1
|
Genetic Predisposition to Schizophrenia and Depressive Disorder Comorbidity. Genes (Basel) 2022; 13:genes13030457. [PMID: 35328011 PMCID: PMC8950769 DOI: 10.3390/genes13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Patients with schizophrenia have an increased risk of depressive disorders compared to the general population. The comorbidity between schizophrenia and depression suggests a potential coincidence of the pathophysiology and/or genetic predictors of these mental disorders. The aim of this study was to review the potential genetic predictors of schizophrenia and depression comorbidity. Materials and Methods: We carried out research and analysis of publications in the databases PubMed, Springer, Wiley Online Library, Taylor & Francis Online, Science Direct, and eLIBRARY.RU using keywords and their combinations. The search depth was the last 10 years (2010–2020). Full-text original articles, reviews, meta-analyses, and clinical observations were analyzed. A total of 459 articles were found, of which 45 articles corresponding to the purpose of this study were analyzed in this topic review. Results: Overlap in the symptoms and genetic predictors between these disorders suggests that a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. The molecular mechanisms linking schizophrenia and depression are polygenic. The most studied candidate genes are GRIN1, GPM6A, SEPTIN4, TPH1, TPH2, CACNA1C, CACNB2, and BCL9.Conclusion: Planning and conducting genome-wide and associative genetic studies of the comorbid conditions under consideration in psychiatry is important for the development of biological and clinical predictors and a personalized therapy strategy for schizophrenia. However, it should be recognized that the problems of predictive and personalized psychiatry in the diagnosis and treatment of schizophrenia and comorbid disorders are far from being resolved.
Collapse
|
2
|
Fernández EM, Cutraro YB, Adams J, Monteleone MC, Hughes KJ, Frasch AC, Vidal-Gadea AG, Brocco MA. Neuronal membrane glycoprotein (nmgp-1) gene deficiency affects chemosensation-related behaviors, dauer exit and egg-laying in Caenorhabditis elegans. J Neurochem 2021; 160:234-255. [PMID: 34816431 DOI: 10.1111/jnc.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
The nervous system monitors the environment to maintain homeostasis, which can be affected by stressful conditions. Using mammalian models of chronic stress, we previously observed altered brain levels of GPM6A, a protein involved in neuronal morphology. However, GPM6A's role in systemic stress responses remains unresolved. The nematode Caenorhabditis elegans expresses a GPM6A ortholog, the neuronal membrane glycoprotein 1 (NMGP-1). Because of the shared features between nematode and mammalian nervous systems and the vast genetic tools available in C. elegans, we used the worm to elucidate the role of GPM6A in the stress response. We first identified nmgp-1 expression in different amphid and phasmid neurons. To understand the nmgp-1 role, we characterized the behavior of nmgp-1(RNAi) animals and two nmgp-1 mutant alleles. Compared to control animals, mutant and RNAi-treated worms exhibited increased recovery time from the stress-resistant dauer stage, altered SDS chemosensation and reduced egg-laying rate resulting in egg retention (bag-of-worms phenotype). Silencing of nmgp-1 expression induced morphological abnormalities in the ASJ sensory neurons, partly responsible for dauer exit. These results indicate that nmgp-1 is required for neuronal morphology and for behaviors associated with chemosensation. Finally, we propose nmgp-1 mutants as a tool to screen drugs for human nervous system pathologies.
Collapse
Affiliation(s)
- Eliana M Fernández
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Yamila B Cutraro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Jessica Adams
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Melisa C Monteleone
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | - Kiley J Hughes
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| | | | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) San Martín, Buenos Aires, Argentina
| |
Collapse
|
3
|
Li Z, Liu X, Xu H, Zhao L, Zhou Y, Wu X, Huang X, Lang X, Wu F, Zhang X. Sex Difference in Comorbid Depression in First-Episode and Drug-Naive Patients With Schizophrenia: Baseline Results From the Depression in Schizophrenia in China Study. Psychosom Med 2021; 83:1082-1088. [PMID: 34419998 DOI: 10.1097/psy.0000000000000998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Comorbid depression is common in schizophrenia, and sex differences are prominent in many aspects of schizophrenia. However, few studies have investigated sex difference in comorbid depression in schizophrenia. This large sample study aimed to investigate sex differences in first-episode drug-naive (FEDN) patients with schizophrenia comorbid major depressive episode (SZ-MDE). METHODS A total of 996 FEDN patients with schizophrenia (472 males/524 females) were recruited. The 17-item Hamilton Depression Rating Scale and Positive and Negative Syndrome Scale (PANSS) were applied. RESULTS There was no difference in the prevalence of comorbid MDE between male and female patients with schizophrenia. Among SZ-MDE patients, men had more severe psychotic symptoms (scores of PANSS total scale, negative scale, and general psychopathology scale), more severe depressive symptoms, and higher proportion of severe depression than women (all p < .001). The early onset age of schizophrenia, smoking, and PANSS positive score were the risk factors for comorbid MDE only in female patients with schizophrenia (all p < .05). Furthermore, in female patients with SZ-MDE, smoking was associated with the severity category of depression (p = .001, odds ratio = 2.70). Multiple variable regression demonstrated that the Hamilton Depression Rating Scale score correlated with PANSS general psychopathology (p = .01) and total scores (p = .04) in female SZ-MDE. CONCLUSIONS Our results indicate sex differences in proportion of severe depression, clinical symptoms, and factors of comorbid MDE in FEDN patients with schizophrenia. These sex differences have clinical implications for the treatment of depression as related to the nature and severity of psychopathological symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Zezhi Li
- From the Department of Psychiatry (Li), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou; Qingdao Mental Health Center (Liu, Xu, Zhao), Qingdao University, Qingdao; Shenzhen Kangning Hospital (Zhou), Shenzhen, Guangdong; Department of Neurosurgery (X. Wu), Shanghai Changhai Hospital; Shanghai Mental Health Center (Huang), Shanghai; Department of Psychiatry, The First Clinical Medical College (Lang), Shanxi Medical University, Taiyuan; Department of Psychiatry (F. Wu, Zhang), The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou; and Department of Psychology (Zhang), University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li Z, Xue M, Zhao L, Zhou Y, Wu X, Xie X, Lang X, Zhang X. Comorbid major depression in first-episode drug-naïve patients with schizophrenia: Analysis of the Depression in Schizophrenia in China (DISC) study. J Affect Disord 2021; 294:33-38. [PMID: 34265669 DOI: 10.1016/j.jad.2021.06.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Depression is very common in patients with schizophrenia, but few studies have investigated the diagnosed major depressive episode (MDE) in first episode and drug naive (FEDN) schizophrenia. To our best knowledge, this is the first large sample study to examine the prevalence, clinical correlates and associated factors of diagnosed MDE in FEDN schizophrenia, as well as the relationship between depressive symptoms and psychopathological symptoms in these schizophrenia patients. METHODS A total of 996 FEDN schizophrenia patients were recruited. The 17-item Hamilton Depression Rating Scale (HAMD17) and Positive and Negative Syndrome Scale (PANSS) were used to assess the severity of depression and psychopathology, respectively. RESULTS Our results demonstrated that MDE coexisted in nearly half (49.30%) of FEDN schizophrenia patients. Male gender, smoking, PANSS general psychopathology and early age of onset were associated with MDE in patients with FEDN schizophrenia (all p<0.05). In schizophrenia patients with MDE, oridinal logistic regression showed that men (OR=6.65, 95%CI: 4.12-10.45, p<0.001) and smoking (OR=1.94, 95%CI: 1.25-3.01, p=0.003) were positively associated with severity category of depression (all p<0.05), while multivariate regression showed that HAMD17 total score was significantly associated with the PANSS general psychopathology (B=0.06, t=2.72, p=0.007) and total scores (B=0.04, t=2.57, p=0.01). CONCLUSION Our study shows that the prevalence of comorbid MDE is high in FEDN schizophrenia patients. Some demographic and clinical variables are associated with the severity of depression in these schizophrenia patients.
Collapse
Affiliation(s)
- Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mei Xue
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Lei Zhao
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | | | - Xi Wu
- Department of Neurosurgery, Shanghai Changhai Hospital, Shanghai, China
| | - Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoe Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
León A, Aparicio GI, Scorticati C. Neuronal Glycoprotein M6a: An Emerging Molecule in Chemical Synapse Formation and Dysfunction. Front Synaptic Neurosci 2021; 13:661681. [PMID: 34017241 PMCID: PMC8129562 DOI: 10.3389/fnsyn.2021.661681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022] Open
Abstract
The cellular and molecular mechanisms underlying neuropsychiatric and neurodevelopmental disorders show that most of them can be categorized as synaptopathies-or damage of synaptic function and plasticity. Synaptic formation and maintenance are orchestrated by protein complexes that are in turn regulated in space and time during neuronal development allowing synaptic plasticity. However, the exact mechanisms by which these processes are managed remain unknown. Large-scale genomic and proteomic projects led to the discovery of new molecules and their associated variants as disease risk factors. Neuronal glycoprotein M6a, encoded by the GPM6A gene is emerging as one of these molecules. M6a has been involved in neuron development and synapse formation and plasticity, and was also recently proposed as a gene-target in various neuropsychiatric disorders where it could also be used as a biomarker. In this review, we provide an overview of the structure and molecular mechanisms by which glycoprotein M6a participates in synapse formation and maintenance. We also review evidence collected from patients carrying mutations in the GPM6A gene; animal models, and in vitro studies that together emphasize the relevance of M6a, particularly in synapses and in neurological conditions.
