1
|
Tang YP, Gong JY, Setchell KDR, Zhang W, Zhao J, Wang JS. Successful treatment of infantile oxysterol 7α-hydroxylase deficiency with oral chenodeoxycholic acid. BMC Gastroenterol 2021; 21:163. [PMID: 33849447 PMCID: PMC8045390 DOI: 10.1186/s12876-021-01749-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deficiency of oxysterol 7α-hydroxylase, encoded by CYP7B1, is associated with fatal infantile progressive intrahepatic cholestasis and hereditary spastic paraplegia type 5. Most reported patients with CYP7B1 mutations presenting with liver disease in infancy have died of liver failure. However, it was recently reported that two patients treated with chenodeoxycholic acid survived. Correlations between the phenotype and genotype of CYP7B1 deficiency have not been clearly established. CASE PRESENTATION A 5-month-7-day-old Chinese baby from non-consanguineous parents was referred for progressive cholestasis and prolonged prothrombin time from one month of age. Genetic testing revealed compound heterozygous mutations c.187C > T(p.R63X)/c.334C > T(p.R112X) in CYP7B1, and fast atom bombardment mass spectrometry analysis of the urinary bile acid confirmed the presence of atypical hepatotoxic 3β-hydroxy-Δ5-bile acids. While awaiting liver transplantation she was orally administered chenodeoxycholic acid. Her liver function rapidly improved, urine atypical bile acids normalized, and she thrived well until the last follow-up at 23 months of age. Her 15-year-old brother, with no history of infantile cholestasis but harboring the same mutations in CYP7B1, had gait abnormality from 13 years of age. Neurological examination revealed hyper-reflexia and spasticity of the lower limbs. Brain MRI revealed enlarged perivascular space in the bilateral basal ganglia and white matter of frontal parietal. CONCLUSIONS In summary, these findings highlight that the phenotype of CYP7B1 deficiency varies widely, even in siblings and that early administration of chenodeoxycholic acid may improve prognosis.
Collapse
Affiliation(s)
- Yun-Ping Tang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.,Department of Gastroenterology, Qilu Children's Hospital of Shandong University, Jinan, 250022, Shandong, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jing Zhao
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
2
|
Rafi SK, Butler MG. The 15q11.2 BP1-BP2 Microdeletion ( Burnside-Butler) Syndrome: In Silico Analyses of the Four Coding Genes Reveal Functional Associations with Neurodevelopmental Phenotypes. Int J Mol Sci 2020; 21:ijms21093296. [PMID: 32384786 PMCID: PMC7246448 DOI: 10.3390/ijms21093296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
The 15q11.2 BP1-BP2 microdeletion (Burnside–Butler) syndrome is emerging as the most frequent pathogenic copy number variation (CNV) in humans associated with neurodevelopmental disorders with changes in brain morphology, behavior, and cognition. In this study, we explored functions and interactions of the four protein-coding genes in this region, namely NIPA1, NIPA2, CYFIP1, and TUBGCP5, and elucidate their role, in solo and in concert, in the causation of neurodevelopmental disorders. First, we investigated the STRING protein-protein interactions encompassing all four genes and ascertained their predicted Gene Ontology (GO) functions, such as biological processes involved in their interactions, pathways and molecular functions. These include magnesium ion transport molecular function, regulation of axonogenesis and axon extension, regulation and production of bone morphogenetic protein and regulation of cellular growth and development. We gathered a list of significantly associated cardinal maladies for each gene from searchable genomic disease websites, namely MalaCards.org: HGMD, OMIM, ClinVar, GTR, Orphanet, DISEASES, Novoseek, and GeneCards.org. Through tabulations of such disease data, we ascertained the cardinal disease association of each gene, as well as their expanded putative disease associations. This enabled further tabulation of disease data to ascertain the role of each gene in the top ten overlapping significant neurodevelopmental disorders among the disease association data sets: (1) Prader–Willi Syndrome (PWS); (2) Angelman Syndrome (AS); (3) 15q11.2 Deletion Syndrome with Attention Deficit Hyperactive Disorder & Learning Disability; (4) Autism Spectrum Disorder (ASD); (5) Schizophrenia; (6) Epilepsy; (7) Down Syndrome; (8) Microcephaly; (9) Developmental Disorder, and (10) Peripheral Nervous System Disease. The cardinal disease associations for each of the four contiguous 15q11.2 BP1-BP2 genes are NIPA1- Spastic Paraplegia 6; NIPA2—Angelman Syndrome and Prader–Willi Syndrome; CYFIP1—Fragile X Syndrome and Autism; TUBGCP5—Prader–Willi Syndrome. The four genes are individually associated with PWS, ASD, schizophrenia, epilepsy, and Down syndrome. Except for TUBGCP5, the other three genes are associated with AS. Unlike the other genes, TUBGCP5 is also not associated with attention deficit hyperactivity disorder and learning disability, developmental disorder, or peripheral nervous system disease. CYFIP1 was the only gene not associated with microcephaly but was the only gene associated with developmental disorders. Collectively, all four genes were associated with up to three-fourths of the ten overlapping neurodevelopmental disorders and are deleted in this most prevalent known pathogenic copy number variation now recognized among humans with these clinical findings.
