. Rosoff
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Katrin Charlet
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA ,0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charite – Universitaetsmedizin Berlin, Berlin, Germany
| | - Christine Muench
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Jisoo Lee
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Colin A. Hodgkinson
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - David Goldman
- 0000 0001 2297 5165grid.94365.3dLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| | - Steve Horvath
- 0000 0000 9632 6718grid.19006.3eDepartment of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA USA ,0000 0000 9632 6718grid.19006.3eDepartment of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA USA
| | - Zachary A. Kaminsky
- 0000 0001 2182 2255grid.28046.38The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON Canada
| | - Falk W. Lohoff
- 0000 0001 2297 5165grid.94365.3dSection on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
11
|
Klingler JH, Gläsker S, Bausch B, Urbach H, Krauss T, Jilg CA, Steiert C, Puzik A, Neumann-Haefelin E, Kotsis F, Agostini H, Neumann HPH, Beck J. Hemangioblastoma and von Hippel-Lindau disease: genetic background, spectrum of disease, and neurosurgical treatment. Childs Nerv Syst 2020; 36:2537-2552. [PMID: 32507909 PMCID: PMC7575510 DOI: 10.1007/s00381-020-04712-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hemangioblastomas are rare, histologically benign, highly vascularized tumors of the brain, the spinal cord, and the retina, occurring sporadically or associated with the autosomal dominant inherited von Hippel-Lindau (VHL) disease. Children or adults with VHL disease have one of > 300 known germline mutations of the VHL gene located on chromosome 3. They are prone to develop hemangioblastomas, extremely rarely starting at age 6, rarely at age 12-18, and, typically and almost all, as adults. There is a plethora of VHL-associated tumors and cysts, mainly in the kidney, pancreas, adrenals, reproductive organs, and central nervous system. Due to a lack of causal treatment, alleviation of symptoms and prevention of permanent neurological deficits as well as malignant transformation are the main task. Paucity of data and the nonlinear course of tumor progression make management of pediatric VHL patients with hemangioblastomas challenging. METHODS The Freiburg surveillance protocol was developed by combining data from the literature and our experience of examinations of > 300 VHL patients per year at our university VHL center. RESULTS Key recommendations are to start screening of patients at risk by funduscopy with dilated pupils for retinal tumors with admission to school and with MRI of the brain and spinal cord at age 14, then continue biannually until age 18, with emergency MRI in case of neurological symptoms. Indication for surgery remains personalized and should be approved by an experienced VHL board, but we regard neurological symptoms, rapid tumor growth, or critically large tumor/cyst sizes as the key indications to remove hemangioblastomas. Since repeated surgery on hemangioblastomas in VHL patients is not rare, modern neurosurgical techniques should encompass microsurgery, neuronavigation, intraoperative neuromonitoring, fluorescein dye-based intraoperative angiography, intraoperative ultrasound, and minimally invasive approaches, preceded in selected cases by endovascular embolization. Highly specialized neurosurgeons are able to achieve a very low risk of permanent morbidity for the removal of hemangioblastomas from the cerebellum and spinal cord. Small retinal tumors of the peripheral retina can be treated by laser coagulation, larger tumors by cryocoagulation or brachytherapy. CONCLUSION We consider management at experienced VHL centers mandatory and careful surveillance and monitoring of asymptomatic lesions are required to prevent unnecessary operations and minimize morbidity.
Collapse
Affiliation(s)
- Jan-Helge Klingler
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - Sven Gläsker
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, VUB University, Brussels, Belgium
| | - Birke Bausch
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Krauss
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cordula A Jilg
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Steiert
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Alexander Puzik
- Department of Pediatric Hematology and Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fruzsina Kotsis
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut P H Neumann
- Section for Preventive Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| |
Collapse
|
12
|
Rectal cancer sub-clones respond differentially to neoadjuvant therapy. Neoplasia 2019; 21:1051-1062. [PMID: 31521947 PMCID: PMC6745489 DOI: 10.1016/j.neo.2019.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022] Open
Abstract
Treatment of locally advanced rectal cancer includes chemotherapy, radiation, and surgery but patient responses to neoadjuvant treatment are variable. We have shown that rectal tumors are comprised of multiple genetically distinct sub-clones. Unique sub-clones within tumors may harbor mutations which contribute to inter-patient variation in response to neoadjuvant chemoradiotherapy (nCRT). Analysis of the influence of nCRT on the extent and nature of intra-tumoral genetic heterogeneity in rectal cancer may provide insights into mechanisms of resistance. Locally advanced rectal cancer patients underwent pre-treatment biopsies. At the time of surgery, tissue from the treated tumor was obtained and analyzed. Pre- and post-treatment specimens were subjected to whole exome and confirmatory deep sequencing for somatic mutations. Copy number variation was assessed using OncoScan SNP arrays. Genomic data were analyzed using PyClone to identify sub-clonal tumor population following nCRT. Alterations that persisted or were enriched in the post-treatment tumor specimen following nCRT were defined for each patient. Thirty-two samples were obtained from ten patients. PyClone identified 2 to 10 genetic sub-clones per tumor. Substantial changes in the proportions of individual sub-clones in pre- versus post-treatment tumor material were found in all patients. Resistant sub-clones recurrently contained mutations in TP53, APC, ABCA13, MUC16, and THSD4. Recurrent copy number variation was observed across multiple chromosome regions after nCRT. Pathway analysis including variant alleles and copy number changes associated with resistant sub-clones revealed significantly altered pathways, especially those linked to the APC and TP53 genes, which were the two most frequently mutated genes. Intra-tumoral heterogeneity is evident in pre-treatment rectal cancer. Following treatment, sub-clonal populations are selectively modified and enrichment of a subset of pre-treatment sub-clones is seen. Further studies are needed to define recurrent alterations at diagnosis that may contribute to resistance to nCRT.
