1
|
Schindeler A, Ludwig K, Munns CF. Enzyme replacement therapy for hypophosphatasia-The current paradigm. Clin Endocrinol (Oxf) 2024; 101:593-601. [PMID: 39004952 DOI: 10.1111/cen.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 07/16/2024]
Abstract
Hypophosphatasia (HPP) is a rare, inherited, and systemic disorder characterized by impaired skeletal mineralization and low tissue nonspecific serum alkaline phosphatase (TNSALP) activity. It is caused by either autosomal recessive or dominant-negative mutations in the gene that encodes TNSALP. The phenotype of HPP is very broad including abnormal bone mineralization, disturbances of calcium and phosphate metabolism, pain, recurrent fracture, short stature, respiratory impairment, developmental delay, tooth loss, seizures, and premature death. Other than supportive care, there has been no disease-specific treatment available for those with HPP. Asfotase alfa is a fully humanized, recombinant enzyme replacement therapy for the management of HPP. It is available in several countries for the treatment of the more severe forms of HPP, namely perinatal and infantile HPP. This review will summarize the preclinical data on asfotase alfa and highlight the data from clinical trials and case reports. These data show the transformative nature of asfotase alfa when administered as part of an interdisciplinary treatment model.
Collapse
Affiliation(s)
- Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratory, The Children's Hospital at Westmead and Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Children's Hospital at Westmead Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Karissa Ludwig
- Child Health Research Centre and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Endocrinology, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Craig F Munns
- Child Health Research Centre and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Endocrinology, Queensland Children's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Tantibhaedhyangkul W, Tantrapornpong J, Yutchawit N, Theerapanon T, Intarak N, Thaweesapphithak S, Porntaveetus T, Shotelersuk V. Dental characteristics of patients with four different types of skeletal dysplasias. Clin Oral Investig 2023; 27:5827-5839. [PMID: 37548766 PMCID: PMC10560164 DOI: 10.1007/s00784-023-05194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Skeletal dysplasia (SD) comprises more than 450 separate disorders. We hypothesized that their dental features would be distinctive and investigated the tooth characteristics of four patients with different SDs. MATERIAL AND METHODS Four SD patients with molecularly confirmed diagnoses, Pt-1 acromicric dysplasia, Pt-2 hypophosphatasia and hypochondroplasia, Pt-3 cleidocranial dysplasia, and Pt-4 achondroplasia, were recruited. A tooth from each patient was evaluated for mineral density (micro-computerized tomography), surface roughness (surface profilometer), microhardness, mineral contents (energy-dispersive X-ray), and ultrastructure (scanning electron microscopy and histology), and compared with three tooth-type matched controls. RESULTS Pt-1 and Pt-3 had several unerupted teeth. Pt-2 had an intact-root-exfoliated tooth at 2 years old. The lingual surfaces of the patients' teeth were significantly smoother, while their buccal surfaces were rougher, than controls, except for Pt-1's buccal surface. The patients' teeth exhibited deep grooves around the enamel prisms and rough intertubular dentin. Pt-3 demonstrated a flat dentinoenamel junction and Pt-2 had an enlarged pulp, barely detectable cementum layer, and ill-defined cemento-dentinal junction. Reduced microhardnesses in enamel, dentin, and both layers were observed in Pt-3, Pt-4, and Pt-1, respectively. Pt-1 showed reduced Ca/P ratio in dentin, while both enamel and dentin of Pt-2 and Pt-3 showed reduced Ca/P ratio. CONCLUSION Each SD has distinctive dental characteristics with changes in surface roughness, ultrastructure, and mineral composition of dental hard tissues. CLINICAL RELEVANCE In this era of precision dentistry, identifying the specific potential dental problems for each patient with SD would help personalize dental management guidelines.
