1
|
Liu Z, Qin Q, Zhang C, Xu X, Dai D, Lan M, Wang Y, Zhang J, Zhao D, Kong D, Qin T, Wu D, Gong X, Zhou X, Suhe A, Wang Z, Liu Z. Effects of nonsynonymous single nucleotide polymorphisms of the KIAA1217, SNTA1 and LTBP1 genes on the growth traits of Ujumqin sheep. Front Vet Sci 2024; 11:1382897. [PMID: 38756519 PMCID: PMC11097667 DOI: 10.3389/fvets.2024.1382897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Sheep body size can directly reflect the growth rates and fattening rates of sheep and is also an important index for measuring the growth performance of meat sheep. In this study, high-resolution resequencing data from four sheep breeds (Dorper sheep, Suffolk sheep, Ouessant sheep, and Shetland sheep) were analyzed. The nonsynonymous single nucleotide polymorphisms of three candidate genes (KIAA1217, SNTA1, and LTBP1) were also genotyped in 642 healthy Ujumqin sheep using MALDI-TOFMS and the genotyping results were associated with growth traits. The results showed that different genotypes of the KIAA1217 g.24429511T>C locus had significant effects on the chest circumferences of Ujumqin sheep. The SNTA1 g.62222626C>A locus had different effects on the chest depths, shoulder widths and rump widths of Ujumqin sheep. This study showed that these two sites can be used for marker-assisted selection, which will be beneficial for future precision molecular breeding.
Collapse
Affiliation(s)
- Zhichen Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qing Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chongyan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaolong Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongliang Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingxi Lan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yichuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jingwen Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dan Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Deqing Kong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Tian Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Danni Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuedan Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xingyu Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Alatan Suhe
- East Ujumqin Banner Hersig Animal Husbandry Development Limited Liability Company, Xilin Gol League, Xilinhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Goat Genetics and Breeding Engineering Technology Research Center, Hohhot, China
| |
Collapse
|
2
|
Fülle JB, de Almeida RA, Lawless C, Stockdale L, Yanes B, Lane EB, Garrod DR, Ballestrem C. Proximity Mapping of Desmosomes Reveals a Striking Shift in Their Molecular Neighborhood Associated With Maturation. Mol Cell Proteomics 2024; 23:100735. [PMID: 38342409 PMCID: PMC10943070 DOI: 10.1016/j.mcpro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
Collapse
Affiliation(s)
- Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Liam Stockdale
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Bian Yanes
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - E Birgitte Lane
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - David R Garrod
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
de Cássia Collaço R, Lammens M, Blevins C, Rodgers K, Gurau A, Yamauchi S, Kim C, Forrester J, Liu E, Ha J, Mei Y, Boehm C, Wohler E, Sobreira N, Rowe PC, Valle D, Brock MV, Bosmans F. Anxiety and dysautonomia symptoms in patients with a Na V1.7 mutation and the potential benefits of low-dose short-acting guanfacine. Clin Auton Res 2024; 34:191-201. [PMID: 38064009 DOI: 10.1007/s10286-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
PURPOSE Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility. METHODS We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology. RESULTS Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree. CONCLUSION Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.
Collapse
Affiliation(s)
- Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Maxime Lammens
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Carley Blevins
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Rodgers
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrei Gurau
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Suguru Yamauchi
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Kim
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jeannine Forrester
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Edward Liu
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jinny Ha
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuping Mei
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Corrine Boehm
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Rowe
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Malcolm V Brock
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
4
|
Szoszkiewicz A, Bukowska-Olech E, Jamsheer A. Molecular landscape of congenital vertebral malformations: recent discoveries and future directions. Orphanet J Rare Dis 2024; 19:32. [PMID: 38291488 PMCID: PMC10829358 DOI: 10.1186/s13023-024-03040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Vertebral malformations (VMs) pose a significant global health problem, causing chronic pain and disability. Vertebral defects occur as isolated conditions or within the spectrum of various congenital disorders, such as Klippel-Feil syndrome, congenital scoliosis, spondylocostal dysostosis, sacral agenesis, and neural tube defects. Although both genetic abnormalities and environmental factors can contribute to abnormal vertebral development, our knowledge on molecular mechanisms of numerous VMs is still limited. Furthermore, there is a lack of resource that consolidates the current knowledge in this field. In this pioneering review, we provide a comprehensive analysis of the latest research on the molecular basis of VMs and the association of the VMs-related causative genes with bone developmental signaling pathways. Our study identifies 118 genes linked to VMs, with 98 genes involved in biological pathways crucial for the formation of the vertebral column. Overall, the review summarizes the current knowledge on VM genetics, and provides new insights into potential involvement of biological pathways in VM pathogenesis. We also present an overview of available data regarding the role of epigenetic and environmental factors in VMs. We identify areas where knowledge is lacking, such as precise molecular mechanisms in which specific genes contribute to the development of VMs. Finally, we propose future research avenues that could address knowledge gaps.