Collapse
|
13
|
Guo X, Gao L, Hong X, Guo D, Di W, Wang X, Xu Z, Xing B. Whole-exome sequencing and immunohistochemistry findings in von Hippel-Lindau disease. Mol Genet Genomic Med 2019; 7:e880. [PMID: 31317677 PMCID: PMC6732316 DOI: 10.1002/mgg3.880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/07/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Background von Hippel–Lindau (VHL) disease has a hereditary, autosomal dominant pattern, and multiple tumors can develop in multiple organs of a single patient. However, the exact mechanisms of tumorigenesis are unclear, and further studies are needed to clarify whether the same signaling pathways are involved in different VHL‐related tumors. Methods Whole‐exome sequencing (WES) of tumor and paired peripheral blood samples were performed for a VHL disease pedigree. A bioinformatics analysis was conducted to identify candidate somatic single‐nucleotide variants (SNVs) present in all tumor tissues. Sanger sequencing was then used to validate the SNVs identified using WES. Immunohistochemistry was performed to analyze components of the mTOR pathway, which was abnormally activated in tumor tissues. Results Two hemangioblastomas and two renal cell carcinomas were sequenced. The bioinformatics analysis revealed a VHL somatic variant in all tumors; no other SNV was detected. Immunohistochemistry showed the abnormal expression of the phospho‐S6 ribosomal protein in the hemangioblastomas, but not in the renal clear cell carcinomas. Conclusion Except for a SNV in the VHL gene, no other somatic SNVs were detected using WES. The phospho‐S6 ribosomal protein in the mTOR pathway is a potential target in VHL‐related cerebellum hemangioblastomas.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiafei Hong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Dan Guo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Corelabs, Beijing, P.R. China.,Clinical Bio-bank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wenyu Di
- Department of Pathology, Xinxiang Medical University First Affiliated Hospital, Weihui, P.R. China
| | - Xiaoman Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhiqin Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
14
|
The loss of succinate dehydrogenase B expression is frequently identified in hemangioblastoma of the central nervous system. Sci Rep 2019; 9:5873. [PMID: 30971719 PMCID: PMC6458311 DOI: 10.1038/s41598-019-42338-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/27/2019] [Indexed: 12/23/2022] Open
Abstract
Succinate dehydrogenase (SDH) is a mitochondrial enzyme that plays an important role in both the Krebs cycle and the electron transport chain. SDH inactivation is associated with tumorigenesis in certain types of tumor. SDH consists of subunits A, B, C and D (SDHA, SDHB, SDHC, and SDHD, respectively). Immunohistochemistry for SDHB is a reliable method for detecting the inactivation of SDH by mutations in SDHA, SDHB, SDHC, SDHD and SDH complex assembly factor 2 (SDHAF2) genes with high sensitivity and specificity. SDHB immunohistochemistry has been used to examine the inactivation of SDH in various types of tumors. However, data on central nervous system (CNS) tumors are very limited. In the present study, we investigated the loss of SDHB immunoexpression in 90 cases of CNS tumors. Among the 90 cases of CNS tumors, only three cases of hemangioblastoma showed loss of SDHB immunoexpression. We further investigated SDHB immunoexpression in 35 cases of hemangioblastoma and found that 28 (80%) showed either negative or weak-diffuse pattern of SDHB immunoexpression, which suggests the inactivation of SDH. Our results suggest that SDH inactivation may represent an alternative pathway in the tumorigenesis of hemangioblastoma.
Collapse
|
15
|
A Homozygous Ancestral SVA-Insertion-Mediated Deletion in WDR66 Induces Multiple Morphological Abnormalities of the Sperm Flagellum and Male Infertility. Am J Hum Genet 2018; 103:400-412. [PMID: 30122540 DOI: 10.1016/j.ajhg.2018.07.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/18/2018] [Indexed: 01/04/2023] Open
Abstract
Multiple morphological abnormalities of the sperm flagellum (MMAF) is a severe form of male infertility defined by the presence of a mosaic of anomalies, including short, bent, curled, thick, or absent flagella, resulting from a severe disorganization of the axoneme and of the peri-axonemal structures. Mutations in DNAH1, CFAP43, and CFAP44, three genes encoding axoneme-related proteins, have been described to account for approximately 30% of the MMAF cases reported so far. Here, we searched for pathological copy-number variants in whole-exome sequencing data from a cohort of 78 MMAF-affected subjects to identify additional genes associated with MMAF. In 7 of 78 affected individuals, we identified a homozygous deletion that removes the two penultimate exons of WDR66 (also named CFAP251), a gene coding for an axonemal protein preferentially localized in the testis and described to localize to the calmodulin- and spoke-associated complex at the base of radial spoke 3. Sequence analysis of the breakpoint region revealed in all deleted subjects the presence of a single chimeric SVA (SINE-VNTR-Alu) at the breakpoint site, suggesting that the initial deletion event was potentially mediated by an SVA insertion-recombination mechanism. Study of Trypanosoma WDR66's ortholog (TbWDR66) highlighted high sequence and structural analogy with the human protein and confirmed axonemal localization of the protein. Reproduction of the human deletion in TbWDR66 impaired flagellar movement, thus confirming WDR66 as a gene associated with the MMAF phenotype and highlighting the importance of the WDR66 C-terminal region.
Collapse
|