Collapse
Affiliation(s)
- Worasap Tantibhaedhyangkul
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenjira Tantrapornpong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttanun Yutchawit
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sermporn Thaweesapphithak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Nowwarote N, Osathanon T, Fournier BPJ, Theerapanon T, Yodsanga S, Kamolratanakul P, Porntaveetus T, Shotelersuk V. PTEN regulates proliferation and osteogenesis of dental pulp cells and adipogenesis of human adipose-derived stem cells. Oral Dis 2023; 29:735-746. [PMID: 34558757 DOI: 10.1111/odi.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the role of phosphatase and tensin homolog (PTEN) in dental pulp cells (hDPs) and adipose-derived mesenchymal stem cells (hADSCs). MATERIALS AND METHODS Genetic variant was identified with exome sequencing. The hDPs isolated from a patient with Cowden syndrome were investigated for their proliferation, osteogenesis, adipogenesis, and gene expression compared with controls. The normal hDPs and hADSCs were treated with the PTEN inhibitor, VO-OHpic trihydrate (VOT), to investigate the effect of PTEN inhibition. RESULTS A heterozygous nonsense PTEN variant, c.289C>T (p.Gln97*), was identified in the Cowden patient's blood and intraoral lipomas. The mutated hDPs showed significantly decreased proliferation, but significantly upregulated RUNX2 and OSX expression and mineralization, indicating enhanced osteogenic ability in mutated cells. The normal hDPs treated with VOT showed the decreases in proliferation, colony formation, osteogenic marker genes, alkaline phosphatase activity, and mineral deposition, suggesting that PTEN inhibition diminishes proliferation and osteogenic potential of hDPs. Regarding adipogenesis, the VOT-treated hADSCs showed a reduced number of cells containing lipid droplets, suggesting that PTEN inhibition might compromise adipogenic ability of hADSCs. CONCLUSIONS PTEN regulates proliferation, enhances osteogenesis of hDPs, and induces adipogenesis of hADSCs. The gain-of-function PTEN variant, p.Gln97*, enhances osteogenic ability of PTEN in hDPs.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Universite de Paris, Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Universite de Paris, Paris, France
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Yodsanga
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Paksinee Kamolratanakul
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
4
|
Caengprasath N, Buasong A, Ittiwut C, Khongphatthanayothin A, Porntaveetus T, Shotelersuk V. Severe coarctation of the aorta, developmental delay, and multiple dysmorphic features in a child with SMAD6 and SMARCA4 variants. Eur J Med Genet 2022; 65:104601. [PMID: 36049609 DOI: 10.1016/j.ejmg.2022.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023]
Abstract
Pathogenic variants in SMARCA4 cause Coffin-Siris syndrome (CSS) while those in SMAD6 lead to aortic valve disease and other dysmorphisms. We identified a 6-year-old Thai boy with features of CSS alongside unusual manifestations including, very severe coarctation of the aorta (CoA) requiring coarctectomy in the neonatal period and bilateral radioulnar synostoses. Trio exome sequencing revealed that the patient harbored two de novo variants, a missense c.2475G > T, p.(Trp825Cys) in SMARCA4 and a nonsense c.652C > T, p.(Gln218Ter) in SMAD6. Both of which have never been previously reported. The clinical presentations in our patient are a result of the combinational features of each genetic variant: the SMARCA4 p.(Trp825Cys) variant leads to facial features of Coffin Siris syndrome and Dandy-Walker malformation, while the SMAD6 p.(Gln218Ter) variant underlies radioulnar synostosis. Interestingly, the severity of CoA in the proband is beyond the phenotypic spectra of each genetic variant and may be a result of the synergistic effects of both variants. Here, we report a child with variants in SMARCA4 or SMAD6 with combined features of each plus a severe CoA, possibly due to an additive effect of each variant.
Collapse
Affiliation(s)
- Natarin Caengprasath
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Aayalida Buasong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Apichai Khongphatthanayothin
- Center of Excellence in Arrhythmia Research, Department of Medicine, Chulalongkorn University and Bangkok General Hospital, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
5
|
Intarak N, Theerapanon T, Porntaveetus T, Shotelersuk V. Patterns of molar agenesis associated with p.P20L and p.R77Q variants in PAX9. Eur J Oral Sci 2022; 130:e12855. [PMID: 35182440 DOI: 10.1111/eos.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022]
Abstract
Nonsyndromic tooth agenesis is associated with variants in several genes. There are numerous genotype-phenotype publications involving many patients and kindreds. Here, we identified six Thai individuals in two families with nonsyndromic tooth agenesis, performed exome sequencing, and conducted functional experiments. Family 1 had four affected members carrying the heterozygous PAX9 variant, c.59C>T (p.Pro20Leu). The p.Pro20Leu was previously reported in two families having four and three affected members. These seven cases and Proband-1 had agenesis of at least three third molars. Family 2 comprised two affected members with agenesis of all 12 molars. Both individuals were heterozygous for c.230G>A (p.Arg77Gln) in PAX9, which has not been reported previously. This variant is predicted to be damaging, evolutionarily conserved, and resides in the PAX9 linking peptide. The BMP4 RNA levels in Proband-1's leukocytes were not significantly different from those in the controls, whereas BMP4 levels observed in Proband-2 were significantly increased. Moreover, the p.Arg77Gln variant demonstrated nuclear localization similar to the wild-type but resulted in significantly impaired transactivation of BMP4, a PAX9 downstream gene. In conclusion, we demonstrate that the PAX9 p.Pro20Leu is highly associated with absent third molars, while the novel PAX9 p.Arg77Gln impairs BMP4 transactivation and is associated with total molar agenesis.