Collapse
Affiliation(s)
- Anna Szoszkiewicz
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
- Centers for Medical Genetics GENESIS, Dąbrowskiego 77A, 60-529, Poznan, Poland.
| |
Collapse
|
5
|
Rebello D, Wohler E, Erfani V, Li G, Aguilera AN, Santiago-Cornier A, Zhao S, Hwang SW, Steiner RD, Zhang TJ, Gurnett CA, Raggio C, Wu N, Sobreira N, Giampietro PF, Ciruna B. COL11A2 as a candidate gene for vertebral malformations and congenital scoliosis. Hum Mol Genet 2023; 32:2913-2928. [PMID: 37462524 PMCID: PMC10508038 DOI: 10.1093/hmg/ddad117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Human vertebral malformations (VMs) have an estimated incidence of 1/2000 and are associated with significant health problems including congenital scoliosis (CS) and recurrent organ system malformation syndromes such as VACTERL (vertebral anomalies; anal abnormalities; cardiac abnormalities; tracheo-esophageal fistula; renal anomalies; limb anomalies). The genetic cause for the vast majority of VMs are unknown. In a CS/VM patient cohort, three COL11A2 variants (R130W, R1407L and R1413H) were identified in two patients with cervical VM. A third patient with a T9 hemivertebra and the R130W variant was identified from a separate study. These substitutions are predicted to be damaging to protein function, and R130 and R1407 residues are conserved in zebrafish Col11a2. To determine the role for COL11A2 in vertebral development, CRISPR/Cas9 was used to create a nonsense mutation (col11a2L642*) as well as a full gene locus deletion (col11a2del) in zebrafish. Both col11a2L642*/L642* and col11a2del/del mutant zebrafish exhibit vertebral fusions in the caudal spine, which form due to mineralization across intervertebral segments. To determine the functional consequence of VM-associated variants, we assayed their ability to suppress col11a2del VM phenotypes following transgenic expression within the developing spine. While wildtype col11a2 expression suppresses fusions in col11a2del/+ and col11a2del/del backgrounds, patient missense variant-bearing col11a2 failed to rescue the loss-of-function phenotype in these animals. These results highlight an essential role for COL11A2 in vertebral development and support a pathogenic role for two missense variants in CS.