Collapse
Affiliation(s)
| | | | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas “Rodolfo A. Ugalde”, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBio-UNSAM-CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Jia E, Zhou Y, Shi H, Pan M, Zhao X, Ge Q. Effects of brain tissue section processing and storage time on gene expression. Anal Chim Acta 2021; 1142:38-47. [PMID: 33280702 DOI: 10.1016/j.aca.2020.10.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
The pre-processing of samples is important factors that affect the results of the RNA-sequencing (RNA-seq) data. However, the effects of frozen sections storage conditions on the integrity of RNA and sequencing results haven't been reported. The study of frozen section protection schemes can provide reliable experimental results for single-cell and spatial transcriptome sequencing. In this study, RNA was isolated to be studied for RNA from brain section at different temperatures (RT: room temperature, -20 °C) and storage time (0 h, 2 h, 4 h, 8 h, 12 h, 16 h, 24 h, 7day, 3week, 6month). The stability of reference genes was validated using reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that the storage at room temperature significantly affected RNA integrity number (RIN), and the RIN value was lower with the prolongation of storage, while the storage at -20 °C exerted less effect on the RIN value. Cresyl violet staining for brain tissue sections had little effect on RNA integrity. 1925, 899 and 3390 differential expression genes (DEGs) were screened at 2 h, 4 h and 8 h at room temperature, respectively. A total of 892, 478 and 619 genes were shown to be differentially expressed at -20 °C for 7d, 3w and 6 m, respectively. Among them, the expression of glycoprotein m6a (Gpm6a), calmodulin 1 (Calm1), calmodulin 1 (Calm2), thymosin, beta 4, X chromosome (Tmsb4x), ribosomal protein S21 (Rps21) and so on were correlated with RNA quality. According to the expression stability of 4 reference genes (Actb: beta-actin; Gapdh: glyceraldehyde-3-phosphate dehydrogenase; 18S: 18S ribosomal; Hprt1: hypoxanthine phosphoribosyltransferase 1), 18S is the most stable reference gene in the brain. In conclusion, the storage temperature and time of frozen sections have significant effects on RNA integrity and sequencing results. But there are still some genes that are stable and not affected by worsening of overall RNA integrity ie the decrease of RIN value. In addition, 1% cresyl violet staining can protect RNA.
Collapse
Affiliation(s)
- Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing, 210097, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
7
|
Identification by proximity labeling of novel lipidic and proteinaceous potential partners of the dopamine transporter. Cell Mol Life Sci 2021; 78:7733-7756. [PMID: 34709416 PMCID: PMC8629785 DOI: 10.1007/s00018-021-03998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022]
Abstract
Dopamine (DA) transporters (DATs) are regulated by trafficking and modulatory processes that probably rely on stable and transient interactions with neighboring proteins and lipids. Using proximity-dependent biotin identification (BioID), we found novel potential partners for DAT, including several membrane proteins, such as the transmembrane chaperone 4F2hc, the proteolipid M6a and a potential membrane receptor for progesterone (PGRMC2). We also detected two cytoplasmic proteins: a component of the Cullin1-dependent ubiquitination machinery termed F-box/LRR-repeat protein 2 (FBXL2), and the enzyme inositol 5-phosphatase 2 (SHIP2). Immunoprecipitation (IP) and immunofluorescence studies confirmed either a physical association or a close spatial proximity between these proteins and DAT. M6a, SHIP2 and the Cullin1 system were shown to increase DAT activity in coexpression experiments, suggesting a functional role for their association. Deeper analysis revealed that M6a, which is enriched in neuronal protrusions (filopodia or dendritic spines), colocalized with DAT in these structures. In addition, the product of SHIP2 enzymatic activity (phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2]) was tightly associated with DAT, as shown by co-IP and by colocalization of mCherry-DAT with a specific biosensor for this phospholipid. PI(3,4)P2 strongly stimulated transport activity in electrophysiological recordings, and conversely, inhibition of SHIP2 reduced DA uptake in several experimental systems including striatal synaptosomes and the dopaminergic cell line SH-SY5Y. In summary, here we report several potential new partners for DAT and a novel regulatory lipid, which may represent new pharmacological targets for DAT, a pivotal protein in dopaminergic function of the brain.
Collapse
|
8
|
Monteleone MC, Billi SC, Viale L, Catoira NP, Frasch AC, Brocco MA. Search of brain-enriched proteins in salivary extracellular vesicles for their use as mental disease biomarkers: A pilot study of the neuronal glycoprotein M6a. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2020. [DOI: 10.1016/j.jadr.2020.100003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
9
|
Aparicio GI, Formoso K, León A, Frasch AC, Scorticati C. Identification of Potential Interacting Proteins With the Extracellular Loops of the Neuronal Glycoprotein M6a by TMT/MS. Front Synaptic Neurosci 2020; 12:28. [PMID: 32848694 PMCID: PMC7396582 DOI: 10.3389/fnsyn.2020.00028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Nowadays, great efforts are made to gain insight into the molecular mechanisms that underlie structural neuronal plasticity. Moreover, the identification of signaling pathways involved in the development of psychiatric disorders aids the screening of possible therapeutic targets. Genetic variations or alterations in GPM6A expression are linked to neurological disorders such as schizophrenia, depression, and Alzheimer's disease. GPM6A encodes the neuronal surface glycoprotein M6a that promotes filopodia/spine, dendrite, and synapse formation by unknown mechanisms. A substantial body of evidence suggests that the extracellular loops of M6a command its function. However, the proteins that associate with them and that modulate neuronal plasticity have not been determined yet. To address this question, we generated a chimera protein that only contains the extracellular loops of M6a and performed a co-immunoprecipitation with rat hippocampus samples followed by TMT/MS. Here, we report 72 proteins, which are good candidates to interact with M6a's extracellular loops and modify its function. Gene ontology (GO) analysis showed that 63% of the potential M6a's interactor proteins belong to the category "synapse," at both sides of the synaptic cleft, "neuron projections" (51%) and "presynapse" (49%). In this sense, we showed that endogenous M6a interacts with piccolo, synaptic vesicle protein 2B, and synapsin 1 in mature cultured hippocampal neurons. Interestingly, about 28% of the proteins left were related to the "myelin sheath" annotation, suggesting that M6a could interact with proteins at the surface of oligodendrocytes. Indeed, we demonstrated the (cis and trans) interaction between M6a and proteolipid protein (PLP) in neuroblastoma N2a cells. Finally, the 72 proteins were subjected to disease-associated genes and variants screening by DisGeNET. Apart from the diseases that have already been associated with M6a, most of the proteins are also involved in "autistic disorder," "epilepsy," and "seizures" increasing the spectrum of disorders in which M6a could play a role. Data are available via ProteomeXchange with identifier PXD017347.
Collapse
Affiliation(s)
- Gabriela I Aparicio
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Karina Formoso
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.,Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), CONICET, San Martín, Argentina
| | - Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina.,Vicerrectorado, Edificio de Gobierno, Universidad Nacional de San Martín (UNSAM), San Martín, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIBio-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| |
Collapse
|
10
|
Khalid Z, Sezerman OU. A comprehensive study on identifying the structural and functional SNPs of human neuronal membrane glycoprotein M6A (GPM6A). J Biomol Struct Dyn 2020; 39:2693-2701. [PMID: 32248748 DOI: 10.1080/07391102.2020.1751712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycoprotein M6A, a stress related gene, plays an important role in synapse and filopodia formation. Filopodia formation is vital for development, immunity, angiogenesis, wound healing and metastasis. In this study, structural and functional analysis of high-risk SNPs associated with Glycoprotein M6-A were evaluated using six different bioinformatics tools. Results classified T210I, T134I, Y153H, I215T, F156L, T160I, I226T, R247W, R178C, W159R, N157S and P151L as deleterious mutants that are crucial for the structure and function of the protein causing malfunction of M6-a and ultimately leads to disease development. The three-dimensional structure of wild-type M6-a and mutant M6-a were also predicted. Furthermore, the effects of high risk substitutions were also analyzed with interaction with valproic acid. Based on structural models obtained, the binding pocket of ligand bound glycoprotein M6-A structure showed few core interacting residues which are different in the mutant models. Among all substitutions, F156L showed complete loss of binding pocket when interacting with valproic acid as compared to the wild type model. Up to the best of our knowledge this is the first comprehensive study where GPM6A mutations were analyzed. The mechanism of action of GPM6A is still not fully defined which limits the understanding of functional details encoding M6-A. Our results may help enlighten some molecular aspects underlying glycoprotein M6-A. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zoya Khalid
- National University of Computers and Emerging Sciences, FAST-NU, Islamabad, Pakistan
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University, Istanbul, Turkey
| |
Collapse
|
11
|
Bradley RA, Shireman J, McFalls C, Choi J, Canfield SG, Dong Y, Liu K, Lisota B, Jones JR, Petersen A, Bhattacharyya A, Palecek SP, Shusta EV, Kendziorski C, Zhang SC. Regionally specified human pluripotent stem cell-derived astrocytes exhibit different molecular signatures and functional properties. Development 2019; 146:dev.170910. [PMID: 31189664 DOI: 10.1242/dev.170910] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
Abstract
Astrocytes display diverse morphologies in different regions of the central nervous system. Whether astrocyte diversity is attributable to developmental processes and bears functional consequences, especially in humans, is unknown. RNA-seq of human pluripotent stem cell-derived regional astrocytes revealed distinct transcript profiles, suggesting differential functional properties. This was confirmed by differential calcium signaling as well as effects on neurite growth and blood-brain barrier formation. Distinct transcriptional profiles and functional properties of human astrocytes generated from regionally specified neural progenitors under the same conditions strongly implicate the developmental impact on astrocyte diversity. These findings provide a rationale for renewed examination of regional astrocytes and their role in the pathogenesis of psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Robert A Bradley
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA.,Cellular and Molecular Biology Program, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jack Shireman
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Caya McFalls
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jeea Choi
- Department of Statistics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Cellular and Integrative Physiology, School of Medicine, Indiana University - Terre Haute, IN 47885, USA
| | - Yi Dong
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Katie Liu
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Brianne Lisota
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Jeffery R Jones
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Andrew Petersen
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53792, USA
| | - Su-Chun Zhang
- Department of Neuroscience, Waisman Center, University of Wisconsin - Madison, Madison, WI 53705, USA .,Cellular and Molecular Biology Program, University of Wisconsin - Madison, Madison, WI 53705, USA.,Department of Neuroscience, Department of Neurology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI 53705, USA.,Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
12
|
Feng J, Chen S, Wang Y, Liu Q, Yang M, Li X, Nie C, Qin J, Chen H, Yuan X, Huang Y, Zhang Q. Maternal exposure to cadmium impairs cognitive development of male offspring by targeting the Coronin-1a signaling pathway. CHEMOSPHERE 2019; 225:765-774. [PMID: 30903850 DOI: 10.1016/j.chemosphere.2019.03.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Direct exposure to cadmium (Cd) may induce persistent impairment in learning and memory. However, the outcomes of maternal exposure on the neurological development of offspring are much less clear, and the underlying mechanism leading to toxicity remains undisclosed. Following chronic exposure of female rats during gestation and lactation, low level of Cd was detectable in the cerebral cortex but not in the hippocampus of F1 male offspring. The synapses and neurites in hippocampus were destroyed by high Cd exposure level as evidenced by abnormal morphology and cognitive behavior deficit lasting from childhood to adulthood. The membrane glycoprotein M6a (GPM6A) regulates the filopodium formation, neurite outgrowth and synaptogenesis, and is a possible target which Cd acts upon. The signaling pathway Coronin-1a (CORO1A), Ras-related C3 botulinum toxin substrate 1 (RAC1) and p21-activated kinase 1 (PAK1) promotes GPM6A-induced filopodium formation. Our results showed that maternal exposure dramatically down-regulated the level of CORO1A as well as the expression of downstream effectors RAC1, PAK1 and GPM6A. CORO1A-knockdown by siRNA caused decreases in the expression of RAC1, PAK1 and GPM6A; and siRNA targeting combined with Cd insult further decreased the expression of these proteins. Following CORO1A overexpression, the neurites were lengthened with increased expression of all the effector proteins in SH-SY5Y cells exposed to Cd, confirming the significance of CORO1A in mediating the Cd neurotoxicity. These findings may help to disclose how Cd impairs the learning and cognitive development in children, and facilitate finding of potential therapeutic targets for the treatment of Cd poisoning.