Collapse
Affiliation(s)
- Narin Intarak
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
6
|
Manaspon C, Boonsimma P, Phokaew C, Theerapanon T, Sriwattanapong K, Porntaveetus T, Shotelersuk V. Expanding the genotypic spectrum of PYCR2 and a common ancestry in Thai patients with hypomyelinating leukodystrophy 10. Am J Med Genet A 2021; 185:3068-3073. [PMID: 34037307 DOI: 10.1002/ajmg.a.62365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 11/10/2022]
Abstract
PYCR2 pathogenic variants lead to an autosomal recessive hypomyelinating leukodystrophy 10 (HLD10), characterized by global developmental delay, microcephaly, facial dysmorphism, movement disorder, and hypomyelination. This study identified the first two unrelated Thai patients with HLD10. Patient 1 harbored the novel compound heterozygous variants, c.257T>G (p.Val86Gly) and c.400G>A (p.Val134Met), whereas patient 2 possessed the homozygous variant, c.400G>A (p.Val134Met), in PYCR2. Haplotype analysis revealed that the two families' members shared a 2.3 Mb region covering the c.400G>A variant, indicating a common ancestry. The variant was estimated to age 1450 years ago. Since the c.400G>A was detected in three out of four mutant alleles and with a common ancestry, this variant might be common in Thai patients. We also reviewed the phenotype and genotype of all 35 previously reported PYCR2 patients and found that majorities of cases were homozygous with a consanguineous family history, except patient 1 and another reported case who were compound heterozygous. All patients had microcephaly and developmental delay. Hypotonia and peripheral spasticity were common. Hypomyelination or delayed myelination was a typical radiographic feature. Here, we report the first two Thai patients with HLD10 with the novel PYCR2 variants expanding the genotypic spectrum and suggest that the c.400G>A might be a common mutation in Thai patients.
Collapse
Affiliation(s)
- Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.,Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ponghatai Boonsimma
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kanokwan Sriwattanapong
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
7
|
Tang H, Zhang Q, Xiang J, Yin L, Wang J, Wang T. Whole Exome Sequencing Aids the Diagnosis of Fetal Skeletal Dysplasia. Front Genet 2021; 12:599863. [PMID: 33777089 PMCID: PMC7987927 DOI: 10.3389/fgene.2021.599863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/27/2021] [Indexed: 11/22/2022] Open
Abstract
Skeletal dysplasia is a complex group of bone and cartilage disorders with strong clinical and genetic heterogeneity. Several types have prenatal phenotypes, and it is difficult to make a molecular diagnosis rapidly. In this study, the genetic cause of 16 Chinese fetuses with skeletal dysplasia were analyzed, and 12 cases yielded positive results including one deletion in DMD gene detected by SNP-array and 14 variants in other 6 genes detected by whole exome sequencing (WES). In addition, somatic mosaicism was observed. Our study expanded the pathogenic variant spectrum and elucidated the utilization of WES in improving the diagnosis yield of skeletal dysplasia.
