1
|
Sidky AM, Melo ARV, Kay TT, Raposo M, Lima M, Monckton DG. Age-dependent somatic expansion of the ATXN3 CAG repeat in the blood and buccal swab DNA of individuals with spinocerebellar ataxia type 3/Machado-Joseph disease. Hum Genet 2024; 143:1363-1378. [PMID: 39375222 PMCID: PMC11522074 DOI: 10.1007/s00439-024-02698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is caused by the expansion of a genetically unstable polyglutamine-encoding CAG repeat in ATXN3. Longer alleles are generally associated with earlier onset and frequent intergenerational expansions mediate the anticipation observed in this disorder. Somatic expansion of the repeat has also been implicated in disease onset and slowing the rate of somatic expansion has been proposed as a therapeutic strategy. Here, we utilised high-throughput ultra-deep MiSeq amplicon sequencing to precisely define the number and sequence of the ATXN3 repeat, the genotype of an adjacent single nucleotide variant and quantify somatic expansion in blood and buccal swab DNA of a cohort of individuals with SCA3 from the Azores islands (Portugal). We revealed systematic mis-sizing of the ATXN3 repeat and high levels of inaccuracy of the traditional fragment length analysis that have important implications for attempts to identify modifiers of clinical and molecular phenotypes. Quantification of somatic expansion in blood DNA and multivariate regression revealed the expected effects of age at sampling and CAG repeat length, although the effect of repeat length was surprisingly modest with much stronger associations with age. We also observed an association of the downstream rs12895357 single nucleotide variant with the rate of somatic expansion, and a higher level of somatic expansion in buccal swab DNA compared to blood. These data suggest that the ATXN3 locus in SCA3 patients in blood or buccal swab DNA might serve as a good biomarker for clinical trials testing suppressors of somatic expansion with peripheral exposure.
Collapse
Affiliation(s)
- Ahmed M Sidky
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
- Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
- Present address: Surgery Brain Research Institute, J219, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, 9500-321, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Teresa T Kay
- Serviço de Genética Clínica, Hospital de D. Estefânia, Lisboa, Portugal
| | - Mafalda Raposo
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, 9500-321, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
2
|
Sena LS, Furtado GV, Pedroso JL, Barsottini O, Cornejo-Olivas M, Nóbrega PR, Braga Neto P, Soares DMB, Vargas FR, Godeiro C, Medeiros PFVD, Camejo C, Toralles MBP, Fagundes NJR, Jardim LB, Saraiva-Pereira ML. Spinocerebellar ataxia type 2 has multiple ancestral origins. Parkinsonism Relat Disord 2024; 120:105985. [PMID: 38181536 DOI: 10.1016/j.parkreldis.2023.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Spinocerebellar ataxia type 2 (SCA2) is a dominant neurodegenerative disorder due to expansions of a CAG repeat tract (CAGexp) at the ATXN2 gene. Previous studies found only one ancestral haplotype worldwide, with a C allele at rs695871. This homogeneity was unexpected, given the severe anticipations related to SCA2. We aimed to describe informative ancestral haplotypes found in South American SCA2 families. METHODS Seventy-seven SCA2 index cases were recruited from Brazil, Peru, and Uruguay; 263 normal chromosomes were used as controls. The SNPs rs9300319, rs3809274, rs695871, rs1236900 and rs593226, and the STRs D12S1329, D12S1333, D12S1672 and D12S1332, were used to reconstruct haplotypes. RESULTS Eleven ancestral haplotypes were found in SCA2 families. The most frequent ones were A-G-C-C-C (46.7 % of families), G-C-C-C-C (24.6 %) and A-C-C-C-C (10.3 %) and their mean (sd) CAGexp were 41.68 (3.55), 40.42 (4.11) and 45.67 (9.70) (p = 0.055), respectively. In contrast, the mean (sd) CAG lengths at normal alleles grouped per haplotypes G-C-G-A-T, A-G-C-C-C and G-C-C-C-C were 22.97 (3.93), 23.85 (3.59), and 30.81 (4.27) (p < 0.001), respectively. The other SCA2 haplotypes were rare: among them, a G-C-G-A-T lineage was found, evidencing a G allele in rs695871. CONCLUSION We identified several distinct ancestral haplotypes in SCA2 families, including an unexpected lineage with a G allele at rs695871, a variation never found in hundreds of SCA2 patients studied worldwide. SCA2 has multiple origins in South America, and more studies should be done in other regions of the world.