Collapse
Affiliation(s)
- Jianfeng Feng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Shaomin Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Qunxing Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Mengqi Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xin Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Chuan Nie
- Guangdong Women and Children Hospital, Guangzhou, 510000, China
| | - Jianxiang Qin
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaohui Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yadong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510632, China; National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nat Neurosci 2019; 22:691-699. [PMID: 30988527 PMCID: PMC6646046 DOI: 10.1038/s41593-019-0382-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies (GWAS) have identified >100 schizophrenia (SCZ)-associated loci, but using these findings to illuminate disease biology remains a challenge. Here, we present integrative RIsk Gene Selector (iRIGS), a Bayesian framework that integrates multi-omics data and gene networks to infer risk genes in GWAS loci. By applying iRIGS to SCZ GWAS data, we predicted a set of high-confidence risk genes (HRGs), most of which are not the nearest genes to the GWAS index variants. HRGs account for a significantly enriched heritability estimated by stratified LD-score regression. Moreover, HRGs are predominantly expressed in brain tissues, especially prenatally, and are enriched for targets of approved drugs, suggesting opportunities to reposition existing drugs for SCZ. Thus, iRIGS can leverage accumulating functional genomics and GWAS data to advance understanding of SCZ etiology and potential therapeutics.
Collapse
|
14
|
Rosas NM, Alvarez Juliá A, Alzuri SE, Frasch AC, Fuchsova B. Alanine Scanning Mutagenesis of the C-Terminal Cytosolic End of Gpm6a Identifies Key Residues Essential for the Formation of Filopodia. Front Mol Neurosci 2018; 11:314. [PMID: 30233315 PMCID: PMC6131581 DOI: 10.3389/fnmol.2018.00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal membrane glycoprotein M6a (Gpm6a) is a protein with four transmembrane regions and the N- and the C-ends facing the cytosol. It functions in processes of neuronal development, outgrowth of neurites, and formation of filopodia, spines, and synapsis. Molecular mechanisms by which Gpm6a acts in these processes are not fully comprehended. Structural similarities of Gpm6a with tetraspanins led us to hypothesize that, similarly to tetraspanins, the cytoplasmic tails function as connections with cytoskeletal and/or signaling proteins. Here, we demonstrate that the C- but not the N-terminal cytosolic end of Gpm6a is required for the formation of filopodia by Gpm6a in cultured neurons from rat hippocampus and in neuroblastoma cells N2a. Further immunofluorescence microcopy and flow cytometry analysis show that deletion of neither the N- nor the C-terminal intracellular domains interferes with the recognition of Gpm6a by the function-blocking antibody directed against the extracellular part of Gpm6a. Expression levels of both truncation mutants were not affected but we observed decrease in the amount of both truncated proteins on cell surface suggesting that the incapacity of the Gpm6a lacking C-terminus to induce filopodium formation is not due to the lower amount of Gpm6a on cell surface. Following colocalization assays shows that deletion of the C- but not the N-terminus diminishes the association of Gpm6a with clathrin implying involvement of clathrin-mediated trafficking events. Next, using comprehensive alanine scanning mutagenesis of the C-terminus we identify K250, K255, and E258 as the key residues for the formation of filopodia by Gpm6a. Substitution of these charged residues with alanine also diminishes the amount of Gpm6a on cell surface and in case of K255 and E258 leads to the lower amount of total expressed protein. Subsequent bioinformatic analysis of Gpm6a amino acid sequence reveals that highly conserved and functional residues cluster preferentially within the C- and not within the N-terminus and that K250, K255, and E258 are predicted as part of sorting signals of transmembrane proteins. Altogether, our results provide evidence that filopodium outgrowth induced by Gpm6a requires functionally critical residues within the C-terminal cytoplasmic tail.
Collapse
Affiliation(s)
- Nicolás M Rosas
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Anabel Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Sofia E Alzuri
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| |
Collapse
|
15
|
Craddock KES, Zhou X, Liu S, Gochman P, Dickinson D, Rapoport JL. Symptom dimensions and subgroups in childhood-onset schizophrenia. Schizophr Res 2018; 197:71-77. [PMID: 29146021 PMCID: PMC5949241 DOI: 10.1016/j.schres.2017.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/29/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study investigated symptom dimensions and subgroups in the National Institute of Mental Health (NIMH) childhood-onset schizophrenia (COS) cohort and their similarities to adult-onset schizophrenia (AOS) literature. METHOD Scores from the Scales for the Assessment of Positive and Negative Symptoms (SAPS & SANS) from 125 COS patients were assessed for fit with previously established symptom dimensions from AOS literature using confirmatory factor analysis (CFA). K-means cluster analysis of each individual's scores on the best fitting set of dimensions was used to form patient clusters, which were then compared using demographic and clinical data. RESULTS CFA showed the SAPS & SANS data was well suited to a 2-dimension solution, including positive and negative dimensions, out of five well established models. Cluster analysis identified three patient groups characterized by different dimension scores: (1) low scores on both dimensions, (2) high negative, low positive scores, and (3) high scores on both dimensions. These groups had different Full scale IQ, Children's Global Assessment Scale (CGAS) scores, ages of onset, and prevalence of some co-morbid behavior disorders (all p<3.57E-03). CONCLUSION Our analysis found distinct symptom-based subgroups within the NIMH COS cohort using an established AOS symptom structure. These findings confirm the heterogeneity of COS and were generally consistent with AOS literature.
Collapse
Affiliation(s)
- Kirsten E S Craddock
- Child Psychiatry Branch, Intramural Research Program, National Institute of Mental Health, NIH, 10 Center Drive, Bldg. 10- Rm. 4N244, Bethesda, MD 20814, United States
| | - Xueping Zhou
- Child Psychiatry Branch, Intramural Research Program, National Institute of Mental Health, NIH, 10 Center Drive, Bldg. 10- Rm. 4N244, Bethesda, MD 20814, United States
| | - Siyuan Liu
- Child Psychiatry Branch, Intramural Research Program, National Institute of Mental Health, NIH, 10 Center Drive, Bldg. 10- Rm. 4N244, Bethesda, MD 20814, United States.
| | - Peter Gochman
- Child Psychiatry Branch, Intramural Research Program, National Institute of Mental Health, NIH, 10 Center Drive, Bldg. 10- Rm. 4N244, Bethesda, MD 20814, United States
| | - Dwight Dickinson
- Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, NIH, 10 Center Drive, Bldg. 10- Rm. 3C115, Bethesda, MD 20814, United States
| | - Judith L Rapoport
- Child Psychiatry Branch, Intramural Research Program, National Institute of Mental Health, NIH, 10 Center Drive, Bldg. 10- Rm. 4N244, Bethesda, MD 20814, United States
| |
Collapse
|
16
|
In Vivo and In Vitro Neuronal Plasticity Modulation by Epigenetic Regulators. J Mol Neurosci 2018; 65:301-311. [PMID: 29931501 DOI: 10.1007/s12031-018-1101-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
Prenatal stress (PS) induces molecular changes that alter neural connectivity, increasing the risk for neuropsychiatric disorders. Here we analyzed -in the hippocampus of adult rats exposed to PS- the epigenetic signature mediating the PS-induced neuroplasticity changes. Furthermore, using cultured hippocampal neurons, we investigated the effects on neuroplasticity of an epigenetic modulator. PS induced significant modifications in the mRNA levels of stress-related transcription factor MEF2A, SUV39H1 histone methyltransferase, and TET1 hydroxylase, indicating that PS modifies gene expression through chromatin remodeling. In in vitro analysis, histone acetylation inhibition with apicidin increased filopodium density, suggesting that the external regulation of acetylation levels might modulate neuronal morphology. These results offer a way to enhance neural connectivity that could be considered to revert PS effects.
