1
|
Manav Yiğit Z, Dikbaş OS, Erkan E, Vural GŞ, Bozkurt G. Intellectual disability and retinitis pigmentosa due to a homozygous null SCAPER variant: a clinical and genetic insight with review of the literature. Ophthalmic Genet 2025:1-5. [PMID: 40159802 DOI: 10.1080/13816810.2025.2485222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Variations in the SCAPER gene are associated with Intellectual Developmental Disorder and Retinitis Pigmentosa (IDDRP), characterized by visual and neurological symptoms. Despite limited data, SCAPER plays a critical role in cell cycle regulation and ciliary function, which may explain its diverse phenotypic effects. This study aims to report a homozygous NM_020843.4: c.2605 A>T; p.(Lys869*) nonsense variant in SCAPER gene, expanding the phenotypic spectrum of IDDRP and contributing to its clinical and genetic understanding. METHODS Genetic testing and multidisciplinary evaluations were performed on an 11-year-old girl with intellectual disability, retinitis pigmentosa, and dysmorphic features. Clinical exome sequencing identified a homozygous null SCAPER variant, confirmed by Sanger sequencing. RESULTS Clinical findings revealed bilateral epiretinal membranes, thinning of the ellipsoid zone, and hyperfluorescent rings in fundus autofluorescence imaging. Neurological evaluation showed intellectual disability, ADHD, and corpus callosum abnormalities. Skeletal anomalies, including short stature and genu valgum, were also noted. The variant was classified as likely pathogenic based on ACMG guidelines. DISCUSSION This report describes the first case of a homozygous c.2605 A>T variant in SCAPER, highlighting its role in ciliary and cell cycle dynamics. These findings contribute to a better understanding of SCAPER-related phenotypes and emphasize the importance of genetic testing in similar cases.
Collapse
Affiliation(s)
- Zehra Manav Yiğit
- Medical Genetics Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Osman Semih Dikbaş
- Medical Genetics Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Erol Erkan
- Ophthalmology Department, Aydın Adnan Menderes University, Aydın, Turkey
| | | | - Gökay Bozkurt
- Medical Genetics Department, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
3
|
Sharkia R, Zalan A, Kessel A, Al-Shareef W, Zahalka H, Hengel H, Schöls L, Azem A, Mahajnah M. SCAPER-Related Autosomal Recessive Retinitis Pigmentosa with Intellectual Disability: Confirming and Extending the Phenotypic Spectrum and Bioinformatics Analyses. Genes (Basel) 2024; 15:791. [PMID: 38927727 PMCID: PMC11203295 DOI: 10.3390/genes15060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations in the gene SCAPER (S phase Cyclin A-Associated Protein residing in the Endoplasmic Reticulum) have recently been associated with retinitis pigmentosa (RP) and intellectual disability (ID). In 2011, a possible involvement of SCAPER in human diseases was discovered for the first time due to the identification of a homozygous mutation causing ID in an Iranian family. Later, five studies were published in 2019 that described patients with autosomal recessive syndromic retinitis pigmentosa (arRP) accompanied by ID and attention-deficit/hyperactivity disorder (ADHD). This present study describes three patients from an Arab consanguineous family in Israel with similar clinical features of the SCAPER syndrome. In addition, new manifestations of ocular symptoms, nystagmus, glaucoma, and elevator palsy, were observed. Genetic testing of the patients and both parents via whole-exome sequencing revealed the homozygous mutation c.2023-2A>G in SCAPER. Phenotypic and genotypic descriptions for all available cases described in the literature including our current three cases (37 cases) were carried out, in addition to a bioinformatics analysis for all the genetic variants that was undertaken. Our study confirms and extends the clinical manifestations of SCAPER-related disorders.
Collapse
Affiliation(s)
- Rajech Sharkia
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qara 3007500, Israel; (A.Z.); (W.A.-S.)
- Unit of Natural Sciences, Beit-Berl Academic College, Beit-Berl 4490500, Israel
| | - Abdelnaser Zalan
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qara 3007500, Israel; (A.Z.); (W.A.-S.)