Collapse
Affiliation(s)
- Denise Rebello
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vida Erfani
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Guozhuang Li
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Alexya N Aguilera
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60612, USA
| | - Alberto Santiago-Cornier
- Genetic Section, San Jorge Children’s and Women’s Hospital, San Juan, Puerto Rico 00912, USA
- Department of Public Health, Ponce Health Sciences University, Ponce, Puerto Rico 00912, USA
| | - Sen Zhao
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven W Hwang
- Shriners Children’s-Philadelphia, Philadelphia, PA 19140, USA
| | - Robert D Steiner
- Department of Pediatrics, University of Wisconsin, Madison, WI 54449, USA
- Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Nan Wu
- Department of Orthopedic Surgery, Key Laboratory of Big Data for Spinal Deformities, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip F Giampietro
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60612, USA
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Shao Y, Zhou L, Li F, Zhao L, Zhang BL, Shao F, Chen JW, Chen CY, Bi X, Zhuang XL, Zhu HL, Hu J, Sun Z, Li X, Wang D, Rivas-González I, Wang S, Wang YM, Chen W, Li G, Lu HM, Liu Y, Kuderna LFK, Farh KKH, Fan PF, Yu L, Li M, Liu ZJ, Tiley GP, Yoder AD, Roos C, Hayakawa T, Marques-Bonet T, Rogers J, Stenson PD, Cooper DN, Schierup MH, Yao YG, Zhang YP, Wang W, Qi XG, Zhang G, Wu DD. Phylogenomic analyses provide insights into primate evolution. Science 2023; 380:913-924. [PMID: 37262173 DOI: 10.1126/science.abn6919] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2023] [Indexed: 06/03/2023]
Abstract
Comparative analysis of primate genomes within a phylogenetic context is essential for understanding the evolution of human genetic architecture and primate diversity. We present such a study of 50 primate species spanning 38 genera and 14 families, including 27 genomes first reported here, with many from previously less well represented groups, the New World monkeys and the Strepsirrhini. Our analyses reveal heterogeneous rates of genomic rearrangement and gene evolution across primate lineages. Thousands of genes under positive selection in different lineages play roles in the nervous, skeletal, and digestive systems and may have contributed to primate innovations and adaptations. Our study reveals that many key genomic innovations occurred in the Simiiformes ancestral node and may have had an impact on the adaptive radiation of the Simiiformes and human evolution.
Collapse
Affiliation(s)
- Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Long Zhou
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Institute of Animal Sex and Development, ZhejiangWanli University, Ningbo 315100, China
| | - Lan Zhao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | | | - Chun-Yan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xupeng Bi
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Lin Zhuang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | | | - Jiang Hu
- Grandomics Biosciences, Beijing 102206, China
| | - Zongyi Sun
- Grandomics Biosciences, Beijing 102206, China
| | - Xin Li
- Grandomics Biosciences, Beijing 102206, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102206, China
| | | | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hui-Meng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA 92122, USA
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Jin Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Yong-Gang Yao
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Guang Qi
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center of Evolutionary & Organismal Biology, and Women's Hospital at Zhejiang University School of Medicine, Hangzhou 310058, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China
| |
Collapse
|
7
|
Yeom S, Cohen B, Weiss CR, Montano C, Wohler E, Sobreira N, Hammill AM, Comi A. Genetic testing in the evaluation of individuals with clinical diagnosis of atypical Sturge-Weber syndrome. Am J Med Genet A 2023; 191:983-994. [PMID: 36710374 DOI: 10.1002/ajmg.a.63106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023]
Abstract
Sturge-Weber Syndrome (SWS) is a rare vascular malformation disorder characterized by abnormal blood vessels in the brain, skin, and eye. SWS is most commonly caused by a somatic mosaic GNAQ-p.Arg183Gln variant. In this series, 12 patients presented for clinical evaluation of SWS but were noted to have atypical features, and therefore germline and/or somatic genetic testing was performed. Atypical features included extensive capillary malformation on the body as well as the face, frontal bossing, macrocephaly, telangiectasia, overgrowth of extremities, absence of neurologic signs and symptoms, and family history of vascular malformations. Five patients had a somatic GNAQ or GNA11 pathogenic variant, one patient had a somatic mosaic likely-pathogenic variant in PIK3CA, and another one had a somatic mosaic deletion that disrupted PTPRD. The other five patients had germline variants in RASA1, EPHB4, or KIT. Our findings suggest that patients presenting for SWS evaluation who have atypical clinical characteristics may have pathogenic germline or somatic variants in genes other than GNAQ or GNA11. Broad germline and somatic genetic testing in these patients with atypical findings may have implications for medical care, prognosis, and trial eligibility.
