1
|
Seither K, Thompson W, Suhrie K. A Practical Guide to Whole Genome Sequencing in the NICU. Neoreviews 2024; 25:e139-e150. [PMID: 38425198 DOI: 10.1542/neo.25-3-e139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The neonatal period is a peak time for the presentation of genetic disorders that can be diagnosed using whole genome sequencing (WGS). While any one genetic disorder is individually rare, they collectively contribute to significant morbidity, mortality, and health-care costs. As the cost of WGS continues to decline and becomes increasingly available, the ordering of rapid WGS for NICU patients with signs or symptoms of an underlying genetic condition is now feasible. However, many neonatal clinicians are not comfortable with the testing, and unfortunately, there is a dearth of geneticists to facilitate testing for every patient that needs it. Here, we will review the science behind WGS, diagnostic capabilities, limitations of testing, time to consider testing, test initiation, interpretation of results, developing a plan of care that incorporates genomic information, and returning WGS results to families.
Collapse
Affiliation(s)
- Katelyn Seither
- Division of Neonatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Whitney Thompson
- Division of Neonatal Medicine, and the Department of Clinical Genomics, Mayo Clinic, Rochester, MN
| | - Kristen Suhrie
- Division of Neonatology, Department of Pediatrics, and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
2
|
Berkalieva A, Kelly NR, Fisher A, Hohmann SF, Sebastin M, Di Biase M, Bonini KE, Marathe P, Odgis JA, Suckiel SA, Ramos MA, Rhodes R, Abul-Husn NS, Greally JM, Horowitz CR, Wasserstein MP, Kenny EE, Gelb BD, Ferket BS. Physician services and costs after disclosure of diagnostic sequencing results in the NYCKidSeq program. Genet Med 2024; 26:101011. [PMID: 37897232 PMCID: PMC10842442 DOI: 10.1016/j.gim.2023.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE To better understand the effects of returning diagnostic sequencing results on clinical actions and economic outcomes for pediatric patients with suspected genetic disorders. METHODS Longitudinal physician claims data after diagnostic sequencing were obtained for patients aged 0 to 21 years with neurologic, cardiac, and immunologic disorders with suspected genetic etiology. We assessed specialist consultation rates prompted by primary diagnostic results, as well as marginal effects on overall 18-month physician services and costs. RESULTS We included data on 857 patients (median age: 9.6 years) with a median follow-up of 17.3 months after disclosure of diagnostic sequencing results. The likelihood of having ≥1 recommendation for specialist consultation in 155 patients with positive findings was high (72%) vs 23% in 443 patients with uncertain findings and 21% in 259 patients with negative findings (P < .001). Follow-through consultation occurred in 30%. Increases in 18-month physician services and costs following a positive finding diminished after multivariable adjustment. Also, no significant differences between those with uncertain and negative findings were demonstrated. CONCLUSION Our study did not provide evidence for significant increases in downstream physician services and costs after returning positive or uncertain diagnostic sequencing findings. More large-scale longitudinal studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Asem Berkalieva
- Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole R Kelly
- Division of Pediatric Genetic Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Monisha Sebastin
- Division of Pediatric Genetic Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Miranda Di Biase
- Division of Pediatric Genetic Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Katherine E Bonini
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Priya Marathe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jacqueline A Odgis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sabrina A Suckiel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michelle A Ramos
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rosamond Rhodes
- Department of Education, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; 23andMe Inc, Sunnyvale, CA
| | - John M Greally
- Division of Genomics, Department of Genetics, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Carol R Horowitz
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY; Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa P Wasserstein
- Division of Pediatric Genetic Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Eimear E Kenny
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Division for Genomic Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bart S Ferket
- Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
3
|
Ahuja SK, Shrimankar DD, Durge AR. A Study and Analysis of Disease Identification using Genomic Sequence Processing Models: An Empirical Review. Curr Genomics 2023; 24:207-235. [PMID: 38169652 PMCID: PMC10758128 DOI: 10.2174/0113892029269523231101051455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024] Open
Abstract
Human gene sequences are considered a primary source of comprehensive information about different body conditions. A wide variety of diseases including cancer, heart issues, brain issues, genetic issues, etc. can be pre-empted via efficient analysis of genomic sequences. Researchers have proposed different configurations of machine learning models for processing genomic sequences, and each of these models varies in terms of their performance & applicability characteristics. Models that use bioinspired optimizations are generally slower, but have superior incremental-performance, while models that use one-shot learning achieve higher instantaneous accuracy but cannot be scaled for larger disease-sets. Due to such variations, it is difficult for genomic system designers to identify optimum models for their application-specific & performance-specific use cases. To overcome this issue, a detailed survey of different genomic processing models in terms of their functional nuances, application-specific advantages, deployment-specific limitations, and contextual future scopes is discussed in this text. Based on this discussion, researchers will be able to identify optimal models for their functional use cases. This text also compares the reviewed models in terms of their quantitative parameter sets, which include, the accuracy of classification, delay needed to classify large-length sequences, precision levels, scalability levels, and deployment cost, which will assist readers in selecting deployment-specific models for their contextual clinical scenarios. This text also evaluates a novel Genome Processing Efficiency Rank (GPER) for each of these models, which will allow readers to identify models with higher performance and low overheads under real-time scenarios.