Collapse
Affiliation(s)
- Hui Tang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Qin Zhang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Jingjing Xiang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Linliang Yin
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| | - Jing Wang
- Suzhou Guangji Hospital, Suzhou, China
| | - Ting Wang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
8
|
Phokaew C, Sittiwangkul R, Suphapeetiporn K, Shotelersuk V. Double heterozygous variants in FBN1 and FBN2 in a Thai woman with Marfan and Beals syndromes. Eur J Med Genet 2020; 63:103982. [PMID: 32534992 DOI: 10.1016/j.ejmg.2020.103982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/21/2020] [Accepted: 06/07/2020] [Indexed: 01/02/2023]
Abstract
A phenotype of an individual is resulted from an interaction among variants in several genes. Advanced molecular technologies allow us to identify more patients with mutations in more than one genes. Here, we studied a Thai woman with combined clinical features of Marfan (MFS) and Beals (BS) syndromes including frontal bossing, enophthalmos, myopia, the crumpled appearance to the top of the pinnae, midface hypoplasia, high arched palate, dermal stretch marks, aortic enlargement, mitral valve prolapse and regurgitation, aortic root dilatation, and progressive scoliosis. The aortic root enlargement was progressive to a diameter of 7.2 cm requiring an aortic root replacement at the age of 8 years. At her last visit when she was 19 years old, she had moderate aortic regurgitation. Exome sequencing revealed that she carried the c.3159C > G (p.Cys1053Trp) in exon 26 of FBN1 and c.2638G > A (p. Gly880Ser) in exon 20 of FBN2. The variant in FBN1 was de novo, while that in FBN2 was inherited from her unaffected mother. Both genes encode for fibrillins, which are essential for elastic fibers and can form the heterotypic microfibrils. Two defective fibrillins may synergistically worsen cardiovascular manifestations seen in our patient. In this study, we identified the fourth patient with both MFS and BS, carrying mutations in both FBN1 and FBN2.
Collapse
Affiliation(s)
- Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Rekwan Sittiwangkul
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Hemwong N, Phokaew C, Srichomthong C, Tongkobpetch S, Srilanchakon K, Supornsilchai V, Suphapeetiporn K, Porntaveetus T, Shotelersuk V. A patient with combined pituitary hormone deficiency and osteogenesis imperfecta associated with mutations in LHX4 and COL1A2. J Adv Res 2019; 21:121-127. [PMID: 32071780 PMCID: PMC7015471 DOI: 10.1016/j.jare.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
The mutations in two different genes should be sought in the patients with complex phenotypes. The c.1531G>T in COL1A2 leading to OI and c.364C>T (p.R122W) in LHX4 to CPHD were found in a Thai boy. The incomplete penetrance and loss-of-function are the features of p.R122W mutation in LHX4. The mutation spectra of COL1A2 and LHX4 and pathomechanism of LHX4 are expanded.
Genetic disorders have been shown to co-occur in individual patient. A Thai boy with features of osteogenesis imperfecta (OI) and combined pituitary hormone deficiency (CPHD) was identified. The causative mutations were investigated by whole exome and Sanger sequencing. Pathogenicity and pathomechanism of the variants were studied by luciferase assay. The proband was found to harbor a novel de novo heterozygous missense mutation, c.1531G > T (p.G511C), in COL1A2 leading to OI and a heterozygous missense variant, c.364C > T (p.R122W), in LHX4. The LHX4 p.R122W has never been reported to cause CPHD. The variant was predicted to be deleterious and found in the highly conserved LIM2 domain of LHX4. The luciferase assays revealed that the p.R122W was unable to activate POU1F1, GH1, and TSHB promoters, validating its pathogenic effect in CPHD. Moreover, the variant did not alter the function of wild-type LHX4, indicating its hypomorphic pathomechanism. In conclusion, the novel de novo heterozygous p.G511C mutation in COL1A2 and the heterozygous pathogenic p.R122W mutation in LHX4 were demonstrated in a patient with OI and CPHD. This study proposes that the mutations in two different genes should be sought in the patients with clinical features unable to be explained by a mutation in one gene.