Collapse
Affiliation(s)
- Syed K. Rafi
- Correspondence: (S.K.R.); (M.G.B.); Tel.: +816-787-4366 (S.K.R.); +913-588-1800 (M.G.B.)
| | - Merlin G. Butler
- Correspondence: (S.K.R.); (M.G.B.); Tel.: +816-787-4366 (S.K.R.); +913-588-1800 (M.G.B.)
| |
Collapse
|
3
|
Sensory ataxia as a prominent clinical presentation in three families with mutations in CYP7B1. J Neurol 2014; 261:747-51. [DOI: 10.1007/s00415-014-7247-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/25/2022]
|
4
|
Denora PS, Santorelli FM, Bertini E. Hereditary spastic paraplegias: one disease for many genes, and still counting. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1899-912. [PMID: 23622413 DOI: 10.1016/b978-0-444-59565-2.00060-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous Mendelian disorders characterized by spastic gait with stiffness and weakness in the legs and an associated plethora of neurological or extraneurological signs in "complicated" forms. Major advances have been made during the past two decades in our understanding of their molecular bases with the identification of a large number of gene loci and the cloning of a set of them. The combined genetic and clinical information obtained has permitted a new, molecularly-driven classification and an improved diagnosis of these conditions. This represents a prerequisite for better counseling in families and more appropriate therapeutic options. However, further heterogeneity is expected and new insight into the possible mechanisms anticipated.
Collapse
Affiliation(s)
- Paola S Denora
- Molecular Medicine and Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS-Children's Hospital Bambino Gesù, Rome, Italy
| | | | | |
Collapse
|
5
|
Arnoldi A, Crimella C, Tenderini E, Martinuzzi A, D'Angelo MG, Musumeci O, Toscano A, Scarlato M, Fantin M, Bresolin N, Bassi MT. Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations. Clin Genet 2011; 81:150-7. [PMID: 21214876 DOI: 10.1111/j.1399-0004.2011.01624.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Spastic paraplegia type 5 (SPG5) is caused by mutations in CYP7B1, a gene encoding the cytochrome P-450 oxysterol 7-α-hydroxylase, CYP7B1, an enzyme implicated in the cholesterol metabolism. Mutations in CYP7B1 were found in both pure and complicated forms of the disease with a mutation frequency of 7.7% in pure recessive cases. The mutation frequency in complex forms, approximately 6.6%, is more controversial and needs to be refined. We studied in more detail the SPG5-related spectrum of complex phenotypes by screening CYPB1 for mutations in a large cohort of 105 Italian hereditary spastic paraplegias (HSPs) index patients including 50 patients with a complicated HSP (cHSP) phenotype overlapping the SPG11- and the SPG15-related forms except for the lack of thin corpus callosum and 55 pure patients. Five CYP7B1 mutations, three of which are novel, were identified in four patients, two with a complex form of the disease and two with a pure phenotype. The CYP7B1 mutation frequencies obtained in both complicated and pure familial cases are comparable to the known ones. These results obtained extend the range of SPG5-related phenotypes and reveal variability in clinical presentation, disease course and functional profile in the SPG5-related patients while providing with some clues for molecular diagnosis in cHSP.