Collapse
Affiliation(s)
- Sony K. Ahuja
- Visvesvaraya National Institute of Technology, Computer Science and Engineering, India
| | - Deepti D. Shrimankar
- Visvesvaraya National Institute of Technology, Computer Science and Engineering, India
| | - Aditi R. Durge
- Visvesvaraya National Institute of Technology, Computer Science and Engineering, India
| |
Collapse
|
4
|
Abul-Husn NS, Marathe PN, Kelly NR, Bonini KE, Sebastin M, Odgis JA, Abhyankar A, Brown K, Di Biase M, Gallagher KM, Guha S, Ioele N, Okur V, Ramos MA, Rodriguez JE, Rehman AU, Thomas-Wilson A, Edelmann L, Zinberg RE, Diaz GA, Greally JM, Jobanputra V, Suckiel SA, Horowitz CR, Wasserstein MP, Kenny EE, Gelb BD. Molecular diagnostic yield of genome sequencing versus targeted gene panel testing in racially and ethnically diverse pediatric patients. Genet Med 2023; 25:100880. [PMID: 37158195 PMCID: PMC10789486 DOI: 10.1016/j.gim.2023.100880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions. METHODS Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design. RESULTS A total of 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses (P < .001). Yield was greater for GS vs TGPs in Hispanic/Latino(a) (17.2% vs 9.5%, P < .001) and White/European American (19.8% vs 7.9%, P < .001) but not in Black/African American (11.5% vs 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS. CONCLUSION GS may yield up to twice as many diagnoses in pediatric patients compared with TGP testing but not yet across all population groups.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; 23andMe, Inc., Sunnyvale, CA
| | - Priya N Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole R Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Katherine E Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline A Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Kaitlyn Brown
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; Illumina Incorporated, San Diego, CA
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Katie M Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; Invitae Corporation, San Francisco, CA
| | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Nicolette Ioele
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; Memorial Sloan Kettering Cancer Center, New York, NY
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Michelle A Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jessica E Rodriguez
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | - Randi E Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George A Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; iECURE Incorporated, Philadelphia, PA
| | - John M Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Sabrina A Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol R Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa P Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
5
|
Bonini KE, Thomas-Wilson A, Marathe PN, Sebastin M, Odgis JA, Biase MD, Kelly NR, Ramos MA, Insel BJ, Scarimbolo L, Rehman AU, Guha S, Okur V, Abhyankar A, Phadke S, Nava C, Gallagher KM, Elkhoury L, Edelmann L, Zinberg RE, Abul-Husn NS, Diaz GA, Greally JM, Suckiel SA, Horowitz CR, Kenny EE, Wasserstein M, Gelb BD, Jobanputra V. Identification of copy number variants with genome sequencing: Clinical experiences from the NYCKidSeq program. Clin Genet 2023; 104:210-225. [PMID: 37334874 PMCID: PMC10505482 DOI: 10.1111/cge.14365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact. A total of 1052 children (0-21 years) with neurodevelopmental, cardiac, and/or immunodeficiency phenotypes received GS. Phenotype-driven analysis was used, resulting in 183 (17.4%) participants with a diagnostic result. CNVs accounted for 20.2% of participants with a diagnostic result (37/183) and ranged from 0.5 kb to 16 Mb. Of participants with a diagnostic result (n = 183) and phenotypes in more than one category, 5/17 (29.4%) were solved by a CNV finding, suggesting a high prevalence of diagnostic CNVs in participants with complex phenotypes. Thirteen participants with a diagnostic CNV (35.1%) had previously uninformative genetic testing, of which nine included a chromosomal microarray. This study demonstrates the benefits of GS for reliable detection of CNVs in a pediatric cohort with variable phenotypes.