- Baqa College, Al-Qasmi Street, 64, Baqa Al-Gharbia 3010000, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (A.A.)
| | - Wasif Al-Shareef
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qara 3007500, Israel; (A.Z.); (W.A.-S.)
| | - Hazar Zahalka
- Child Development and Pediatric Neurology Service, Meuhedet—Northern Region, Hadera 38100, Israel;
| | - Holger Hengel
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (H.H.); (L.S.)
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (H.H.); (L.S.)
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (A.A.)
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel;
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera 38100, Israel
| |
Collapse
|
4
|
Rajderkar SS, Paraiso K, Amaral ML, Kosicki M, Cook LE, Darbellay F, Spurrell CH, Osterwalder M, Zhu Y, Wu H, Afzal SY, Blow MJ, Kelman G, Barozzi I, Fukuda-Yuzawa Y, Akiyama JA, Afzal V, Tran S, Plajzer-Frick I, Novak CS, Kato M, Hunter RD, von Maydell K, Wang A, Lin L, Preissl S, Lisgo S, Ren B, Dickel DE, Pennacchio LA, Visel A. Dynamic enhancer landscapes in human craniofacial development. Nat Commun 2024; 15:2030. [PMID: 38448444 PMCID: PMC10917818 DOI: 10.1038/s41467-024-46396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The genetic basis of human facial variation and craniofacial birth defects remains poorly understood. Distant-acting transcriptional enhancers control the fine-tuned spatiotemporal expression of genes during critical stages of craniofacial development. However, a lack of accurate maps of the genomic locations and cell type-resolved activities of craniofacial enhancers prevents their systematic exploration in human genetics studies. Here, we combine histone modification, chromatin accessibility, and gene expression profiling of human craniofacial development with single-cell analyses of the developing mouse face to define the regulatory landscape of facial development at tissue- and single cell-resolution. We provide temporal activity profiles for 14,000 human developmental craniofacial enhancers. We find that 56% of human craniofacial enhancers share chromatin accessibility in the mouse and we provide cell population- and embryonic stage-resolved predictions of their in vivo activity. Taken together, our data provide an expansive resource for genetic and developmental studies of human craniofacial development.
Collapse
Affiliation(s)
- Sudha Sunil Rajderkar
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Kitt Paraiso
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Maria Luisa Amaral
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Fabrice Darbellay
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Marco Osterwalder
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, 3010, Switzerland
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Han Wu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Sarah Yasmeen Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Lucile Packard Children's Hospital, Stanford University, Stanford, CA, 94304, USA
| | - Matthew J Blow
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Guy Kelman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Jerusalem Center for Personalized Computational Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iros Barozzi
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a 1090, Vienna, Austria
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- University Research Management Center, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Jennifer A Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Veena Afzal
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- UC San Francisco, Division of Experimental Medicine, 1001 Potrero Ave, San Francisco, CA, 94110, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE1 3BZ, UK
| | - Bing Ren
- Institute of Genome Medicine, Moores Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Diane E Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Octant Inc., Emeryville, CA, 94608, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- School of Natural Sciences, University of California, Merced, CA, USA.
