1
|
Lim Y. Transcription factors in microcephaly. Front Neurosci 2023; 17:1302033. [PMID: 38094004 PMCID: PMC10716367 DOI: 10.3389/fnins.2023.1302033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 02/01/2024] Open
Abstract
Higher cognition in humans, compared to other primates, is often attributed to an increased brain size, especially forebrain cortical surface area. Brain size is determined through highly orchestrated developmental processes, including neural stem cell proliferation, differentiation, migration, lamination, arborization, and apoptosis. Disruption in these processes often results in either a small (microcephaly) or large (megalencephaly) brain. One of the key mechanisms controlling these developmental processes is the spatial and temporal transcriptional regulation of critical genes. In humans, microcephaly is defined as a condition with a significantly smaller head circumference compared to the average head size of a given age and sex group. A growing number of genes are identified as associated with microcephaly, and among them are those involved in transcriptional regulation. In this review, a subset of genes encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead box-, high mobility group box-, and zinc finger domain-containing transcription factors), whose functions are important for cortical development and implicated in microcephaly, are discussed.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Science Education, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
2
|
Okoye O, Capasso J, Kopinsky SM, Amlie-Wolf L, Levin AV, Schneider A. SOX2 pathogenic variants with normal eyes: Expanding the phenotypic spectrum. Am J Med Genet A 2023; 191:2198-2203. [PMID: 37163579 DOI: 10.1002/ajmg.a.63239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
SOX2 pathogenic variants, though rare, constitute the most commonly known genetic cause of clinical anophthalmia and microphthalmia. However, patients without major ocular malformation, but with multi-system developmental disorders, have been reported, suggesting that the range of clinical phenotypes is broader than previously appreciated. We detail two patients with bilateral structurally normal eyes along with 11 other previously published patients. Our findings suggest that there is no obvious phenotypic or genotypic pattern that may help set apart patients with normal eyes. Our patients provide further evidence for broadening the phenotypic spectrum of SOX2 mutations and re-appraising the designation of SOX2 disorder as an anophthalmia/microphthalmia syndrome. We emphasize the importance of considering SOX2 pathogenic variants in the differential diagnoses of individuals with normal eyes, who may have varying combinations of features such as developmental delay, urogenital abnormalities, gastro-intestinal anomalies, pituitary dysfunction, midline structural anomalies, and complex movement disorders, seizures or other neurological issues.
Collapse
Affiliation(s)
- Onochie Okoye
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, New York, New York, USA
- Department of Ophthalmology, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Jenina Capasso
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, New York, New York, USA
- Pediatric Genetics, Golisano Children's Hospital, University of Rochester, Rochester, New York, USA
| | | | | | - Alex V Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, University of Rochester, New York, New York, USA
- Pediatric Genetics, Golisano Children's Hospital, University of Rochester, Rochester, New York, USA
| | - Adele Schneider
- Department of Pediatrics, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Pânzaru MC, Popa S, Lupu A, Gavrilovici C, Lupu VV, Gorduza EV. Genetic heterogeneity in corpus callosum agenesis. Front Genet 2022; 13:958570. [PMID: 36246626 PMCID: PMC9562966 DOI: 10.3389/fgene.2022.958570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum is the largest white matter structure connecting the two cerebral hemispheres. Agenesis of the corpus callosum (ACC), complete or partial, is one of the most common cerebral malformations in humans with a reported incidence ranging between 1.8 per 10,000 livebirths to 230–600 per 10,000 in children and its presence is associated with neurodevelopmental disability. ACC may occur as an isolated anomaly or as a component of a complex disorder, caused by genetic changes, teratogenic exposures or vascular factors. Genetic causes are complex and include complete or partial chromosomal anomalies, autosomal dominant, autosomal recessive or X-linked monogenic disorders, which can be either de novo or inherited. The extreme genetic heterogeneity, illustrated by the large number of syndromes associated with ACC, highlight the underlying complexity of corpus callosum development. ACC is associated with a wide spectrum of clinical manifestations ranging from asymptomatic to neonatal death. The most common features are epilepsy, motor impairment and intellectual disability. The understanding of the genetic heterogeneity of ACC may be essential for the diagnosis, developing early intervention strategies, and informed family planning. This review summarizes our current understanding of the genetic heterogeneity in ACC and discusses latest discoveries.
Collapse
Affiliation(s)
- Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Gavrilovici
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
4
|
Mitchell CW, Czajewski I, van Aalten DM. Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. J Biol Chem 2022; 298:102276. [PMID: 35863433 PMCID: PMC9428853 DOI: 10.1016/j.jbc.2022.102276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic posttranslational modification that is catalyzed by the enzyme O-GlcNAc transferase (OGT) and is essential for neurodevelopment and postnatal neuronal function. Missense mutations in OGT segregate with a novel X-linked intellectual disability syndrome, the OGT congenital disorder of glycosylation (OGT-CDG). One hypothesis for the etiology of OGT-CDG is that loss of OGT activity leads to hypo-O-GlcNAcylation of as yet unidentified, specific neuronal proteins, affecting essential embryonic, and postnatal neurodevelopmental processes; however, the identity of these O-GlcNAcylated proteins is not known. Here, we used bioinformatic techniques to integrate sequence conservation, structural data, clinical data, and the available literature to identify 22 candidate proteins that convey OGT-CDG. We found using gene ontology and PANTHER database data that these candidate proteins are involved in diverse processes including Ras/MAPK signaling, translational repression, cytoskeletal dynamics, and chromatin remodeling. We also identify pathogenic missense variants at O-GlcNAcylation sites that segregate with intellectual disability. This work establishes a preliminary platform for the mechanistic dissection of the links between protein O-GlcNAcylation and neurodevelopment in OGT-CDG.