Collapse
Affiliation(s)
- Lucas Schenatto Sena
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90035-903, Porto Alegre, Brazil.
| | - Gabriel Vasata Furtado
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90035-903, Porto Alegre, Brazil
| | - José Luiz Pedroso
- Universidade Federal do Estado de São Paulo, Rua Pedro de Toledo 650, 04039-031, São Paulo, Brazil
| | - Orlando Barsottini
- Universidade Federal do Estado de São Paulo, Rua Pedro de Toledo 650, 04039-031, São Paulo, Brazil
| | - Mario Cornejo-Olivas
- Neurogenetics Working Group, Universidad Cientifica del Sur, 19 Panamericana S Avenue, 15067, Lima, 15067, Peru; Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancas St, 15003, Lima, Peru
| | - Paulo Ribeiro Nóbrega
- Setor de Neurologia, Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Rua Professor Costa Mendes, 1608, 60430-140, Fortaleza, CE, Brazil; Centro Universitário Christus, Rua Alexandre Baraúna 949, 60430-160, Fortaleza, CE, Brazil
| | - Pedro Braga Neto
- Setor de Neurologia, Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Rua Professor Costa Mendes, 1608, 60430-140, Fortaleza, CE, Brazil; Curso de Medicina, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Avenida Dr. Silas Munguba, 1700, 60714-903, Fortaleza, CE, Brazil
| | - Danyela Martins Bezerra Soares
- Curso de Medicina, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Avenida Dr. Silas Munguba, 1700, 60714-903, Fortaleza, CE, Brazil
| | - Fernando Regla Vargas
- Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca 94, 20211-010, Rio de Janeiro, Brazil; Laboratório de Epidemiologia de Malformações Congênitas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, 21040-900, Rio de Janeiro, Brazil
| | - Clecio Godeiro
- Departamento de Medicina Integrada, Hospital Universitário Onofre Lopes, Avenida Nilo Peçanha, 59012-300, Natal, Brazil
| | - Paula Frassinetti Vasconcelos de Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Rua Carlos Chagas S/n, 58107-670, Campina Grande, Brazil
| | - Claudia Camejo
- Facultad de Medicina. Universidad de La República, Avenida General Flores 3461, 11700, Montevideo, Uruguay
| | | | - Nelson Jurandi Rosa Fagundes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil; Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90035-903, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90.035-903, Brazil; Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 90035-002, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90035-903, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90.035-903, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, 90035-003, Porto Alegre, Brazil
| |
Collapse
|
3
|
Factors Associated with Intergenerational Instability of ATXN3 CAG Repeat and Genetic Anticipation in Chinese Patients with Spinocerebellar Ataxia Type 3. THE CEREBELLUM 2021; 19:902-906. [PMID: 32676850 DOI: 10.1007/s12311-020-01167-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by unstable expanded CAG repeats (expCAGs) in ATXN3. Factors associated with intergenerational instability (delta-expCAG) and genetic anticipation in SCA3 have never been reported in Chinese mainland. Here, we demonstrated that unstable transmissions occurred more often in sons than in daughters (91% vs 72%, Fisher's exact test, p = 0.012). The extended delta-expCAG of father-son transmissions was greater than that of mother-son transmissions (3.8 ± 2.3 repeats vs 1.6 ± 1.0 repeats, Mann-Whitney U, p = 0.001). Genetic anticipation was frequently observed between generations but not affected by the delta-expCAG.
Collapse
|
4
|
Sena LS, Dos Santos Pinheiro J, Saraiva-Pereira ML, Jardim LB. Selective forces acting on spinocerebellar ataxia type 3/Machado-Joseph disease recurrency: A systematic review and meta-analysis. Clin Genet 2020; 99:347-358. [PMID: 33219521 DOI: 10.1111/cge.13888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/25/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a dominant neurodegenerative disease caused by the expansion of a CAG repeat tract in ATXN3. Anticipation and worsening of clinical picture in subsequent generations were repeatedly reported, but there is no indication that SCA3/MJD frequency is changing. Thus, we performed a systematic review and meta-analysis on phenomena with potential effect on SCA3/MJD recurrency in populations: instability of CAG repeat transmissions, anticipation, fitness, and segregation of alleles. Transmission of the mutant allele was associated with an increase of 1.23 CAG repeats in the next generation, and the average change in age at onset showed an anticipation of 7.75 years per generation; but biased recruitments cannot be ruled out. Affected SCA3/MJD individuals had 45% more children than related controls. Transmissions from SCA3/MJD carriers showed that the expanded allele was segregated in 64% of their children. In contrast, transmissions from normal subjects showed that the minor allele was segregated in 54%. The present meta-analysis concluded that there is a segregation distortion favoring the expanded allele, among children of carriers. Therefore, further studies on transmissions and anticipation phenomena as well as more observations about fertility are required to clarify these selective forces over SCA3/MJD.