| |
Collapse
|
6
|
Yao S, Zhou X, Gu M, Zhang C, Bartsch O, Vona B, Fan L, Ma L, Pan Y. FGFR1 variants contributed to families with tooth agenesis. Hum Genomics 2023; 17:93. [PMID: 37833774 PMCID: PMC10576343 DOI: 10.1186/s40246-023-00539-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Tooth agenesis is a common dental anomaly that can substantially affect both the ability to chew and the esthetic appearance of patients. This study aims to identify possible genetic factors that underlie various forms of tooth agenesis and to investigate the possible molecular mechanisms through which human dental pulp stem cells may play a role in this condition. RESULTS Using whole-exome sequencing of a Han Chinese family with non-syndromic tooth agenesis, a rare mutation in FGFR1 (NM_001174063.2: c.103G > A, p.Gly35Arg) was identified as causative and confirmed by Sanger sequencing. Via GeneMatcher, another family with a known variant (NM_001174063.2: c.1859G > A, p.Arg620Gln) was identified and diagnosed with tooth agenesis and a rare genetic disorder with considerable intrafamilial variability. Fgfr1 is enriched in the ectoderm during early embryonic development of mice and showed sustained low expression during normal embryonic development of Xenopus laevis frogs. Functional studies of the highly conserved missense variant c.103G > A showed deleterious effects. FGFR1 (c.103G > A) was overexpressed compared to wildtype and promoted proliferation while inhibiting apoptosis in HEK293 and human dental pulp stem cells. Moreover, the c.103G > A variant was found to suppress the epithelial-mesenchymal transition. The variant could downregulate ID4 expression and deactivate the TGF-beta signaling pathway by promoting the expression of SMAD6 and SMAD7. CONCLUSION Our research broadens the mutation spectrum associated with tooth agenesis and enhances understanding of the underlying disease mechanisms of this condition.
Collapse
Affiliation(s)
- Siyue Yao
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, 215000, China
| | - Xi Zhou
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Min Gu
- Department of Stomatology, Affiliated Third Hospital of Soochow University, The First People's Hospital of Changzhou City, Changzhou City, 213003, Jiangsu Province, China
| | - Chengcheng Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Liwen Fan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China.
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Diel H, Ding C, Grehn F, Chronopoulos P, Bartsch O, Hoffmann EM. First observation of secondary childhood glaucoma in Coffin-Siris syndrome: a case report and literature review. BMC Ophthalmol 2021; 21:28. [PMID: 33430815 PMCID: PMC7802219 DOI: 10.1186/s12886-020-01788-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Severe congenital ophthalmological malformations and glaucoma might be an important occasional feature in patients with Coffin-Siris syndrome (CSS), especially Coffin-Siris syndrome 9 (CSS9, OMIM #615866) caused by SOX11 mutation. Recently, primary (open-angle) glaucoma was described in two children with the most common form of Coffin-Siris syndrome, CSS1 (OMIM #135900) by ARID1B (AT-rich interaction domain-containing protein 1B) gene mutation. In this article, we present the first report of glaucoma with Coffin-Siris syndrome 9 as well as the first report of secondary glaucoma with any form of Coffin-Siris syndrome. These findings indicate that secondary glaucoma is an occasional finding in patients with Coffin-Siris syndrome. CASE PRESENTATION A child with secondary childhood glaucoma and additional ocular manifestations was evaluated and treated at the childhood glaucoma centre in Mainz, Germany. Examination under general anaesthesia revealed ocular anterior segment dysgenesis (ASD) (Peters type iridocorneal dysgenesis) in combination with congenital limbal stem cell deficiency (LSCD), aniridia, and cataract. The patient also had multiple other congenital anomalies and severe developmental delay. To explain his combination of anomalies, molecular genetic analysis from peripheral blood was performed in late 2018 and early 2019. Following normal findings with a panel diagnostic of 18 genes associated with congenital glaucoma, whole exome sequencing was performed and revealed a novel likely pathogenic heterozygous variant c.251G>T, p.(Gly84Val) in the SOX11 gene (SRY-related HMG-box gene 11). The variant had occurred de novo. Thus, the multiple congenital anomalies and developmental delay of the patient represented Coffin-Siris syndrome 9 (CSS9, OMIM #615866). CONCLUSIONS When eye diseases occur in combination with other systemic features, genetic analysis can be seminal. Results indicate that glaucoma is an occasional feature of patients with Coffin-Siris syndrome. As early treatment may improve the visual outcome of patients with glaucoma, we suggest that patients with Coffin-Siris syndrome should receive specific ophthalmological screening.
Collapse
Affiliation(s)
- Heidi Diel
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D – 55131 Mainz, Germany
| | - Can Ding
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz Grehn
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D – 55131 Mainz, Germany
| | - Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D – 55131 Mainz, Germany
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Esther M. Hoffmann
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D – 55131 Mainz, Germany
| |
Collapse
|