Collapse
Affiliation(s)
- Conor W. Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacy Czajewski
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daan M.F. van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom,For correspondence: Daan M. F. van Aalten
| |
Collapse
|
5
|
Amlie-Wolf L, Bardakjian T, Kopinsky SM, Reis LM, Semina EV, Schneider A. Review of 37 patients with SOX2 pathogenic variants collected by the Anophthalmia/Microphthalmia Clinical Registry and DNA research study. Am J Med Genet A 2022; 188:187-198. [PMID: 34562068 PMCID: PMC9169870 DOI: 10.1002/ajmg.a.62518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 01/03/2023]
Abstract
SOX2 variants and deletions are a common cause of anophthalmia and microphthalmia (A/M). This article presents data from a cohort of patients with SOX2 variants, some of whom have been followed for 20+ years. Medical records from patients enrolled in the A/M Research Registry and carrying SOX2 variants were reviewed. Thirty-seven patients were identified, ranging in age from infant to 30 years old. Eye anomalies were bilateral in 30 patients (81.1%), unilateral in 5 (13.5%), and absent in 2 (5.4%). Intellectual disability was present in all with data available and ranged from mild to profound. Seizures were noted in 18 of 27 (66.6%) patients, usually with abnormal brain MRIs (10/15, 66.7%). Growth issues were reported in 14 of 21 patients (66.7%) and 14 of 19 (73.7%) had gonadotropin deficiency. Genitourinary anomalies were seen in 15 of 19 (78.9%) male patients and 5 of 15 (33.3%) female patients. Patients with SOX2 nucleotide variants, whole gene deletions or translocations are typically affected with bilateral or unilateral microphthalmia and anophthalmia. Other associated features include intellectual disability, seizures, brain anomalies, growth hormone deficiency, gonadotropin deficiency, and genitourinary anomalies. Recommendations for newly diagnosed patients with SOX2 variants include eye exams, MRI of the brain and orbits, endocrine and neurology examinations. Since the clinical spectrum associated with SOX2 alleles has expanded beyond the originally reported phenotypes, we propose a broader term, SOX2-associated disorder, for this condition.
Collapse
Affiliation(s)
- Louise Amlie-Wolf
- Einstein Medical Center Philadelphia, West Philadelphia, Pennsylvania, USA
- Nemours Children’s Hospital Delaware, Wilmington, DE, USA
| | - Tanya Bardakjian
- Einstein Medical Center Philadelphia, West Philadelphia, Pennsylvania, USA
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Children’s Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarina M. Kopinsky
- Einstein Medical Center Philadelphia, West Philadelphia, Pennsylvania, USA
| | - Linda M. Reis
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Children’s Wisconsin, Milwaukee, Wisconsin, USA
| | - Elena V. Semina
- Einstein Medical Center Philadelphia, West Philadelphia, Pennsylvania, USA
- Department of Ophthalmology and Visual Sciences, Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adele Schneider
- Department of Neurology, Hospital of University of Pennsylvania, 330 South Ninth Street, Philadelphia, PA, USA
- Department of Pediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, 840 Walnut Street, Philadelphia, PA, USA
| |
Collapse
|
6
|
Pilz RA, Korenke GC, Steeb R, Strom TM, Felbor U, Rath M. Exome sequencing identifies a recurrent SOX2 deletion in a patient with gait ataxia and dystonia lacking major ocular malformations. J Neurol Sci 2019; 401:34-36. [DOI: 10.1016/j.jns.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 10/27/2022]
|
7
|
Gergics P. Pituitary Transcription Factor Mutations Leading to Hypopituitarism. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:263-298. [PMID: 31588536 DOI: 10.1007/978-3-030-25905-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Congenital pituitary hormone deficiency is a disabling condition. It is part of a spectrum of disorders including craniofacial midline developmental defects ranging from holoprosencephaly through septo-optic dysplasia to combined and isolated pituitary hormone deficiency. The first genes discovered in the human disease were based on mouse models of dwarfism due to mutations in transcription factor genes. High-throughput DNA sequencing technologies enabled clinicians and researchers to find novel genetic causes of hypopituitarism for the more than three quarters of patients without a known genetic diagnosis to date. Transcription factor (TF) genes are at the forefront of the functional analysis of novel variants of unknown significance due to the relative ease in in vitro testing in a research lab. Genetic testing in hypopituitarism is of high importance to the individual and their family to predict phenotype composition, disease progression and to avoid life-threatening complications such as secondary adrenal insufficiency.This chapter aims to highlight our current understanding about (1) the contribution of TF genes to pituitary development (2) the diversity of inheritance and phenotype features in combined and select isolated pituitary hormone deficiency and (3) provide an initial assessment on how to approach variants of unknown significance in human hypopituitarism. Our better understanding on how transcription factor gene variants lead to hypopituitarism is a meaningful step to plan advanced therapies to specific genetic changes in the future.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|