Collapse
Affiliation(s)
- Lucas Schenatto Sena
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jordânia Dos Santos Pinheiro
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional, Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
6
|
Costa IPD, Almeida BC, Sequeiros J, Amorim A, Martins S. A Pipeline to Assess Disease-Associated Haplotypes in Repeat Expansion Disorders: The Example of MJD/SCA3 Locus. Front Genet 2019; 10:38. [PMID: 30804982 PMCID: PMC6370646 DOI: 10.3389/fgene.2019.00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
At least 40 human diseases are associated with repeat expansions; yet, the mutational origin and instability mechanisms remain unknown for most of them. Previously, genetic epidemiology and predisposing backgrounds for the instability of some expanding loci have been studied in different populations through the analysis of diversity flanking the respective pathogenic repeats. Here, we aimed at developing a pipeline to assess disease-associated haplotypes at oligonucleotide repeat loci, combining analysis of single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs). Machado-Joseph disease (MJD/SCA3), the most frequent dominant ataxia worldwide, was used as an example of a detailed procedure. Thus, to identify genetic backgrounds that segregate with expanded/mutated alleles in MJD, we selected a set of 26 SNPs and 7 STRs flanking the causative CAG repeat. Key criteria and steps for this selection are described, and included (1) haplotype blocks minimizing the occurrence of recombination (for SNPs); and (2) match scores to increase potential for polymorphic information content of repetitive sequences found in Tandem Repeats Finder (for STRs). To directly assess SNP haplotypes in phase with MJD expansions, we optimized a strategy with preferential amplification of normal over expanded alleles, in addition to SNP allele-specific amplifications; this allowed the identification of disease-associated SNP haplotypes, even when only the proband is available in a given family. To infer STR haplotypes, we optimized a multiplex PCR, including 7 STRs plus the MJD_CAG repeat, followed by analysis of segregation or the use of the PHASE software. This protocol is a ready-to-use tool to assess MJD haplotypes in different populations. The pipeline designed can be used to assess disease-associated haplotypes in other repeat-expansion diseases. This should be of great utility to study (1) genetic epidemiology (population-of-origin, age and spreading routes of mutations) and (2) mechanisms responsible for de novo expansions, in these neurological diseases; (3) to detect predisposing haplotypes and (4) phenotype modifiers; (5) to help solving cases of apparent homoallelism (two same-size normal alleles) in diagnosis; and (6) to identify the best targets for the development of allele-specific therapies in ethnically diverse patient populations.
Collapse
Affiliation(s)
- Inês P. D. Costa
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Beatriz C. Almeida
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - António Amorim
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Bertolin C, Querin G, Martinelli I, Pennuto M, Pegoraro E, Sorarù G. Insights into the genetic epidemiology of spinal and bulbar muscular atrophy: prevalence estimation and multiple founder haplotypes in the Veneto Italian region. Eur J Neurol 2018; 26:519-524. [PMID: 30351503 DOI: 10.1111/ene.13850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Literature data on spinal and bulbar muscular atrophy (SBMA) epidemiology are limited and restricted to specific populations. The aim of our study was to accurately collect information about SBMA patients living in the Veneto region in Italy to compute reliable epidemiological data. Androgen receptor (AR) lineages were genotyped to evaluate the presence of a founder effect. METHODS A prevalence survey considering all SBMA patients diagnosed in the Italian Veneto region on 31 January 2018 was carried out. The presence of different haplotypes obtained genotyping 15 polymorphic markers (single nucleotide polymorphisms and short tandem repeats) around the AR gene was evaluated. RESULTS Based on 68 patients, the punctual prevalence of the disease on 31 January 2018 was 2.58/100 000 (95% confidence interval 1.65-3.35) in the male population. Five different haplotypes were identified, confirming the existence of multiple founder effects. It was also observed that, within the same haplotype, patients had a similar CAG repeat number (P-value < 0.001). CONCLUSIONS A reliable estimation of SBMA prevalence in the Italian Veneto region was calculated which does not seem to be affected by a strong founder effect. Moreover, our data suggest that the length of the CAG expansion could be preserved in patients harbouring the same haplotype.