Collapse
|
17
|
Ito Y, Honda A, Igarashi M. Glycoprotein M6a as a signaling transducer in neuronal lipid rafts. Neurosci Res 2018; 128:19-24. [DOI: 10.1016/j.neures.2017.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
18
|
Dai J, Du X, Yin G, Zhang Y, Xia H, Li X, Cassidy R, Tong Q, Chen D, Teixeira AL, Zheng Y, Ning Y, Soares JC, He MX, Zhang XY. Prevalence, demographic and clinical features of comorbid depressive symptoms in drug naïve patients with schizophrenia presenting with first episode psychosis. Schizophr Res 2018; 193:182-187. [PMID: 28651908 DOI: 10.1016/j.schres.2017.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/17/2017] [Accepted: 06/18/2017] [Indexed: 01/04/2023]
Abstract
Depressive symptoms are common in first episode schizophrenia. However, the prevalence and its associations of comorbid depressive symptoms with clinical variables are less well characterized in Chinese Han patients with schizophrenia. In this cross-sectional study, we recruited 240 first-episode and drug naïve (FEDN) inpatients with schizophrenia. All patients were rated on the 17-item Hamilton Depression Rating Scale (HAMD-17) to measure depressive symptoms, and also on the Positive and Negative Syndrome Scale (PANSS) for psychopathology. Our results showed that 131 patients had a total score of 8 or more points on HAMD-17, making the prevalence of comorbid depressive symptoms 54.6%. Fewer women (48.1%, 62 of 129) than men (62.2%, 69 of 111) had comorbid depressive symptoms. Compared to those patients without depressive symptoms, those with depressive symptoms showed higher PANSS total, general psychopathology, cognitive factor and negative symptom scores (all p<0.05). Further stepwise multiple logistic regression analysis indicated that the PANSS general psychopathology, the PANSS total score and gender (all p<0.05) remained significantly associated with depressive symptoms. In addition, correlation analysis showed significant correlations between HAMD total score and the following parameters: the PANSS general psychopathology, total score, and cognitive factor (Bonferroni corrected p's<0.05). Our results suggest that depressive symptoms occur with high prevalence in FEND schizophrenia in a Chinese Han population, and show association with general psychopathology, as well as with cognitive impairment.
Collapse
Affiliation(s)
- Jing Dai
- The Fourth People's Hospital of Chengdu, Chengdu Mental Health Center, Chengdu, China
| | - Xiangdong Du
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Jiangsu, China
| | - Guangzhong Yin
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Jiangsu, China
| | - Yingyang Zhang
- Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Jiangsu, China
| | - Haishen Xia
- Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - Xiaosi Li
- Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, China
| | - Rylan Cassidy
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dachun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yingjun Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Man-Xi He
- The Fourth People's Hospital of Chengdu, Chengdu Mental Health Center, Chengdu, China.
| | - Xiang Yang Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.
| |
Collapse
|
19
|
Garcia MD, Formoso K, Aparicio GI, Frasch ACC, Scorticati C. The Membrane Glycoprotein M6a Endocytic/Recycling Pathway Involves Clathrin-Mediated Endocytosis and Affects Neuronal Synapses. Front Mol Neurosci 2017; 10:296. [PMID: 28979185 PMCID: PMC5611492 DOI: 10.3389/fnmol.2017.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/04/2017] [Indexed: 12/24/2022] Open
Abstract
Single point mutations or variations in the expression of the gene encoding the neuronal glycoprotein M6a have been associated with psychiatric disorders such as Alzheimer’s disease, depression and schizophrenia. In cultured neurons, M6a positively contributes to neurite extension, axon guidance, filopodia/spine outgrowth, and synapse formation. The endocytic processes of neuronal membrane proteins are linked to the differentiation, growth, signaling and plasticity of neurons. However, the roles of M6a and the precise mechanisms through which M6a internalizes and recycles back to the neuronal membrane are unknown. Here, by using a controlled in vitro assay, we showed that if 30–40% of M6a is endocytosed, the number of synapses in hippocampal neurons decreases. When re-establishing the levels of M6a at the cell surface, the number of synapses returned to normal values. M6a internalization involves clathrin-coated pits, probably by association between the adaptor protein 2 and the 251YEDI254 “tyrosine-based” motif located within the C-tail of M6a. Upon endocytosis, M6a is sorted to early endosome antigen 1- and Rab5-positive endosomes and then sorted back to the cell surface via Rab11-positive endosomes or to degradation via Rab7 and, finally LAMP-1-positive endosomes. Our results demonstrated that the levels of M6a at the cell surface modified the formation/maintenance of synapses, without altering the protein levels of synaptophysin or N-methyl-D-aspartate receptor type-1. This novel mechanism might be relevant during neuronal development, pruning and/or many of the neurological disorders in which the number of synapses is affected.
Collapse
Affiliation(s)
- Micaela D Garcia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Karina Formoso
- Instituto de Investigaciones Biomédicas, Universidad Católica ArgentinaBuenos Aires, Argentina
| | - Gabriela I Aparicio
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Alberto C C Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
20
|
Monteleone MC, Billi SC, Brocco MA, Frasch AC. Neural glycoprotein M6a is released in extracellular vesicles and modulated by chronic stressors in blood. Sci Rep 2017; 7:9788. [PMID: 28851962 PMCID: PMC5575271 DOI: 10.1038/s41598-017-09713-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/07/2017] [Indexed: 01/14/2023] Open
Abstract
Membrane neuronal glycoprotein M6a is highly expressed in the brain and contributes to neural plasticity promoting neurite growth and spine and synapse formation. We have previously showed that chronic stressors alter hippocampal M6a mRNA levels in rodents and tree shrews. We now show that M6a glycoprotein can be detected in mouse blood. M6a is a transmembrane glycoprotein and, as such, unlikely to be free in blood. Here we demonstrate that, in blood, M6a is transported in extracellular vesicles (EVs). It is also shown that M6a-containing EVs are delivered from cultured primary neurons as well as from M6a-transfected COS-7 cells. Released EVs containing M6a can be incorporated into COS-7 cells changing its phenotype through formation of membrane protrusions. Thus, M6a-containing EVs might contribute to maintain cellular plasticity. M6a presence in blood was used to monitor stress effects. Chronic restraint stress modulated M6a protein level in a sex dependent manner. Analysis of individual animals indicated that M6a level variations depend on the stressor applied. The response to stressors in blood makes M6a amenable to further studies in the stress disorder field.
Collapse
Affiliation(s)
- Melisa C Monteleone
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Av. 25 de Mayo y Francia, CP: 1650, San Martín, Buenos Aires, Argentina
| | - Silvia C Billi
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Av. 25 de Mayo y Francia, CP: 1650, San Martín, Buenos Aires, Argentina
| | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Av. 25 de Mayo y Francia, CP: 1650, San Martín, Buenos Aires, Argentina.
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), Av. 25 de Mayo y Francia, CP: 1650, San Martín, Buenos Aires, Argentina
| |
Collapse
|
21
|
Haase J, Grudzinska-Goebel J, Müller HK, Münster-Wandowski A, Chow E, Wynne K, Farsi Z, Zander JF, Ahnert-Hilger G. Serotonin Transporter Associated Protein Complexes Are Enriched in Synaptic Vesicle Proteins and Proteins Involved in Energy Metabolism and Ion Homeostasis. ACS Chem Neurosci 2017; 8:1101-1116. [PMID: 28362488 DOI: 10.1021/acschemneuro.6b00437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The serotonin transporter (SERT) mediates Na+-dependent high-affinity serotonin uptake and plays a key role in regulating extracellular serotonin concentration in the brain and periphery. To gain novel insight into SERT regulation, we conducted a comprehensive proteomics screen to identify components of SERT-associated protein complexes in the brain by employing three independent approaches. In vivo SERT complexes were purified from rat brain using an immobilized high-affinity SERT ligand, amino-methyl citalopram. This approach was combined with GST pulldown and yeast two-hybrid screens using N- and C-terminal cytoplasmic transporter domains as bait. Potential SERT associated proteins detected by at least two of the interaction methods were subjected to gene ontology analysis resulting in the identification of functional protein clusters that are enriched in SERT complexes. Prominent clusters include synaptic vesicle proteins, as well as proteins involved in energy metabolism and ion homeostasis. Using subcellular fractionation and electron microscopy we provide further evidence that SERT is indeed associated with synaptic vesicle fractions, and colocalizes with small vesicular structures in axons and axon terminals. We also show that SERT is found in close proximity to mitochondrial membranes in both, hippocampal and neocortical regions. We propose a model of the SERT interactome, in which SERT is distributed between different subcellular compartments through dynamic interactions with site-specific protein complexes. Finally, our protein interaction data suggest novel hypotheses for the regulation of SERT activity and trafficking, which ultimately impact on serotonergic neurotransmission and serotonin dependent brain functions.