Collapse
Affiliation(s)
- Katherine E. Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Priya N. Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline A. Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Nicole R. Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Michelle A. Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beverly J. Insel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Scarimbolo
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY
| | | | - Shruti Phadke
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Caroline Nava
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Katie M. Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Randi E. Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Noura S. Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George A. Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John M. Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Sabrina A. Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol R. Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Bruce D. Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
6
|
Felker SA, Lawlor JMJ, Hiatt SM, Thompson ML, Latner DR, Finnila CR, Bowling KM, Bonnstetter ZT, Bonini KE, Kelly NR, Kelley WV, Hurst ACE, Rashid S, Kelly MA, Nakouzi G, Hendon LG, Bebin EM, Kenny EE, Cooper GM. Poison exon annotations improve the yield of clinically relevant variants in genomic diagnostic testing. Genet Med 2023; 25:100884. [PMID: 37161864 PMCID: PMC10524927 DOI: 10.1016/j.gim.2023.100884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
PURPOSE Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze "poison exons" (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease. METHODS We curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts. RESULTS Across 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features. CONCLUSION With a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.
Collapse
Affiliation(s)
| | | | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | | | | | | | | | | - Katherine E Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole R Kelly
- Division of Pediatric Genetic Medicine, Department of Pediatrics, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
7
|
Abul-Husn NS, Marathe PN, Kelly NR, Bonini KE, Sebastin M, Odgis JA, Abhyankar A, Brown K, Di Biase M, Gallagher KM, Guha S, Ioele N, Okur V, Ramos MA, Rodriguez JE, Rehman AU, Thomas-Wilson A, Edelmann L, Zinberg RE, Diaz GA, Greally JM, Jobanputra V, Suckiel SA, Horowitz CR, Wasserstein MP, Kenny EE, Gelb BD. Molecular diagnostic yield of genome sequencing versus targeted gene panel testing in racially and ethnically diverse pediatric patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.18.23286992. [PMID: 36993157 PMCID: PMC10055570 DOI: 10.1101/2023.03.18.23286992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Purpose Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions. Methods Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design. Results 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses ( P < .001). Yield was greater for GS vs . TGPs in Hispanic/Latino(a) (17.2% vs . 9.5%, P < .001) and White/European American (19.8% vs . 7.9%, P < .001), but not in Black/African American (11.5% vs . 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs . White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS. Conclusion GS may yield up to twice as many diagnoses in pediatric patients compared to TGP testing, but not yet across all population groups.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priya N Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole R Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Katherine E Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline A Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kaitlyn Brown
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Katie M Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
| | - Nicolette Ioele
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
| | - Michelle A Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica E Rodriguez
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atteeq U Rehman
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
| | | | | | - Randi E Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George A Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sabrina A Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol R Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa P Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Felker SA, Lawlor JMJ, Hiatt SM, Thompson ML, Latner DR, Finnila CR, Bowling KM, Bonnstetter ZT, Bonini KE, Kelly NR, Kelley WV, Hurst ACE, Kelly MA, Nakouzi G, Hendon LG, Bebin EM, Kenny EE, Cooper GM. Poison exon annotations improve the yield of clinically relevant variants in genomic diagnostic testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523654. [PMID: 36711854 PMCID: PMC9882217 DOI: 10.1101/2023.01.12.523654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Purpose Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains around 50%, suggesting some clinically relevant rare variants may be missed by standard analyses. Here we analyze "poison exons" (PEs) which, while often absent from standard gene annotations, are alternative exons whose inclusion results in a premature termination codon. Variants that alter PE inclusion can lead to loss-of-function and may be highly penetrant contributors to disease. Methods We curated published RNA-seq data from developing mouse cortex to define 1,937 PE regions conserved between humans and mice and potentially relevant to NDDs. We then analyzed variants found by genome sequencing in multiple NDD cohorts. Results Across 2,999 probands, we found six clinically relevant variants in PE regions that were previously overlooked. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family ( SCN1A, SCN2A , and SCN8A ), associated with epilepsies. One variant is in SNRPB , associated with Cerebrocostomandibular Syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and were observed in probands with features consistent with those reported for the associated gene. Conclusion With only a minimal increase in variant analysis burden (most probands had zero or one candidate PE variants in a known NDD gene, with an average of 0.77 per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.
Collapse
Affiliation(s)
| | - James MJ Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| | | | - Donald R Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| | | | - Kevin M Bowling
- Washington University School of Medicine, Saint Louis, MO, USA 63110
| | | | - Katherine E Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai. New York, NY, USA 10029
| | - Nicole R Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children’s Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA 10467
| | - Whitley V Kelley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| | - Anna CE Hurst
- University of Alabama in Birmingham, Birmingham, AL, USA 35294
| | | | | | - Laura G Hendon
- University of Mississippi Medical Center, Jackson, MS, 39216
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA 35294
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai. New York, NY, USA 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 35806
| |
Collapse
|