Collapse
Affiliation(s)
- C Bertolin
- Department of Neurosciences, University of Padova, Padova, Italy
| | - G Querin
- Laboratoire d'Imagerie Biomédicale, Sorbonne University, CNRS, INSERM, Paris, France
| | - I Martinelli
- Department of Neurosciences, University of Padova, Padova, Italy
| | - M Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Myology Center, University of Padova, Padova, Italy.,Padova Neuroscience Center, Padova, Italy
| | - E Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | - G Sorarù
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Kay C, Collins JA, Wright GEB, Baine F, Miedzybrodzka Z, Aminkeng F, Semaka AJ, McDonald C, Davidson M, Madore SJ, Gordon ES, Gerry NP, Cornejo-Olivas M, Squitieri F, Tishkoff S, Greenberg JL, Krause A, Hayden MR. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population. Am J Med Genet B Neuropsychiatr Genet 2018; 177:346-357. [PMID: 29460498 DOI: 10.1002/ajmg.b.32618] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/21/2017] [Indexed: 01/31/2023]
Abstract
Huntington disease (HD) is the most common monogenic neurodegenerative disorder in populations of European ancestry, but occurs at lower prevalence in populations of East Asian or black African descent. New mutations for HD result from CAG repeat expansions of intermediate alleles (IAs), usually of paternal origin. The differing prevalence of HD may be related to the rate of new mutations in a population, but no comparative estimates of IA frequency or the HD new mutation rate are available. In this study, we characterize IA frequency and the CAG repeat distribution in fifteen populations of diverse ethnic origin. We estimate the HD new mutation rate in a series of populations using molecular IA expansion rates. The frequency of IAs was highest in Hispanic Americans and Northern Europeans, and lowest in black Africans and East Asians. The prevalence of HD correlated with the frequency of IAs by population and with the proportion of IAs found on the HD-associated A1 haplotype. The HD new mutation rate was estimated to be highest in populations with the highest frequency of IAs. In European ancestry populations, one in 5,372 individuals from the general population and 7.1% of individuals with an expanded CAG repeat in the HD range are estimated to have a molecular new mutation. Our data suggest that the new mutation rate for HD varies substantially between populations, and that IA frequency and haplotype are closely linked to observed epidemiological differences in the prevalence of HD across major ancestry groups in different countries.
Collapse
Affiliation(s)
- Chris Kay
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer A Collins
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Galen E B Wright
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Fiona Baine
- Division of Human Genetics, Department of Pathology, University of Cape Town, South Africa.,Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zosia Miedzybrodzka
- Medical Genetics Group, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Folefac Aminkeng
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada.,Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Alicia J Semaka
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Cassandra McDonald
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Mark Davidson
- Medical Genetics Group, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Steven J Madore
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Erynn S Gordon
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Norman P Gerry
- Molecular Biology Group, Coriell Institute for Medical Research, Camden, New Jersey
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima, Peru
| | - Ferdinando Squitieri
- IRCCS Casa Sollievo della Sofferenza Hospital, Huntington and Rare Diseases Unit (CSS-Mendel Rome), San Giovanni Rotondo, Italy
| | - Sarah Tishkoff
- Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacquie L Greenberg
- Division of Human Genetics, Department of Pathology, University of Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael R Hayden
- Centre for Molecular Medicine Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Souza GN, Kersting N, Krum-Santos AC, Santos ASP, Furtado GV, Pacheco D, Gonçalves TA, Saute JA, Schuler-Faccini L, Mattos EP, Saraiva-Pereira ML, Jardim LB. Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions. Clin Genet 2016; 90:134-40. [PMID: 26693702 DOI: 10.1111/cge.12719] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 11/30/2022]
Abstract
Controversies about Mendelian segregation and CAG expansion (CAGexp) instabilities during meiosis in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) need clarification. Additional evidence about these issues was obtained from the cohort of all SCA3/MJD individuals living in South Brazil. A survey was carried out to update information registered since 2001. Deaths were checked with the Public Information System, and data was made anonymous. Anticipation and delta-CAGexp from parent-offspring pairs, and delta-CAGexp between siblings were obtained. One hundred and fifty-nine families (94% of the entire registry) were retrieved, comprising 3725 living individuals as of 2015, 625 of these being symptomatic. Minimal prevalence was 6:100,000. Carriers of a CAGexp represented 65.6% of sibs in the genotyped offspring (p < 0.001). Median instability was larger among paternal than maternal transmissions, and instabilities correlated with anticipation (r = 0.38; p = 0.001). Age of the parent correlated to delta-CAGexp among 115 direct parent-offspring CAGexp transmissions (ρ = 0.23, p = 0.014). In 98 additional kindreds, the delta-CAGexp between 269 siblings correlated with their delta-of-age (ρ = 0.27, p < 0.0001). SCA3/MJD was associated with a segregation distortion favoring the expanded allele in our cohort. Instability of expansion during meiosis was weakly influenced by the age of the transmitting parent at the time of conception.