Collapse
Affiliation(s)
- Jana Haase
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Joanna Grudzinska-Goebel
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Heidi Kaastrup Müller
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
- Department
of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Risskov DK-8240, Denmark
| | | | - Elysian Chow
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- Proteomic Core Facility, UCD Conway Institute, School
of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | - Zohreh Farsi
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité University Medicine Berlin, 10117 Berlin, Germany
| |
Collapse
|
22
|
Extracellular Signals Induce Glycoprotein M6a Clustering of Lipid Rafts and Associated Signaling Molecules. J Neurosci 2017; 37:4046-4064. [PMID: 28275160 DOI: 10.1523/jneurosci.3319-16.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/25/2017] [Accepted: 02/18/2017] [Indexed: 01/08/2023] Open
Abstract
Lipid raft domains, where sphingolipids and cholesterol are enriched, concentrate signaling molecules. To examine how signaling protein complexes are clustered in rafts, we focused on the functions of glycoprotein M6a (GPM6a), which is expressed at a high concentration in developing mouse neurons. Using imaging of lipid rafts, we found that GPM6a congregated in rafts in a GPM6a palmitoylation-dependent manner, thereby contributing to lipid raft clustering. In addition, we found that signaling proteins downstream of GPM6a, such as Rufy3, Rap2, and Tiam2/STEF, accumulated in lipid rafts in a GPM6a-dependent manner and were essential for laminin-dependent polarity during neurite formation in neuronal development. In utero RNAi targeting of GPM6a resulted in abnormally polarized neurons with multiple neurites. These results demonstrate that GPM6a induces the clustering of lipid rafts, which supports the raft aggregation of its associated downstream molecules for acceleration of neuronal polarity determination. Therefore, GPM6a acts as a signal transducer that responds to extracellular signals.SIGNIFICANCE STATEMENT Lipid raft domains, where sphingolipids and cholesterol are enriched, concentrate signaling molecules. We focused on glycoprotein M6a (GPM6a), which is expressed at a high concentration in developing neurons. Using imaging of lipid rafts, we found that GPM6a congregated in rafts in a palmitoylation-dependent manner, thereby contributing to lipid raft clustering. In addition, we found that signaling proteins downstream of GPM6a accumulated in lipid rafts in a GPM6a-dependent manner and were essential for laminin-dependent polarity during neurite formation. In utero RNAi targeting of GPM6a resulted in abnormally polarized neurons with multiple neurites. These results demonstrate that GPM6a induces the clustering of lipid rafts, which supports the raft aggregation of its associated downstream molecules for acceleration of polarity determination. Therefore, GPM6a acts as a signal transducer that responds to extracellular signals.
Collapse
|
23
|
Zai G, Robbins TW, Sahakian BJ, Kennedy JL. A review of molecular genetic studies of neurocognitive deficits in schizophrenia. Neurosci Biobehav Rev 2017; 72:50-67. [DOI: 10.1016/j.neubiorev.2016.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 02/08/2023]
|
24
|
Formoso K, Garcia MD, Frasch AC, Scorticati C. Evidence for a role of glycoprotein M6a in dendritic spine formation and synaptogenesis. Mol Cell Neurosci 2016; 77:95-104. [DOI: 10.1016/j.mcn.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022] Open
|
25
|
Alvarez Juliá A, Frasch AC, Fuchsova B. Neuronal filopodium formation induced by the membrane glycoprotein M6a (Gpm6a) is facilitated by coronin-1a, Rac1, and p21-activated kinase 1 (Pak1). J Neurochem 2016; 137:46-61. [PMID: 26809475 DOI: 10.1111/jnc.13552] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 01/01/2023]
Abstract
Stress-responsive neuronal membrane glycoprotein M6a (Gpm6a) functions in neurite extension, filopodium and spine formation and synaptogenesis. The mechanisms of Gpm6a action in these processes are incompletely understood. Previously, we identified the actin regulator coronin-1a (Coro1a) as a putative Gpm6a interacting partner. Here, we used co-immunoprecipitation assays with the anti-Coro1a antibody to show that Coro1a associates with Gpm6a in rat hippocampal neurons. By immunofluorescence microscopy, we demonstrated that in hippocampal neurons Coro1a localizes in F-actin-enriched regions and some of Coro1a spots co-localize with Gpm6a labeling. Notably, the over-expression of a dominant-negative form of Coro1a as well as its down-regulation by siRNA interfered with Gpm6a-induced filopodium formation. Coro1a is known to regulate the plasma membrane translocation and activation of small GTPase Rac1. We show that Coro1a co-immunoprecipitates with Rac1 together with Gpm6a. Pharmacological inhibition of Rac1 resulted in a significant decrease in filopodium formation by Gpm6a. The same was observed upon the co-expression of Gpm6a with the inactive GDP-bound form of Rac1. In this case, the elevated membrane recruitment of GDP-bound Rac1 was detected as well. Moreover, the kinase activity of the p21-activated kinase 1 (Pak1), a main downstream effector of Rac1 that acts downstream of Coro1a, was required for Gpm6a-induced filopodium formation. Taken together, our results provide evidence that a signaling pathway including Coro1a, Rac1, and Pak1 facilitates Gpm6a-induced filopodium formation. Formation of filopodia by membrane glycoprotein M6a (Gpm6a) requires actin regulator coronin-1a (Coro1a), known to regulate plasma membrane localization and activation of Rac1 and its downstream effector Pak1. Coro1a associates with Gpm6a. Blockage of Coro1a, Rac1, or Pak1 interferes with Gpm6a-induced filopodium formation. Moreover, Gpm6a facilitates Rac1 membrane recruitment. Altogether, a mechanistic insight into the process of Gpm6a-induced neuronal filopodium formation is provided.
Collapse
Affiliation(s)
- Anabel Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| | - Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas IIB-INTECH, CONICET-UNSAM, San Martin, Argentina
| |
Collapse
|
26
|
Frydecka D, Beszłej JA, Pawlak-Adamska E, Misiak B, Karabon L, Tomkiewicz A, Partyka A, Jonkisz A, Szewczuk-Bogusławska M, Zawadzki M, Kiejna A. CTLA4 and CD28 Gene Polymorphisms with Respect to Affective Symptom Domain in Schizophrenia. Neuropsychobiology 2016; 71:158-67. [PMID: 25998553 DOI: 10.1159/000379751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/02/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Accumulating evidence indicates that immune alterations in schizophrenia are due to genetic underpinnings. Here, we aimed at investigating whether polymorphisms in CTLA4 and CD28 genes, encoding molecules that regulate T-cell activity, influence schizophrenia symptomatology. METHOD We recruited 120 schizophrenia patients and 380 healthy age- and sex-matched controls. We divided the patients into two groups: one with no co-occurrence between psychotic and affective symptoms and the second one with psychotic symptoms dominating in the clinical manifestation, although also with occasional affective disturbances in the course of illness. RESULTS Among the patients with co-occurring affective symptoms, there were significantly more CTLA4 c.49A>G[A] alleles (p = 0.018, odds ratio (OR) 2.03, 95% confidence interval (CI) 1.2-3.66) and more CTLA4 g.319C>T[T] alleles (p = 0.07, OR 1.93, 95% CI 0.94-4.13) in comparison to the second group. Additionally, we have shown that CD28 c.17 + 3T>C[C+] were more significantly overrepresented among patients with co-occurring psychotic and affective symptoms (p = 0.0003, OR 3.36, 95% CI 1.69-6.68) than in patients without co-occurence between these symptoms (p = 0.012, OR 1.88, 95% CI 1.15-3.10). CONCLUSION CTLA4 and CD28 gene polymorphisms may not only act in immune deregulation observed in schizophrenia, but may also influence the course of the illness by modifying the susceptibility to the co-occurrence of psychotic and affective symptoms.
Collapse
Affiliation(s)
- Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ebrahimie E, Nurollah Z, Ebrahimi M, Hemmatzadeh F, Ignjatovic J. Unique ability of pandemic influenza to downregulate the genes involved in neuronal disorders. Mol Biol Rep 2015; 42:1377-90. [DOI: 10.1007/s11033-015-3916-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/22/2015] [Indexed: 01/01/2023]
|
28
|
Gregor A, Kramer JM, van der Voet M, Schanze I, Uebe S, Donders R, Reis A, Schenck A, Zweier C. Altered GPM6A/M6 dosage impairs cognition and causes phenotypes responsive to cholesterol in human and Drosophila. Hum Mutat 2015; 35:1495-505. [PMID: 25224183 DOI: 10.1002/humu.22697] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022]
Abstract
Glycoprotein M6A (GPM6A) is a neuronal transmembrane protein of the PLP/DM20 (proteolipid protein) family that associates with cholesterol-rich lipid rafts and promotes filopodia formation. We identified a de novo duplication of the GPM6A gene in a patient with learning disability and behavioral anomalies. Expression analysis in blood lymphocytes showed increased GPM6A levels. An increase of patient-derived lymphoblastoid cells carrying membrane protrusions supports a functional effect of this duplication. To study the consequences of GPM6A dosage alterations in an intact nervous system, we employed Drosophila melanogaster as a model organism. We found that knockdown of Drosophila M6, the sole member of the PLP family in flies, in the wing, and whole organism causes malformation and lethality, respectively. These phenotypes as well as the protrusions of patient-derived lymphoblastoid cells with increased GPM6A levels can be alleviated by cholesterol supplementation. Notably, overexpression as well as loss of M6 in neurons specifically compromises long-term memory in the courtship conditioning paradigm. Our findings thus indicate a critical role of correct GPM6A/M6 levels for cognitive function and support a role of the GPM6A duplication for the patient's phenotype. Together with other recent findings, this study highlights compromised cholesterol homeostasis as a recurrent feature in cognitive phenotypes.
Collapse
Affiliation(s)
- Anne Gregor
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Formoso K, García MD, Frasch AC, Scorticati C. Filopodia formation driven by membrane glycoprotein M6a depends on the interaction of its transmembrane domains. J Neurochem 2015; 134:499-512. [PMID: 25940868 DOI: 10.1111/jnc.13153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/19/2022]
Abstract
Membrane glycoprotein M6a, which belongs to the tetraspan proteolipid protein family, promotes structural plasticity in neurons and cell lines by unknown mechanisms. This glycoprotein is encoded by Gpm6a, a stress-regulated gene. The hippocampus of animals chronically stressed by either psychosocial or physical stressors shows decreased M6a expression. Stressed Gpm6a-null mice develop a claustrophobia-like phenotype. In humans, de novo duplication of GPM6A results in learning/behavioral abnormalities, and two single-nucleotide polymorphisms (SNPs) in the non-coding region are linked to mood disorders. Here, we studied M6a dimerization in neuronal membranes and its functional relevance. We showed that the self-interaction of M6a transmembrane domains (TMDs) might be driving M6a dimerization, which is required to induce filopodia formation. Glycine mutants located in TMD2 and TMD4 of M6a affected its dimerization, thus preventing M6a-induced filopodia formation in neurons. In silico analysis of three non-synonymous SNPs located in the coding region of TMDs suggested that these mutations induce protein instability. Indeed, these SNPs prevented M6a from being functional in neurons, owing to decreased stability, dimerization or improper folding. Interestingly, SNP3 (W141R), which caused endoplasmic reticulum retention, is equivalent to that mutated in PLP1, W161L, which causes demyelinating Pelizaeus-Merzbacher disease. In this work we analyzed the functional contribution of transmembrane domains (TMDs) of the neuronal membrane glycoprotein M6a. We determined that certain glycines present in TMD2 and TMD4 are critical for filopodia induction in neurons. In addition, three nsSNPs located in the coding region of TMD2 and TMD3 of GPM6A impair M6a function by affecting its stability, folding and dimer formation.