Collapse
Affiliation(s)
- SangEun Yeom
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Bernard Cohen
- Departments of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Clifford R Weiss
- Division of Interventional Radiology, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carolina Montano
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adrienne M Hammill
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anne Comi
- Department of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Mitchell SE, Martin RP, Terry P, Drant SE, Valle D, Dietz H, Sobreira N. Systemic artery to pulmonary artery aneurysm malformations associated with variants at MCF2L. Am J Med Genet A 2023; 191:1250-1260. [PMID: 36760094 DOI: 10.1002/ajmg.a.63141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/14/2023] [Indexed: 02/11/2023]
Abstract
Arteriovenous malformations (AVM) are characterized by abnormal vessels connecting arteries and veins resulting in a disruption of normal blood flow. Hereditary hemorrhagic telangiectasia (HHT) is the most common cause of pulmonary AVM characterized by a right to left shunt. Here we describe a distinct malformation where the flow of blood was from a systemic artery to the pulmonary artery (PA) resulting in a left to right shunt instead of the right to left shunt seen in individuals with HHT. This distinct malformation was identified in seven probands, one from a multiplex family containing 10 affected individuals from five generations. To identify the molecular basis of this distinct malformation, we performed exome sequencing (ES) on the seven probands and the affected paternal female cousin from the multiplex family. PhenoDB was used to prioritize candidate causative variants along with burden analysis. We describe the clinical and radiological details of the new systemic artery to PA malformation with or without pulmonary artery aneurysm (SA-PA(A)) and recommend distinct treatment techniques. Moreover, ES analysis revealed possible causative variants identified in three families with variants in a novel candidate disease gene, MCF2L. Further functional studies will be necessary to better understand the molecular mechanisms involved on SA-PA(A) malformation, however our findings suggest that MCF2L is a novel disease gene associated with SA-PA(A).
Collapse
Affiliation(s)
- S E Mitchell
- Russell H Morgan Department of Radiology, Interventional Section, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - R P Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - P Terry
- Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S E Drant
- Pediatric Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - D Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - H Dietz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - N Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Poll SR, Martin R, Wohler E, Partan ES, Walek E, Salman S, Groepper D, Kratz L, Cernach M, Jesus-Garcia R, Haldeman-Englert C, Choi YJ, Morris CD, Cohen B, Hoover-Fong J, Valle D, Semenza GL, Sobreira NLM. Disruption of the HIF-1 pathway in individuals with Ollier disease and Maffucci syndrome. PLoS Genet 2022; 18:e1010504. [PMID: 36480544 PMCID: PMC9767349 DOI: 10.1371/journal.pgen.1010504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/20/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
Ollier disease (OD) and Maffucci Syndrome (MS) are rare disorders characterized by multiple enchondromas, commonly causing bone deformities, limb length discrepancies, and pathological fractures. MS is distinguished from OD by the development of vascular anomalies. Both disorders are cancer predisposition syndromes with malignancies developing in ~50% of the individuals with OD or MS. Somatic gain-of-function variants in IDH1 and IDH2 have been described in the enchondromas, vascular anomalies and chondrosarcomas of approximately 80% of the individuals with OD and MS. To date, however, no investigation of germline causative variants for these diseases has been comprehensively performed. To search for germline causative variants, we performed whole exome sequencing or whole genome sequencing of blood or saliva DNA in 94 unrelated probands (68 trios). We found that 7 had rare germline missense variants in HIF1A, 6 had rare germline missense variants in VHL, and 3 had IDH1 variants including 2 with mosaic IDH1-p.Arg132His variant. A burden analysis using 94 probands assigned as cases and 2,054 unrelated individuals presenting no OD- or MS-related features as controls, found that variants in HIF1A, VHL, and IDH1 were all significantly enriched in cases compared to controls. To further investigate the role of HIF-1 pathway in the pathogenesis of OD and MS, we performed RNA sequencing of fibroblasts from 4 probands with OD or MS at normoxia and at hypoxia. When cultured in hypoxic conditions, both proband and control cells showed altered expression of a subset of HIF-1 regulated genes. However, the set of differentially expressed genes in proband fibroblasts included a significantly reduced number of HIF-1 regulated genes compared to controls. Our findings suggest that germline or early post-zygotic variants identified in HIF1A, VHL, and IDH1 in probands with OD and MS underlie the development of the phenotypic abnormalities in a subset of individuals with OD and MS, but extensive functional studies are needed to further confirm it.