Collapse
Affiliation(s)
- G N Souza
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - N Kersting
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A C Krum-Santos
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - A S P Santos
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - G V Furtado
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - D Pacheco
- Faculdade de Serviço Social, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - T A Gonçalves
- Escola de Enfermagem, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - J A Saute
- Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - L Schuler-Faccini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Departamento de Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil
| | - E P Mattos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - M L Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil.,Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - L B Jardim
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Instituto de Genética Médica Populacional (INAGEMP), Porto Alegre, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
|
11
|
Usdin K, House NCM, Freudenreich CH. Repeat instability during DNA repair: Insights from model systems. Crit Rev Biochem Mol Biol 2015; 50:142-67. [PMID: 25608779 DOI: 10.3109/10409238.2014.999192] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of repeated sequences is the cause of over 30 inherited genetic diseases, including Huntington disease, myotonic dystrophy (types 1 and 2), fragile X syndrome, many spinocerebellar ataxias, and some cases of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat expansions are dynamic, and disease inheritance and progression are influenced by the size and the rate of expansion. Thus, an understanding of the various cellular mechanisms that cooperate to control or promote repeat expansions is of interest to human health. In addition, the study of repeat expansion and contraction mechanisms has provided insight into how repair pathways operate in the context of structure-forming DNA, as well as insights into non-canonical roles for repair proteins. Here we review the mechanisms of repeat instability, with a special emphasis on the knowledge gained from the various model systems that have been developed to study this topic. We cover the repair pathways and proteins that operate to maintain genome stability, or in some cases cause instability, and the cross-talk and interactions between them.
Collapse
Affiliation(s)
- Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, NIH , Bethesda, MD , USA
| | | | | |
Collapse
|
12
|
Santos D, Pimenta J, Wong VCN, Amorim A, Martins S. Diversity in the androgen receptor CAG repeat has been shaped by a multistep mutational mechanism. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:581-6. [PMID: 25078541 DOI: 10.1002/ajmg.b.32261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 06/26/2014] [Indexed: 02/06/2023]
Abstract
The androgen receptor (AR) gene encodes a type of nuclear receptor that functions as a steroid-hormone activated transcription factor. In its coding region, AR includes a CAG repeat, which has been intensely studied due to the inverse correlation between repeat size and AR transcriptional activity. Several studies have reported different (CAG)n sizes associated with the risk of androgen-linked diseases. We aimed at clarifying the mechanisms on the origin of newly CAG sized alleles through a strategy involving the analysis of the associated haplotype diversity. We genotyped 374 control individuals of European and Asian ancestry, and reconstructed the haplotypes associated with the CAG repeat, defined by 10 SNPs and 6 flanking STRs. The most powerful SNPs to tag AR lineages are rs7061037-rs12012620 and rs34191540-rs6625187-rs2768578 in Europeans and Asians, respectively. In the most frequent AR lineage, (CAG)18 alleles seem to have been generated by a multistep mutation mechanism, most probably from longer alleles. We further noticed that the DXS1194-DXS1111 haplotype, in linkage disequilibrium with AR-(CAG)n expanded alleles responsible for spinal bulbar muscular atrophy (SBMA), is rare among our controls; however, the haplotype strategy here described may be used to clarify the origin of expansions in other populations, as in future association studies.