Collapse
Affiliation(s)
- Karina Formoso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Micaela D García
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Alberto C Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| |
Collapse
|
30
|
Fuchsova B, Alvarez Juliá A, Rizavi HS, Frasch AC, Pandey GN. Altered expression of neuroplasticity-related genes in the brain of depressed suicides. Neuroscience 2015; 299:1-17. [PMID: 25934039 DOI: 10.1016/j.neuroscience.2015.04.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/02/2015] [Accepted: 04/22/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Expression of the neuronal membrane glycoprotein M6a (GPM6A), the proteolipid protein (PLP/DM20) family member, is downregulated in the hippocampus of chronically stressed animals. Its neuroplastic function involves a role in neurite formation, filopodium outgrowth and synaptogenesis through an unknown mechanism. Disruptions in neuroplasticity mechanisms have been shown to play a significant part in the etiology of depression. Thus, the current investigation examined whether GPM6A expression is also altered in human depressed brain. METHODS Expression levels and coexpression patterns of GPM6A, GPM6B, and PLP1 (two other members of PLP/DM20 family) as well as of the neuroplasticity-related genes identified to associate with GPM6A were determined using quantitative polymerase chain reaction (qPCR) in postmortem samples from the hippocampus (n = 18) and the prefrontal cortex (PFC) (n = 25) of depressed suicide victims and compared with control subjects (hippocampus n = 18; PFC n = 25). Neuroplasticity-related proteins that form complexes with GPM6A were identified by coimmunoprecipitation technique followed by mass spectrometry. RESULTS Results indicated transcriptional downregulation of GPM6A and GPM6B in the hippocampus of depressed suicides. The expression level of calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) and coronin1A (CORO1A) was also significantly decreased. Subsequent analysis of coexpression patterns demonstrated coordinated gene expression in the hippocampus and in the PFC indicating that the function of these genes might be coregulated in the human brain. However, in the brain of depressed suicides this coordinated response was disrupted. CONCLUSIONS Disruption of coordinated gene expression as well as abnormalities in GPM6A and GPM6B expression and expression of the components of GPM6A complexes were detected in the brain of depressed suicides.
Collapse
Affiliation(s)
- B Fuchsova
- Instituto de Investigaciones Biotecnológicas, CONICET-UNSAM, 1650 San Martin, Argentina.
| | - A Alvarez Juliá
- Instituto de Investigaciones Biotecnológicas, CONICET-UNSAM, 1650 San Martin, Argentina
| | - H S Rizavi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - A C Frasch
- Instituto de Investigaciones Biotecnológicas, CONICET-UNSAM, 1650 San Martin, Argentina
| | - G N Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Samsom JN, Wong AHC. Schizophrenia and Depression Co-Morbidity: What We have Learned from Animal Models. Front Psychiatry 2015; 6:13. [PMID: 25762938 PMCID: PMC4332163 DOI: 10.3389/fpsyt.2015.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/24/2015] [Indexed: 12/15/2022] Open
Abstract
Patients with schizophrenia are at an increased risk for the development of depression. Overlap in the symptoms and genetic risk factors between the two disorders suggests a common etiological mechanism may underlie the presentation of comorbid depression in schizophrenia. Understanding these shared mechanisms will be important in informing the development of new treatments. Rodent models are powerful tools for understanding gene function as it relates to behavior. Examining rodent models relevant to both schizophrenia and depression reveals a number of common mechanisms. Current models which demonstrate endophenotypes of both schizophrenia and depression are reviewed here, including models of CUB and SUSHI multiple domains 1, PDZ and LIM domain 5, glutamate Delta 1 receptor, diabetic db/db mice, neuropeptide Y, disrupted in schizophrenia 1, and its interacting partners, reelin, maternal immune activation, and social isolation. Neurotransmission, brain connectivity, the immune system, the environment, and metabolism emerge as potential common mechanisms linking these models and potentially explaining comorbid depression in schizophrenia.
Collapse
Affiliation(s)
- James N Samsom
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| | - Albert H C Wong
- Department of Molecular Neuroscience, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada ; Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Psychiatry, Faculty of Medicine, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
32
|
Formoso K, Billi SC, Frasch AC, Scorticati C. Tyrosine 251 at the C-terminus of neuronal glycoprotein M6a is critical for neurite outgrowth. J Neurosci Res 2014; 93:215-29. [PMID: 25242528 DOI: 10.1002/jnr.23482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/12/2014] [Accepted: 08/15/2014] [Indexed: 12/12/2022]
Abstract
Neuronal glycoprotein M6a is involved in neuronal plasticity, promoting neurite and filopodia outgrowth and, likely, synaptogenesis. Polymorphisms in the human M6a gene GPM6A have recently been associated with mental illnesses such as schizophrenia, bipolar disorders, and claustrophobia. Nevertheless, the molecular bases underlying these observations remain unknown. We have previously documented that, to induce filopodia formation, M6a depends on the association of membrane lipid microdomains and the activation of Src and mitogen-activated protein kinase kinases. Here, in silico analysis of the phosphorylation of tyrosine 251 (Y251) at the C-terminus of M6a showed that it could be a target of Src kinases. We examined whether phosphorylation of M6a at Y251 affects neurite and filopodia outgrowth and the targets involved in its signal propagation. This work provides evidence that the Src kinase family and the phosphatidylinositide 3-kinase (PI3K), but not Ras, participate in M6a signal cascade leading to neurite/filopodia outgrowth in hippocampal neurons and murine neuroblastoma N2a cells. Phosphorylation of M6a at Y251 is essential only for neurite outgrowth by the PI3K/AKT-mediated pathway and, moreover, rescues the inhibition caused by selective Src inhibitor and external M6a monoclonal antibody treatment. Thus, we suggest that phosphorylation of M6a at Y251 is critical for a specific stage of neuronal development and triggers redundant signaling pathways leading to neurite extension.
Collapse
Affiliation(s)
- Karina Formoso
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
33
|
Abstract
This review provides a comprehensive overview of clinical and molecular genetic as well as pharmacogenetic studies regarding the clinical phenotype of "psychotic depression." Results are discussed with regard to the long-standing debate on categorical vs dimensional disease models of affective and psychotic disorders on a continuum from unipolar depression over bipolar disorder and schizoaffective disorder to schizophrenia. Clinical genetic studies suggest a familial aggregation and a considerable heritability (39%) of psychotic depression partly shared with schizoaffective disorder, schizophrenia, and affective disorders. Molecular genetic studies point to potential risk loci of psychotic depression shared with schizoaffective disorder (1q42, 22q11, 19p13), depression, bipolar disorder, and schizophrenia (6p, 8p22, 10p13-12, 10p14, 13q13-14, 13q32, 18p, 22q11-13) and several vulnerability genes possibly contributing to an increased risk of psychotic symptoms in depression (eg, BDNF, DBH, DTNBP1, DRD2, DRD4, GSK-3beta, MAO-A). Pharmacogenetic studies implicate 5-HTT, TPH1, and DTNBP1 gene variation in the mediation of antidepressant treatment response in psychotic depression. Genetic factors are suggested to contribute to the disease risk of psychotic depression in partial overlap with disorders along the affective-psychotic spectrum. Thus, genetic research focusing on psychotic depression might inspire a more dimensional, neurobiologically and symptom-oriented taxonomy of affective and psychotic disorders challenging the dichotomous Kraepelinian view. Additionally, pharmacogenetic studies might aid in the development of a more personalized treatment of psychotic depression with an individually tailored antidepressive/antipsychotic pharmacotherapy according to genotype.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
34
|
El-Kordi A, Kästner A, Grube S, Klugmann M, Begemann M, Sperling S, Hammerschmidt K, Hammer C, Stepniak B, Patzig J, de Monasterio-Schrader P, Strenzke N, Flügge G, Werner HB, Pawlak R, Nave KA, Ehrenreich H. A single gene defect causing claustrophobia. Transl Psychiatry 2013; 3:e254. [PMID: 23632458 PMCID: PMC3641414 DOI: 10.1038/tp.2013.28] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Claustrophobia, the well-known fear of being trapped in narrow/closed spaces, is often considered a conditioned response to traumatic experience. Surprisingly, we found that mutations affecting a single gene, encoding a stress-regulated neuronal protein, can cause claustrophobia. Gpm6a-deficient mice develop normally and lack obvious behavioral abnormalities. However, when mildly stressed by single-housing, these mice develop a striking claustrophobia-like phenotype, which is not inducible in wild-type controls, even by severe stress. The human GPM6A gene is located on chromosome 4q32-q34, a region linked to panic disorder. Sequence analysis of 115 claustrophobic and non-claustrophobic subjects identified nine variants in the noncoding region of the gene that are more frequent in affected individuals (P=0.028). One variant in the 3'untranslated region was linked to claustrophobia in two small pedigrees. This mutant mRNA is functional but cannot be silenced by neuronal miR124 derived itself from a stress-regulated transcript. We suggest that loosing dynamic regulation of neuronal GPM6A expression poses a genetic risk for claustrophobia.