Collapse
Affiliation(s)
- Nalinee Hemwong
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Siraprapa Tongkobpetch
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Khomsak Srilanchakon
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vichit Supornsilchai
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanya Suphapeetiporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Shotelersuk V, Tongsima S, Pithukpakorn M, Eu‐ahsunthornwattana J, Mahasirimongkol S. Precision medicine in Thailand. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:245-253. [DOI: 10.1002/ajmg.c.31694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of MedicineChulalongkorn University Bangkok Thailand
- Excellence Center for Medical GeneticsKing Chulalongkorn Memorial Hospital, the Thai Red Cross Society Bangkok Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development Agency Pathum Thani Thailand
| | - Manop Pithukpakorn
- Division of Medical Genetics, Department of MedicineFaculty of Medicine Siriraj Hospital, Mahidol University Bangkok Thailand
- Siriraj Center of Research Excellence in Precision MedicineFaculty of Medicine Siriraj Hospital, Mahidol University Bangkok Thailand
| | - Jakris Eu‐ahsunthornwattana
- Department of Community MedicineFaculty of Medicine Ramathibodi Hospital, Mahidol University Bangkok Thailand
- Division of Medical Genetics and Molecular Medicine, Department of Internal Medicine, Faculty of Medicine Ramathibodi HospitalMahidol University Bangkok Thailand
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical SciencesMinistry of Public Health Nonthaburi Thailand
| |
Collapse
|
11
|
Nowwarote N, Theerapanon T, Osathanon T, Pavasant P, Porntaveetus T, Shotelersuk V. Amelogenesis imperfecta: A novel FAM83H mutation and characteristics of periodontal ligament cells. Oral Dis 2018; 24:1522-1531. [PMID: 29949226 DOI: 10.1111/odi.12926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To delineate orodental features, dental mineral density, genetic aetiology and cellular characteristics associated with amelogenesis imperfecta (AI). MATERIALS AND METHODS Three affected patients in a family were recruited. Whole-exome sequencing was used to identify mutations confirmed by Sanger sequencing. The proband's teeth were subjected for mineral density analysis by microcomputerised tomography and characterisation of periodontal ligament cells (PDLCs). RESULTS The patients presented yellow-brown, pitted and irregular enamel. A novel nonsense mutation, c.1261G>T, p.E421*, in exon 5 of the FAM83H was identified. The mineral density of the enamel was significantly decreased in the proband. The patient's PDLCs (FAM83H cells) exhibited reduced ability of cell proliferation and colony-forming unit compared with controls. The formation of stress fibres was remarkably present. Upon cultured in osteogenic induction medium, FAM83H cells, at day 7 compared to day 3, had a significant reduction of BSP, COL1 and OCN mRNA expression and no significant change in RUNX2. The upregulation of ALP mRNA levels and mineral deposition were comparable between FAM83H and control cells. CONCLUSIONS We identified the novel mutation in FAM83H associated with autosomal dominant hypocalcified AI. The FAM83H cells showed reduced cell proliferation and expression of osteogenic markers, suggesting altered PDLCs in FAM83H-associated AI.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Excellence Center in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Excellence Center in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
12
|
Smith HS, Swint JM, Lalani SR, Yamal JM, de Oliveira Otto MC, Castellanos S, Taylor A, Lee BH, Russell HV. Clinical Application of Genome and Exome Sequencing as a Diagnostic Tool for Pediatric Patients: a Scoping Review of the Literature. Genet Med 2018; 21:3-16. [PMID: 29760485 DOI: 10.1038/s41436-018-0024-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Availability of clinical genomic sequencing (CGS) has generated questions about the value of genome and exome sequencing as a diagnostic tool. Analysis of reported CGS application can inform uptake and direct further research. This scoping literature review aims to synthesize evidence on the clinical and economic impact of CGS. METHODS PubMed, Embase, and Cochrane were searched for peer-reviewed articles published between 2009 and 2017 on diagnostic CGS for infant and pediatric patients. Articles were classified according to sample size and whether economic evaluation was a primary research objective. Data on patient characteristics, clinical setting, and outcomes were extracted and narratively synthesized. RESULTS Of 171 included articles, 131 were case reports, 40 were aggregate analyses, and 4 had a primary economic evaluation aim. Diagnostic yield was the only consistently reported outcome. Median diagnostic yield in aggregate analyses was 33.2% but varied by broad clinical categories and test type. CONCLUSION Reported CGS use has rapidly increased and spans diverse clinical settings and patient phenotypes. Economic evaluations support the cost-saving potential of diagnostic CGS. Multidisciplinary implementation research, including more robust outcome measurement and economic evaluation, is needed to demonstrate clinical utility and cost-effectiveness of CGS.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Baylor College of Medicine, The University of Texas School of Public Health, Houston, Texas, USA
| | - J Michael Swint
- The University of Texas School of Public Health, The Center for Clinical Research and Evidence-Based Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Seema R Lalani
- Baylor College of Medicine, Baylor Genetics Laboratory, Houston, Texas, USA
| | - Jose-Miguel Yamal
- The University of Texas School of Public Health, Houston, Texas, USA
| | | | | | - Amy Taylor
- Texas Medical Center Library, Houston, Texas, USA
| | | | - Heidi V Russell
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Porntaveetus T, Nowwarote N, Osathanon T, Theerapanon T, Pavasant P, Boonprakong L, Sanon K, Srisawasdi S, Suphapeetiporn K, Shotelersuk V. Compromised alveolar bone cells in a patient with dentinogenesis imperfecta caused by DSPP mutation. Clin Oral Investig 2018; 23:303-313. [DOI: 10.1007/s00784-018-2437-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
|