Collapse
Affiliation(s)
- Diana Santos
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
13
|
Modifiers of (CAG)n instability in Machado–Joseph disease (MJD/SCA3) transmissions: an association study with DNA replication, repair and recombination genes. Hum Genet 2014; 133:1311-8. [DOI: 10.1007/s00439-014-1467-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
|
14
|
Ogun SA, Martins S, Adebayo PB, Dawodu CO, Sequeiros J, Finkel MF. Machado-Joseph disease in a Nigerian family: mutational origin and review of the literature. Eur J Hum Genet 2014; 23:271-3. [PMID: 24781759 DOI: 10.1038/ejhg.2014.77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/19/2014] [Accepted: 03/28/2014] [Indexed: 12/30/2022] Open
Abstract
Machado-Joseph disease (MJD) has been described in Africans, but no cases have been reported from Nigeria. Current MJD global distribution results from both the ancestral populations-of-origin and the founder effects of mutations, some as a consequence of the Portuguese sea travels in the 15th to 16th century. Two main ancestral haplotypes have been identified: the Machado lineage, which is more recent, predominant in families of Portuguese extraction, and the Joseph lineage, which is much older and worldwide spread, postulated to have an Asian origin. We report a Nigerian family with MJD from Calabar, once settled by Portuguese slave traders, and assessed its mutational origin. The proband was a 33-year-old man with progressive unsteady gait, weakness of all limbs, dysphagia, dysarthria, urinary frequency and diaphoresis. He had end-of-gaze nystagmus, spastic quadriparesis and atrophic small muscles of the hand. He showed fibrillation potentials on EMG, and nerve conduction studies suggested a central axonopathy without demyelination. This family bears the Joseph haplotype, which has a founder effect in the island of Flores, in the Azores (and their descendants in North-America), but is also the most common in non-Portuguese populations worldwide, with an estimated mutation age of around 7000 years.
Collapse
Affiliation(s)
- Shamsideen Abayomi Ogun
- Neurology Unit, Olabisi Onabanjo University, Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria
| | - Sandra Martins
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Philip B Adebayo
- Neurology Unit, Ladoke Akintola University, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Clara O Dawodu
- Neurology Unit, Lagos State University, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Jorge Sequeiros
- UnIGENe and CGPP, IBMC - Institute for Molecular and Cell Biology, and ICBAS, Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
15
|
Grigoroiu-Serbanescu M, Wickramaratne PJ, Mihailescu R, Prelipceanu D, Sima D, Codreanu M, Grimberg M, Elston RC. Paternal age effect on age of onset in bipolar I disorder is mediated by sex and family history. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:567-79. [PMID: 22592928 DOI: 10.1002/ajmg.b.32063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 04/25/2012] [Indexed: 12/13/2022]
Abstract
This study investigated for the first time in the psychiatric literature the effect of parental age on age-of-onset (AO) in bipolar I disorder (BPI) in relation to proband sex and family history (FH) for major psychoses in a sample of 564 BPI probands. All probands, 72.68% of their first-degree and 12.13% of their second-degree relatives were directly interviewed. The FH-method was used for all unavailable relatives. The diagnoses were made according to DSM-IV(TR) . The impact of parental age on proband early/late AO was evaluated through logistic regression with the cut-off for early AO determined through commingling analysis. We found evidence for a significant influence of increasing paternal age, and especially age ≥ 35 years, on AO of BPI disorder in the total sample (OR = 0.54, CI: 0.35-0.80), in the female subsample (OR = 0.44, CI: 0.25-0.78), in the sporadic subsample (OR = 0.64, CI: 0.38-0.95), and in the subsample with FH of recurrent unipolar major depression (Mdd-RUP) (OR = 0.55, CI: 0.34-0.87). No significant effect of paternal age on disease AO was found in patients with FH of bipolar (BP), schizoaffective disorders (SA), or schizophrenia (SCZ), nor in males. Mean age was significantly higher in fathers of sporadic cases and of cases with FH of Mdd-RUP than in fathers of cases with FH of BP/SA/SCZ (P = 0.011). Maternal age had no significant effect either in the total sample or in subsamples defined by proband sex or FH. In conclusion, in our sample increasing paternal age lowered the onset of BPI selectively, the effect being related to the female sex and FH-type.