Collapse
Affiliation(s)
- A Arnoldi
- E. Medea Scientific Institute, Laboratory of Molecular Biology, Bosisio Parini, Lecco, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Manganelli F, Pisciotta C, Dubbioso R, Iodice R, Criscuolo C, Ruggiero L, De Michele G, Santoro L. Electrophysiological characterisation in hereditary spastic paraplegia type 5. Clin Neurophysiol 2010; 122:819-22. [PMID: 21111673 DOI: 10.1016/j.clinph.2010.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess in SPG5 hereditary spastic paraparesis (HSP) the involvement of the central (CNS) and the peripheral (PNS) nervous system by a multimodal electrophysiological approach. METHODS Four patients belonging to three HSP families, with a molecular diagnosis of SPG5, underwent electrophysiological evaluation including electromyography (EMG) and nerve conduction study (NCS), motor-evoked potentials (MEPs) by transcranial magnetic stimulation (TMS) and somatosensory evoked potentials (SEPs) at upper and lower limbs, visual (VEPs) and brainstem auditory evoked potentials (BAEPs). In one patient, electrophysiological evaluation was performed twice at the age of 12 and 31 years. RESULTS EMG and NCS were normal. MEPs and SEPs were abnormal in all patients along the central pathway for upper and/or lower limbs. VEPs revealed a damage of visual pathway and BAEPs showed the involvement of auditory pathway within the brainstem. In the patient who underwent electrophysiological follow-up, MEP and SEP findings were unmodified, whereas VEPs showed no reproducible responses. CONCLUSIONS We report an extensive electrophysiological evaluation of SPG5 and we confirm that the SPG5 phenotype may be broader than pure presentation. SIGNIFICANCE Electrophysiological evaluation, showing diffuse CNS involvement with PNS sparing, could be very useful to address the molecular diagnosis and to follow-up a hypothetical treatment.
Collapse
Affiliation(s)
- Fiore Manganelli
- Department of Neurological Sciences, University Federico II of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Biancheri R, Ciccolella M, Rossi A, Tessa A, Cassandrini D, Minetti C, Santorelli FM. White matter lesions in spastic paraplegia with mutations in SPG5/CYP7B1. Neuromuscul Disord 2009; 19:62-5. [PMID: 19187859 DOI: 10.1016/j.nmd.2008.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/26/2008] [Accepted: 10/07/2008] [Indexed: 12/28/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are relatively frequent disorders presenting great genetic heterogeneity. The recent identification of mutations in SPG5/CYP7B1 in six autosomal recessive kindred linked to the SPG5 locus on chromosome 8q prompted us to test the relative frequency of SPG5/CYP7B1 variants in 12 families and in sporadic HSP patients by high-resolution melting screening combined with direct sequencing. We present two patients who harbored three mutations (including two novel variants) in SPG5/CYP7B1 and white matter involvement evidenced at brain MRI. In HSP patients in whom no other genes were mutated, screening of SPG5/CYP7B1 seems to have a low diagnostic yield in autosomal recessive (8%) and sporadic (<1%) cases, even in those with complicated clinical features.
Collapse
Affiliation(s)
- Roberta Biancheri
- IRCCS G. Gaslini Pediatric Institute and University of Genoa, Unit of Muscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Criscuolo C, Filla A, Coppola G, Rinaldi C, Carbone R, Pinto S, Wang Q, de Leva MF, Salvatore E, Banfi S, Brunetti A, Quarantelli M, Geschwind DH, Pappatà S, De Michele G. Two novel CYP7B1 mutations in Italian families with SPG5: a clinical and genetic study. J Neurol 2009; 256:1252-7. [PMID: 19363635 DOI: 10.1007/s00415-009-5109-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/16/2009] [Accepted: 03/04/2009] [Indexed: 12/28/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are a heterogeneous group of neurodegenerative disorders characterized by progressive weakness and spasticity in the lower limbs. Spasticity may occur in isolation (''pure'' HSP) or may be accompanied by other features. Although autosomal recessive HSPs usually have clinically complex phenotypes, mutations within a few genes underlie pure forms. Recently the gene (CYP7B1) responsible for SPG5, a pure recessive HSP, has been identified. The six CYP7B1 coding exons were analysed in four Italian families. Complete clinical assessment was performed in all patients. Blood CYP7B1 mRNA levels were assessed in three patients and six controls. Brain MRI and (18)F-fluoro-deoxy-glucose positron emission tomography (PET) scan were conducted in three patients. Two novel homozygous mutations were identified. Both result in a frameshift and the introduction of a premature stop codon at the C-terminal of the protein. Patients have reduced blood CYP7B1 mRNA levels, suggesting nonsense mediated RNA decay. Although clinical assessment showed a pure form of spastic paraplegia, MRI demonstrated white matter abnormalities in three patients and PET scan revealed cerebellar hypometabolism in one. Based on the results, we report the first Italian families with SPG5 molecular characterization and describe two novel truncating mutations in CYP7B1. The recessive character, the truncating nature of the mutations, and the reduced peripheral blood CYP7B1 mRNA levels suggest that the development of the disease is associated with a loss of function. SPG5 is considered a pure form of HSP, but MRI and PET findings in our patients suggest that SPG5 phenotype may be broader than the pure presentation.