Collapse
Affiliation(s)
- A El-Kordi
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| | - A Kästner
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S Grube
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - M Klugmann
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - M Begemann
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany
| | - S Sperling
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - K Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - C Hammer
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - B Stepniak
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - J Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - N Strenzke
- Department of Otolaryngology, Georg-August-University, Göttingen, Germany
| | - G Flügge
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany,Department of Clinical Neurobiology, German Primate Center, Göttingen, Germany
| | - H B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - R Pawlak
- Laboratory of Neuronal Plasticity and Behaviour, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - K-A Nave
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany,Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany,Max Planck Institute of Experimental Medicine, Hermann-Rein Street 3, 37075 Göttingen, Germany. E-mail: (HE) or (K-AN)
| | - H Ehrenreich
- Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Molecular Physiology of the Brain (CMPB), Göttingen, Germany,Max Planck Institute of Experimental Medicine, Hermann-Rein Street 3, 37075 Göttingen, Germany. E-mail: (HE) or (K-AN)
| |
Collapse
|
35
|
Effects of chronic stress on prefrontal cortex transcriptome in mice displaying different genetic backgrounds. J Mol Neurosci 2012; 50:33-57. [PMID: 22836882 PMCID: PMC3622021 DOI: 10.1007/s12031-012-9850-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/25/2012] [Indexed: 01/27/2023]
Abstract
There is increasing evidence that depression derives from the impact of environmental pressure on genetically susceptible individuals. We analyzed the effects of chronic mild stress (CMS) on prefrontal cortex transcriptome of two strains of mice bred for high (HA)and low (LA) swim stress-induced analgesia that differ in basal transcriptomic profiles and depression-like behaviors. We found that CMS affected 96 and 92 genes in HA and LA mice, respectively. Among genes with the same expression pattern in both strains after CMS, we observed robust upregulation of Ttr gene coding transthyretin involved in amyloidosis, seizures, stroke-like episodes, or dementia. Strain-specific HA transcriptome affected by CMS was associated with deregulation of genes involved in insulin secretion (Acvr1c, Nnat, and Pfkm), neuropeptide hormone activity (Nts and Trh), and dopamine receptor mediated signaling pathway (Clic6, Drd1a, and Ppp1r1b). LA transcriptome affected by CMS was associated with genes involved in behavioral response to stimulus (Fcer1g, Rasd2, S100a8, S100a9, Crhr1, Grm5, and Prkcc), immune effector processes (Fcer1g, Mpo, and Igh-VJ558), diacylglycerol binding (Rasgrp1, Dgke, Dgkg, and Prkcc), and long-term depression (Crhr1, Grm5, and Prkcc) and/or coding elements of dendrites (Crmp1, Cntnap4, and Prkcc) and myelin proteins (Gpm6a, Mal, and Mog). The results indicate significant contribution of genetic background to differences in stress response gene expression in the mouse prefrontal cortex.
Collapse
|
36
|
Carpenter WT. The facts of schizophrenia: a personal commentary. Schizophr Res 2011; 128:3-4. [PMID: 21458240 DOI: 10.1016/j.schres.2011.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/01/2011] [Indexed: 11/28/2022]
Affiliation(s)
- William T Carpenter
- Maryland Psychiatric Research Center, VA Capitol Network (VISN 5) MIRECC, University of Maryland School of Medicine, USA
| |
Collapse
|
37
|
Affiliation(s)
- I E Sommer
- Neuroscience Department University Medical Center Utrecht and Rudolf Magnus Institute for Neuroscience, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Breetvelt EJ, Boks MPM, Numans ME, Selten JP, Sommer IEC, Grobbee DE, Kahn RS, Geerlings MI. Schizophrenia risk factors constitute general risk factors for psychiatric symptoms in the population. Schizophr Res 2010; 120:184-90. [PMID: 20421160 DOI: 10.1016/j.schres.2010.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/17/2010] [Accepted: 03/28/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND The presence of a psychosis continuum is suggested by studies showing that schizophrenia and non-clinical psychotic symptoms in the general population share the same risk factors. However, to our knowledge no large-scale studies have been conducted which examine the specificity of these risk factors in the general population. AIM To investigate whether socio-demographic characteristics associated with non-clinical psychotic symptoms are also associated with other psychiatric symptoms. And secondly, to examine to what extent concomitant psychiatric symptoms explain the relationship between socio-demographic characteristics and non-clinical psychotic symptoms. METHODS In a general population sample of 4894 subjects (mean age 39 years, 45% men) from the Utrecht Health Project we investigated the associations of socio-demographical characteristics with non-clinical psychotic symptoms and other psychiatric symptoms by using the SCL-90. We examined these associations using multivariable logistic regression analyses with and without controlling for the presence of other psychiatric symptoms. RESULTS Participants with non-clinical psychotic symptoms had an 89% probability of concomitant depressive, anxiety or phobic anxiety symptoms, compared to 11% in participants without psychotic symptoms. The risk profiles for non-clinical psychotic symptoms and other psychiatric symptoms were largely similar. Non-Dutch ethnicity was most strongly associated with non-clinical psychotic symptoms. Adjusting for other psychiatric symptoms did not increase the specificity of the risk factors. CONCLUSION Socio-demographic risk factors for non-clinical psychotic symptoms in the general population are also risk factors for other psychiatric symptoms. The relationship between these risk factors and psychotic symptoms are for a substantial part explained by an increase in other psychiatric symptoms.
Collapse
Affiliation(s)
- Elemi J Breetvelt
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J Neurosci 2010; 30:7152-67. [PMID: 20505083 DOI: 10.1523/jneurosci.1314-10.2010] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone methyltransferases specific for the histone H3-lysine 9 residue, including Setdb1 (Set domain, bifurcated 1)/Eset/Kmt1e are associated with repressive chromatin remodeling and expressed in adult brain, but potential effects on neuronal function and behavior remain unexplored. Here, we report that transgenic mice with increased Setdb1 expression in adult forebrain neurons show antidepressant-like phenotypes in behavioral paradigms for anhedonia, despair, and learned helplessness. Chromatin immunoprecipitation in conjunction with DNA tiling arrays (ChIP-chip) revealed that genomic occupancies of neuronal Setdb1 are limited to <1% of annotated genes, which include the NMDA receptor subunit NR2B/Grin2B and other ionotropic glutamate receptor genes. Chromatin conformation capture and Setdb1-ChIP revealed a loop formation tethering the NR2B/Grin2b promoter to the Setdb1 target site positioned 30 kb downstream of the transcription start site. In hippocampus and ventral striatum, two key structures in the neuronal circuitry regulating mood-related behaviors, Setdb1-mediated repressive histone methylation at NR2B/Grin2b was associated with decreased NR2B expression and EPSP insensitivity to pharmacological blockade of NR2B, and accelerated NMDA receptor desensitization consistent with a shift in NR2A/B subunit ratios. In wild-type mice, systemic treatment with the NR2B antagonist, Ro25-6981 [R-(R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol], and hippocampal small interfering RNA-mediated NR2B/Grin2b knockdown resulted in behavioral changes similar to those elicited by the Setdb1 transgene. Together, these findings point to a role for neuronal Setdb1 in the regulation of affective and motivational behaviors through repressive chromatin remodeling at a select set of target genes, resulting in altered NMDA receptor subunit composition and other molecular adaptations.
Collapse
|
40
|
Leask SJ, Vermunt JK, Done DJ, Crow TJ, Blows M, Boks MP. Beyond symptom dimensions: schizophrenia risk factors for patient groups derived by latent class analysis. Schizophr Res 2009; 115:346-50. [PMID: 19840897 DOI: 10.1016/j.schres.2009.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/08/2009] [Accepted: 09/13/2009] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Patients grouped by latent class analysis of symptoms show some consensus between studies, and may be less etiologically heterogeneous than current diagnoses. If so, the effect size of 'neurodevelopmental' risk factors may be greater than in equivalent DSMIV diagnostic groups. METHOD Two hundred fifty six individuals with neurodevelopmental risk factors recorded in the National Child Development Study (1958) UK birth cohort were grouped by data-driven illness subtypes, derived previously in over 1000 individuals. The effect sizes of these risks were compared between data-derived and DSMIV schizophrenia (295.x) groups. RESULTS Compared to DSMIV schizophrenia, the data-driven subtype broadly characterized by the presence of psychotic symptoms in the absence of affective symptoms showed significantly greater effect sizes in eight out of thirteen continuously-rated risk factors: birth weight, cognition, childhood behavioural problems, and neurological softsigns including handedness. CONCLUSION A data-driven subgroup of schizophrenia patients, characterized as lacking co-morbid depressive symptoms, is less heterogeneous with respect to neurodevelopmental etiology.
Collapse
Affiliation(s)
- S J Leask
- Division of Psychiatry, Nottingham University, A floor, South Block, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Fuchsova B, Fernández ME, Alfonso J, Frasch AC. Cysteine residues in the large extracellular loop (EC2) are essential for the function of the stress-regulated glycoprotein M6a. J Biol Chem 2009; 284:32075-88. [PMID: 19737934 DOI: 10.1074/jbc.m109.012377] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gpm6a was identified as a stress-responsive gene in the hippocampal formation. This gene is down-regulated in the hippocampus of both socially and physically stressed animals, and this effect can be reversed by antidepressant treatment. Previously we showed that the stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. In the present work, mutational analysis was used to characterize the action of M6a at the molecular level. We show that four cysteines 162, 174, 192, and 202 within EC2 are functionally crucial sites. The presence of cysteines 162 and 202 is essential for the efficient cell surface expression of the M6a protein. In contrast, cysteines 174 and 192, which form a disulfide bridge as shown by biochemical analysis, are not required for the efficient surface expression of M6a. Their mutation to alanine does not interfere with the localization of M6a to filopodial protrusions in primary hippocampal neurons. The neurons expressing C174A and/or C192A mutants display decreased filopodia number. In non-permeabilized cells, these mutant proteins are not recognized by a function-blocking monoclonal antibody directed to M6a. Moreover, neurons in contact with axons expressing C174A/C192A mutant display significantly lower density of presynaptic clusters over their dendrites. Taken together, this study demonstrates that cysteines in the EC2 domain are critical for the role of M6a in filopodium outgrowth and synaptogenesis.