Collapse
Affiliation(s)
- Sarah R. Poll
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Renan Martin
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth S. Partan
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth Walek
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shaima Salman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel Groepper
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Lisa Kratz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mirlene Cernach
- Universidade Metropolitana de Santos, Santos, São Paulo, Brazil
| | - Reynaldo Jesus-Garcia
- Department of Orthopedics-Oncology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Chad Haldeman-Englert
- Mission Fullerton Genetics Center, Asheville, North Carolina, United States of America
| | - Yoon Jae Choi
- Department of Neurology, University of California, Irvine, California, United States of America
| | - Carol D. Morris
- Department of Orthopedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Bernard Cohen
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland, Untied States of America
| | - Julie Hoover-Fong
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gregg L. Semenza
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nara L. M. Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Bermudez-Lekerika P, Crump KB, Tseranidou S, Nüesch A, Kanelis E, Alminnawi A, Baumgartner L, Muñoz-Moya E, Compte R, Gualdi F, Alexopoulos LG, Geris L, Wuertz-Kozak K, Le Maitre CL, Noailly J, Gantenbein B. Immuno-Modulatory Effects of Intervertebral Disc Cells. Front Cell Dev Biol 2022; 10:924692. [PMID: 35846355 PMCID: PMC9277224 DOI: 10.3389/fcell.2022.924692] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | - Katherine B Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| | | | - Andrea Nüesch
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Exarchos Kanelis
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Ahmad Alminnawi
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | | | - Roger Compte
- Twin Research and Genetic Epidemiology, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Francesco Gualdi
- Institut Hospital Del Mar D'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Leonidas G Alexopoulos
- ProtATonce Ltd., Athens, Greece.,School of Mechanical Engineering, National Technical University of Athens, Zografou, Greece
| | - Liesbet Geris
- GIGA In Silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, KU Leuven, Leuven, Belgium
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, United States.,Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital and Spine Research Institute of the Paracelsus Private Medical University Salzburg (Austria), Munich, Germany
| | - Christine L Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | | | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone and Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, Medical Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Hernández-Quiles M, Baak R, Borgman A, den Haan S, Sobrevals Alcaraz P, van Es R, Kiss-Toth E, Vos H, Kalkhoven E. Comprehensive Profiling of Mammalian Tribbles Interactomes Implicates TRIB3 in Gene Repression. Cancers (Basel) 2021; 13:6318. [PMID: 34944947 PMCID: PMC8699236 DOI: 10.3390/cancers13246318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3. Interestingly, TRIB3, which is predominantly localized in the nucleus, interacts with multiple transcriptional regulators, including proteins involved in gene repression. Indeed, we found that TRIB3 repressed gene transcription when tethered to DNA in breast cancer cells. Taken together, our comprehensive proteomic assessment reveals previously unknown interacting partners and functions of Tribbles proteins that expand our understanding of this family of proteins. In addition, our findings show that MS-based proteomics provides a powerful tool to unravel novel pseudokinase biology.
Collapse
Affiliation(s)
- Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Rosalie Baak
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Suzanne den Haan
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Paula Sobrevals Alcaraz
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, UK;
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| |
Collapse
|
12
|
Martin EMMA, Enriquez A, Sparrow DB, Humphreys DT, McInerney-Leo AM, Leo PJ, Duncan EL, Iyer KR, Greasby JA, Ip E, Giannoulatou E, Sheng D, Wohler E, Dimartino C, Amiel J, Capri Y, Lehalle D, Mory A, Wilnai Y, Lebenthal Y, Gharavi AG, Krzemień GG, Miklaszewska M, Steiner RD, Raggio C, Blank R, Baris Feldman H, Milo Rasouly H, Sobreira NLM, Jobling R, Gordon CT, Giampietro PF, Dunwoodie SL, Chapman G. Heterozygous loss of WBP11 function causes multiple congenital defects in humans and mice. Hum Mol Genet 2021; 29:3662-3678. [PMID: 33276377 DOI: 10.1093/hmg/ddaa258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing. We generated a Wbp11 null allele in mouse using CRISPR-Cas9 targeting. Wbp11 homozygous null embryos die prior to E8.5, indicating that Wbp11 is essential for development. Fewer Wbp11 heterozygous null mice are found than expected due to embryonic and postnatal death. Importantly, Wbp11 heterozygous null mice are small and exhibit defects in axial skeleton, kidneys and esophagus, similar to the affected individuals, supporting the role of WBP11 haploinsufficiency in the development of congenital malformations in humans. LoF WBP11 variants should be considered as a possible cause of VACTERL association as well as isolated Klippel-Feil syndrome, renal agenesis or esophageal atresia.