Collapse
Affiliation(s)
- Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sequeiros J, Martins S, Silveira I. Epidemiology and population genetics of degenerative ataxias. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:227-51. [PMID: 21827892 DOI: 10.1016/b978-0-444-51892-7.00014-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jorge Sequeiros
- Institute of Molecular and Cell Biology, University of Porto, Portugal.
| | | | | |
Collapse
|
17
|
Costa MDC, Paulson HL. Toward understanding Machado-Joseph disease. Prog Neurobiol 2011; 97:239-57. [PMID: 22133674 DOI: 10.1016/j.pneurobio.2011.11.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/16/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is the most common inherited spinocerebellar ataxia and one of many polyglutamine neurodegenerative diseases. In MJD, a CAG repeat expansion encodes an abnormally long polyglutamine (polyQ) tract in the disease protein, ATXN3. Here we review MJD, focusing primarily on the function and dysfunction of ATXN3 and on advances toward potential therapies. ATXN3 is a deubiquitinating enzyme (DUB) whose highly specialized properties suggest that it participates in ubiquitin-dependent proteostasis. By virtue of its interactions with VCP, various ubiquitin ligases and other ubiquitin-linked proteins, ATXN3 may help regulate the stability or activity of many proteins in diverse cellular pathways implicated in proteotoxic stress response, aging, and cell differentiation. Expansion of the polyQ tract in ATXN3 is thought to promote an altered conformation in the protein, leading to changes in interactions with native partners and to the formation of insoluble aggregates. The development of a wide range of cellular and animal models of MJD has been crucial to the emerging understanding of ATXN3 dysfunction upon polyQ expansion. Despite many advances, however, the principal molecular mechanisms by which mutant ATXN3 elicits neurotoxicity remain elusive. In a chronic degenerative disease like MJD, it is conceivable that mutant ATXN3 triggers multiple, interconnected pathogenic cascades that precipitate cellular dysfunction and eventual cell death. A better understanding of these complex molecular mechanisms will be important as scientists and clinicians begin to focus on developing effective therapies for this incurable, fatal disorder.
Collapse
Affiliation(s)
- Maria do Carmo Costa
- Department of Neurology, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
18
|
Progression rate of neurological deficits in a 10-year cohort of SCA3 patients. THE CEREBELLUM 2011; 9:419-28. [PMID: 20467850 DOI: 10.1007/s12311-010-0179-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Spinocerebellar ataxia 3 is an untreatable CAG repeat expansion disorder whose natural history is not completely understood. Our aims were to describe the progression of neurological manifestations in a long-term cohort of spinocerebellar ataxia 3, and to verify if CAG expanded repeat, gender, and age at onset were associated with the rate of progression. Patients entered the study between 1998 and 2005 and were seen until 2007. On each visit, the validated NESSCA scale, an inventory of 18 neurological manifestations, was applied. Scores observed in each year of disease duration produced a Growth Curve, which was analyzed through the random coefficients model. Scores obtained in some individual items were described through multi-state Markov models. One hundred fifty-six patients (78 families) were recruited; 28 were lost, and 23 died. Mean (sd) ages at onset and at baseline were 32.8 (10.6) and 40.7 (12.8) years; median (range) expanded CAGn was 74 (67-85). Three hundred fifteen NESSCA evaluations were performed, comprising disease durations from zero to 34 years. The 105 patients who completed the study were seen over 5 (sd = 2.4) years at intervals of 2.5 (sd = 1.5) years. The trajectory of NESSCA obtained for the overall group increased by 1.26 points per year. This slope increased by 0.15 points per each additional CAG in the expanded repeat (p < 0.0002) and decreased by 0.03 points per each additional year of age at onset (p = 0.005). NESSCA worsened steadily, producing linear trajectories, which were faster among patients with longer expanded repeats (>74) and with lower ages at onset (<34 years).
Collapse
|
19
|
Silva R, Saute J, Silva A, Coutinho A, Saraiva-Pereira M, Jardim L. Occupational therapy in spinocerebellar ataxia type 3: an open-label trial. Braz J Med Biol Res 2010; 43:537-42. [DOI: 10.1590/s0100-879x2010005000009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 03/02/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
- R.C.R. Silva
- Universidade Federal do Rio Grande do Sul; Hospital de Clínicas de Porto Alegre
| | | | | | | | - M.L. Saraiva-Pereira
- Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul; Hospital de Clínicas de Porto Alegre, Brasil
| | - L.B. Jardim
- Universidade Federal do Rio Grande do Sul; Universidade Federal do Rio Grande do Sul, Brasil; Hospital de Clínicas de Porto Alegre, Brasil
| |
Collapse
|
20
|
Warby SC, Visscher H, Butland S, Pearson CE, Hayden MR. Response to Falush: a role for cis-element polymorphisms in HD. Am J Hum Genet 2009; 85:942-5. [PMID: 20004773 DOI: 10.1016/j.ajhg.2009.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 01/21/2023] Open
|