Collapse
Affiliation(s)
- Beata Fuchsova
- Instituto de Investigaciones Biotecnológicas-INTECH, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas, 1650 San Martin, Argentina.
| | | | | | | |
Collapse
|
42
|
Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection. ACTA ACUST UNITED AC 2009; 4:111-27. [PMID: 19497142 DOI: 10.1017/s1740925x0900009x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein composition of myelin in the central nervous system (CNS) has changed at the evolutionary transition from fish to tetrapods, when a lipid-associated transmembrane-tetraspan (proteolipid protein, PLP) replaced an adhesion protein of the immunoglobulin superfamily (P0) as the most abundant constituent. Here, we review major steps of proteolipid evolution. Three paralog proteolipids (PLP/DM20/DMalpha, M6B/DMgamma and the neuronal glycoprotein M6A/DMbeta) exist in vertebrates from cartilaginous fish to mammals, and one (M6/CG7540) can be traced in invertebrate bilaterians including the planktonic copepod Calanus finmarchicus that possess a functional myelin equivalent. In fish, DMalpha and DMgamma are coexpressed in oligodendrocytes but are not major myelin components. PLP emerged at the root of tetrapods by the acquisition of an enlarged cytoplasmic loop in the evolutionary older DMalpha/DM20. Transgenic experiments in mice suggest that this loop enhances the incorporation of PLP into myelin. The evolutionary recruitment of PLP as the major myelin protein provided oligodendrocytes with the competence to support long-term axonal integrity. We suggest that the molecular shift from P0 to PLP also correlates with the concentration of adhesive forces at the radial component, and that the new balance between membrane adhesion and dynamics was favorable for CNS myelination.
Collapse
|
43
|
Treutlein J, Mühleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, Treutlein T, Schmael C, Strohmaier J, Bösshenz KV, Breuer R, Paul T, Witt SH, Schulze TG, Schlösser RGM, Nenadic I, Sauer H, Becker T, Maier W, Cichon S, Nöthen MM, Rietschel M. Dissection of phenotype reveals possible association between schizophrenia and Glutamate Receptor Delta 1 (GRID1) gene promoter. Schizophr Res 2009; 111:123-30. [PMID: 19346103 DOI: 10.1016/j.schres.2009.03.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/25/2009] [Accepted: 03/04/2009] [Indexed: 12/21/2022]
Abstract
Recent linkage and association data have implicated the Glutamate Receptor Delta 1 (GRID1) locus in the etiology of schizophrenia. In this study, we sought to test whether variants in the promoter region are associated with this disorder. The distribution of CpG islands, which are known to be relevant for transcriptional regulation, was computationally determined at the GRID1 locus, and the putative transcriptional regulatory region at the 5'-terminus was systematically tagged using HapMap data. Genotype analyses were performed with 22 haplotype-tagging single nucleotide polymorphisms (htSNPs) in a German sample of 919 schizophrenia patients and 773 controls. The study also included two SNPs in intron 2 and one in intron 3 which have been found to be significantly associated with schizophrenia in previous studies. For the transcriptional regulatory region, association was obtained with rs3814614 (p=0.0193), rs10749535 (p=0.0245), and rs11201985 (p=0.0222). For all further analyses, the patient samples were divided into more homogeneous subgroups according to sex, age at onset, positive family history of schizophrenia and lifetime history of major depression. The p-value of the schizophrenia association finding for the three markers decreased by approximately one order of magnitude, despite the reduction in the total sample size. Marker rs3814614 (unadjusted p=0.0005), located approximately 2.0 kb from the transcriptional start point, also withstood a two-step correction for multiple testing (p=0.030). No support was obtained for previously reported associations with the intronic markers. Our results suggest that genetic variants in the GRID1 transcriptional regulatory region may play a role in the etiology of schizophrenia, and that future association studies of schizophrenia may require stratification to ensure more homogeneous patient subgroups.
Collapse
Affiliation(s)
- Jens Treutlein
- Department of Genetic Epidemiology, Central Institute of Mental Health, J5, D-68159 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Psychiatric comorbidities are common among patients with schizophrenia. Substance abuse comorbidity predominates. Anxiety and depressive symptoms are also very common throughout the course of illness, with an estimated prevalence of 15% for panic disorder, 29% for posttraumatic stress disorder, and 23% for obsessive-compulsive disorder. It is estimated that comorbid depression occurs in 50% of patients, and perhaps (conservatively) 47% of patients also have a lifetime diagnosis of comorbid substance abuse. This article chronicles these associations, examining whether these comorbidities are "more than chance" and might represent (distinct) phenotypes of schizophrenia. Among the anxiety disorders, the evidence at present is most abundant for an association with obsessive-compulsive disorder. Additional studies in newly diagnosed antipsychotic-naive patients and their first-degree relatives and searches for genetic and environmental risk factors are needed to replicate preliminary findings and further investigate these associations.
Collapse
Affiliation(s)
- Peter F. Buckley
- Department of Psychiatry, Medical College of Georgia, 997 St Sebastian Way, Augusta, GA 30912,To whom correspondence should be addressed; tel: 706-721-6719, e-mail:
| | - Brian J. Miller
- Department of Psychiatry, Medical College of Georgia, 997 St Sebastian Way, Augusta, GA 30912
| | - Douglas S. Lehrer
- Wright State University Boonshoft School of Medicine and the Wallace-Kettering Neuroscience Institute
| | | |
Collapse
|
45
|
A genome wide detection of quantitative trait loci on pig maternal infanticide behavior in a large scale White Duroc x Erhualian resource population. Behav Genet 2009; 39:213-9. [PMID: 19130209 DOI: 10.1007/s10519-008-9252-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 12/12/2008] [Indexed: 12/15/2022]
Abstract
Maternal behavior around parturition is important to piglet survival. An extreme form of failure of maternal behavior, also called maternal infanticide, often occurs in some sows. This is defined as an active attack to piglets using the jaws, resulting in serious or fatal bite wounds within 24 h of birth. It leads to considerable economic losses to the pig industry and severe problems in pig welfare. In this study, maternal behaviors from 5 h before to 24 h after parturition were recorded in detail on 288 White Duroc x Erhualian intercross F(2) sows over their three continuous farrowings. In the F(2) population 12.8% gilts showed maternal infanticide in their first litter, while the incidences of maternal infanticide at their second and third farrowing reduced to 7.5% and 4.5%, respectively. All F(2) sows were genotyped for 194 microsatellite markers spanning the whole pig genome. A whole genome linkage analysis was performed using the non-parametric linkage test by SimWalk2 software. The results identified that seven chromosome regions on SSC2, SSC6, SSC14, SSC15 and SSCX were significantly linked with maternal infanticide (P < 0.05). The quantitative trait loci (QTL) on SSC2 and SSCX achieved P < 0.01 significance level. The most promising QTLs, however, were detected on X chromosome where three peaks of negative logarithm of P-value located at marker SW980, SW2456 and SW1608. QTLs on SSC2 and SSCX from this experiment were consistent with published results from the Western commercial lines.
Collapse
|
46
|
Fernández ME, Alfonso J, Brocco MA, Frasch AC. Conserved cellular function and stress-mediated regulation among members of the proteolipid protein family. J Neurosci Res 2009; 88:1298-308. [DOI: 10.1002/jnr.22298] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
van Winkel R, Stefanis NC, Myin-Germeys I. Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr Bull 2008; 34:1095-105. [PMID: 18718885 PMCID: PMC2632486 DOI: 10.1093/schbul/sbn101] [Citation(s) in RCA: 319] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article presents evidence suggesting that psychosocial stress may increase risk for psychosis, especially in the case of cumulative exposure. A heuristically useful framework to study the underlying mechanisms is the concept of "behavioral sensitization" that stipulates that exposure to psychosocial stress--such as life events, childhood trauma, or discriminatory experiences--may progressively increase the behavioral and biological response to subsequent exposures. The neurobiological substrate of sensitization may involve dysregulation of the hypothalamus-pituitary-adrenal axis, contributing to a hypothesized final common pathway of dopamine sensitization in mesolimbic areas and increased stress-induced striatal dopamine release. It is argued that, in order to reconcile genetic and environmental influences on the development of psychosis, gene-environment interactions may be an important mechanism in explaining between-subject differences in risk following (cumulative) exposure to psychosocial stress. To date, most studies suggestive of gene-stress interaction have used proxy measures for genetic vulnerability such as a family history of psychosis; studies investigating interactions between molecular genetic measures and psychosocial stressors are still relatively scarce. Preliminary evidence suggests that polymorphisms within the catechol-O-methyltransferase and brain-derived neurotrophic factor genes may interact with psychosocial stress in the development of psychosis; however, extensive further investigations are required to confirm this.
Collapse
Affiliation(s)
- Ruud van Winkel
- Department of Psychiatry and Neuropsychology, EURON, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Nicholas C. Stefanis
- National and Kapodistrian University of Athens, Eginition Hospital, 74 Vas SofiasAvenue, Athens 11528, Greece,University Mental Health Research Institute, Athens, Greece,Division of Psychological Medicine, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK
| | - Inez Myin-Germeys
- Department of Psychiatry and Neuropsychology, EURON, South Limburg Mental Health Research and Teaching Network, Maastricht University Medical Centre, PO Box 616, 6200 MD Maastricht, The Netherlands,School of Psychological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|