Collapse
Affiliation(s)
- Ella M M A Martin
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Annabelle Enriquez
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia.,Faculty of Medicine, UNSW, Sydney 2052, Australia
| | - Duncan B Sparrow
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia.,Faculty of Science, UNSW, Sydney 2052, Australia.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David T Humphreys
- Faculty of Medicine, UNSW, Sydney 2052, Australia.,Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Aideen M McInerney-Leo
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane 4072, Australia
| | - Paul J Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba 4102, Australia
| | - Emma L Duncan
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba 4102, Australia.,Department of Twin Research & Genetic Epidemiology, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London SE1 7EH, UK.,Faculty of Medicine, University of Queensland, Herston 4006, Australia
| | - Kavitha R Iyer
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Joelene A Greasby
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Eddie Ip
- Faculty of Medicine, UNSW, Sydney 2052, Australia.,Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Eleni Giannoulatou
- Faculty of Medicine, UNSW, Sydney 2052, Australia.,Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Delicia Sheng
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore 21287, USA
| | - Clémantine Dimartino
- Laboratory of Embryology and Genetics of Human Malformations, Institute National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris 75015, France.,Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris 75015, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institute National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris 75015, France.,Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris 75015, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris 75015, France
| | - Yline Capri
- Département de Génétique, Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, Paris 75019, France
| | - Daphné Lehalle
- Centre Hospitalier Intercommunal Créteil, Créteil 94000, France
| | - Adi Mory
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Yael Wilnai
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Yael Lebenthal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Pediatric Endocrinology and Diabetes Unit, Tel Aviv 6423906, Israel
| | - Ali G Gharavi
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Grażyna G Krzemień
- Department of Pediatrics and Nephrology, Warsaw Medical University, Warsaw 02-091, Poland
| | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Kraków 30-663, Poland
| | - Robert D Steiner
- Marshfield Clinic Health System, Marshfield, WI 54449, USA.,University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Cathy Raggio
- Hospital for Special Surgery, Pediatrics Orthopedic Surgery, New York, NY 10021, USA
| | - Robert Blank
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hagit Baris Feldman
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Milo Rasouly
- Department of Medicine, Division of Nephrology, Columbia University, New York, NY 10032, USA
| | - Nara L M Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore 21287, USA
| | - Rebekah Jobling
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G1X3, Canada
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institute National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Paris 75015, France.,Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, Paris 75015, France
| | - Philip F Giampietro
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60607, USA
| | - Sally L Dunwoodie
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia.,Faculty of Medicine, UNSW, Sydney 2052, Australia.,Faculty of Science, UNSW, Sydney 2052, Australia
| | - Gavin Chapman
- Development & Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney 2010, Australia.,Faculty of Medicine, UNSW, Sydney 2052, Australia
| |
Collapse
|
13
|
Identification of Copy Number Variants in a Southern Chinese Cohort of Patients with Congenital Scoliosis. Genes (Basel) 2021; 12:genes12081213. [PMID: 34440387 PMCID: PMC8391542 DOI: 10.3390/genes12081213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Congenital scoliosis (CS) is a lateral curvature of the spine resulting from congenital vertebral malformations (CVMs) and affects 0.5–1/1000 live births. The copy number variant (CNV) at chromosome 16p11.2 has been implicated in CVMs and recent studies identified a compound heterozygosity of 16p11.2 microdeletion and TBX6 variant/haplotype causing CS in multiple cohorts, which explains about 5–10% of the affected cases. Here, we studied the genetic etiology of CS by analyzing CNVs in a cohort of 67 patients with congenital hemivertebrae and 125 family controls. We employed both candidate gene and family-based approaches to filter CNVs called from whole exome sequencing data. This identified 12 CNVs in four scoliosis-associated genes (TBX6, NOTCH2, DSCAM, and SNTG1) as well as eight recessive and 64 novel rare CNVs in 15 additional genes. Some candidates, such as DHX40, NBPF20, RASA2, and MYSM1, have been found to be associated with syndromes with scoliosis or implicated in bone/spine development. In particular, the MYSM1 mutant mouse showed spinal deformities. Our findings suggest that, in addition to the 16p11.2 microdeletion, other CNVs are potentially important in predisposing to CS.