Collapse
Affiliation(s)
- Chiara Criscuolo
- Dipartimento di Scienze Neurologiche, Università degli Studi di Napoli Federico II, Via Pansini 5, Naples 80131, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Genetics and Pathogenesis of Inherited Ataxias and Spastic Paraplegias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:263-96. [DOI: 10.1007/978-90-481-2813-6_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Joshi PS, Molyneaux BJ, Feng L, Xie X, Macklis JD, Gan L. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron 2008; 60:258-72. [PMID: 18957218 DOI: 10.1016/j.neuron.2008.08.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/23/2008] [Accepted: 08/05/2008] [Indexed: 12/14/2022]
Abstract
While progenitor-restricted factors broadly specify area identities in developing neocortex, the downstream regulatory elements involved in acquisition of those identities in postmitotic neurons are largely unknown. Here, we identify Bhlhb5, a transcription factor expressed in layers II-V, as a postmitotic regulator of area identity. Bhlhb5 is initially expressed in a high caudomedial to low rostrolateral gradient that transforms into a sharp border between sensory and rostral motor cortices. Bhlhb5 null mice exhibit aberrant expression of area-specific genes and structural organization in the somatosensory and caudal motor cortices. In somatosensory cortex, Bhlhb5 null mice display postsynaptic disorganization of vibrissal barrels. In caudal motor cortex, Bhlhb5 null mice exhibit anomalous differentiation of corticospinal motor neurons, accompanied by failure of corticospinal tract formation. Together, these results demonstrate Bhlhb5's function as an area-specific transcription factor that regulates the postmitotic acquisition of area identities and elucidate the genetic hierarchy between progenitors and postmitotic neurons driving neocortical arealization.
Collapse
Affiliation(s)
- Pushkar S Joshi
- Department of Ophthalmology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
11
|
Schüle R, Brandt E, Karle KN, Tsaousidou M, Klebe S, Klimpe S, Auer-Grumbach M, Crosby AH, Hübner CA, Schöls L, Deufel T, Beetz C. Analysis of CYP7B1 in non-consanguineous cases of hereditary spastic paraplegia. Neurogenetics 2008; 10:97-104. [PMID: 18855023 DOI: 10.1007/s10048-008-0158-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/24/2008] [Indexed: 02/06/2023]
Abstract
Hereditary spastic paraplegia (HSP) is a neurodegenerative condition defined clinically by lower limb spasticity and weakness. Homozygous mutations in CYP7B1 have been identified in several consanguineous families that represented HSP type 5 (SPG5), one of the many genetic forms of the disease. We used direct sequencing and multiplex ligation-dependent probe amplification to screen for CYP7B1 alterations in apparently sporadic HSP patients (n = 12) as well as index patients from non-consanguineous families with recessive (n = 8) and dominant (n = 8) transmission of HSP. One sporadic patient showing HSP as well as optic atrophy carried a homozygous nonsense mutation. Compound heterozygosity was observed in a recessive family with a clinically pure phenotype. A heterozygous missense change segregated in a small dominant family. We also found a significant association of a known coding polymorphism with cerebellar signs complicating a primary HSP phenotype. Our findings suggest CYP7B1 alterations to represent a rather frequent cause of HSP that should be considered in patients with various clinical presentations.
Collapse
Affiliation(s)
- Rebecca Schüle
- Sektion Klinische Neurogenetik, Hertie Institut für Klinische Hirnforschung, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Tsaousidou MK, Ouahchi K, Warner TT, Yang Y, Simpson MA, Laing N, Wilkinson PA, Madrid RE, Patel H, Hentati F, Patton M, Hentati A, Lamont PJ, Siddique T, Crosby AH. Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 2008; 82:510-5. [PMID: 18252231 DOI: 10.1016/j.ajhg.2007.10.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/04/2007] [Accepted: 10/30/2007] [Indexed: 02/06/2023] Open
Abstract
The hereditary spastic paraplegias (HSPs) are a genetically and clinically heterogeneous group of upper-motor-neuron degenerative diseases characterized by selective axonal loss in the corticospinal tracts and dorsal columns. Although numerous mechanisms involving defective subcellular transportation, mitochondrial malfunction, and increased oxidative stress have been proposed, the pathogenic basis underlying the neuronal loss is unknown. We have performed linkage analysis to refine the extent of the SPG5 disease locus and conducted sequence analysis of the genes located within this region. This identified sequence alterations in the cytochrome P450-7B1 (CYP7B1) associated with this pure form of HSP. In the liver, CYP7B1 offers an alternative pathway for cholesterol degradation and also provides the primary metabolic route for the modification of dehydroepiandrosterone neurosteroids in the brain. These findings provide the first direct evidence of a pivotal role of altered cholesterol metabolism in the pathogenesis of motor-neuron degenerative disease and identify a potential for therapeutic intervention in this form of HSP.
Collapse
|