Collapse
|
14
|
Gowans LJJ, Al Dhaheri N, Li M, Busch T, Obiri-Yeboah S, Oti AA, Sabbah DK, Arthur FKN, Awotoye WO, Alade AA, Twumasi P, Agbenorku P, Plange-Rhule G, Naicker T, Donkor P, Murray JC, Sobreira NLM, Butali A. Co-occurrence of orofacial clefts and clubfoot phenotypes in a sub-Saharan African cohort: Whole-exome sequencing implicates multiple syndromes and genes. Mol Genet Genomic Med 2021; 9:e1655. [PMID: 33719213 PMCID: PMC8123728 DOI: 10.1002/mgg3.1655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background Orofacial clefts (OFCs) are congenital malformations of the face and palate, with an incidence of 1 per 700 live births. Clubfoot or congenital talipes equinovarus (CTEV) is a three‐dimensional abnormality of the leg, ankle, and feet that leads to the anomalous positioning of foot and ankle joints and has an incidence of 1 per 1000 live births. OFCs and CTEV may occur together or separately in certain genetic syndromes in addition to other congenital abnormalities. Here, we sought to decipher the genetic etiology of OFC and CTEV that occurred together in six probands. Methods At the time of recruitment, the most clinically obvious congenital anomalies in these individuals were the OFC and CTEV. We carried out whole‐exome sequencing (WES) on DNA samples from probands and available parents employing the Agilent SureSelect XT kit and Illumina HiSeq2500 platform, followed by bioinformatics analyses. WES variants were validated by clinical Sanger Sequencing. Results Of the six probands, we observed probable pathogenic genetic variants in four. In three probands with probable pathogenic genetic variants, each individual had variants in three different genes, whereas one proband had probable pathogenic variant in just one gene. In one proband, we observed variants in DIS3L2, a gene associated with Perlman syndrome. A second proband had variants in EPG5 (associated with Vici Syndrome), BARX1 and MKI67, while another proband had potentially etiologic variants in FRAS1 (associated with Fraser Syndrome 1), TCOF1 (associated with Treacher Collins Syndrome 1) and MKI67. The last proband had variants in FRAS1, PRDM16 (associated with Cardiomyopathy, dilated, 1LL/Left ventricular noncompaction 8) and CHD7 (associated with CHARGE syndrome/Hypogonadotropic hypogonadism 5 with or without anosmia). Conclusion Our results suggest that clubfoot and OFCs are two congenital abnormalities that can co‐occur in certain individuals with varying genetic causes and expressivity, warranting the need for deep phenotyping.
Collapse
Affiliation(s)
- Lord J J Gowans
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Oral and Maxillofacial Sciences, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Noura Al Dhaheri
- Department of Medical Genetics, John Hopkins University, Baltimore, MD, USA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Solomon Obiri-Yeboah
- Department of Oral and Maxillofacial Sciences, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander A Oti
- Department of Oral and Maxillofacial Sciences, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel K Sabbah
- Department of Orthodontics and Child Oral Health, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Waheed O Awotoye
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Azeez A Alade
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| | - Peter Twumasi
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Pius Agbenorku
- Department of Surgery, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gyikua Plange-Rhule
- Department of Child Health, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Thirona Naicker
- Department of Pediatrics, University of KwaZulu-Natal, South Africa
| | - Peter Donkor
- Department of Oral and Maxillofacial Sciences, Dental School, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,Department of Surgery, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Nara L M Sobreira
- Department of Medical Genetics, John Hopkins University, Baltimore, MD, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|