1
|
Li H, Xu X, Xu R, Fan PX, Zhou J, Dong L. Latent class analysis of migraine associated vestibular-auditory symptoms. Cephalalgia 2024; 44:3331024241262488. [PMID: 38887813 DOI: 10.1177/03331024241262488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
OBJECTIVE This study aimed to identify the potential subgroups of migraines based on the patterns of migraine associated symptoms, vestibular and auditory symptoms using latent class analysis and to explore their characteristics. METHOD A total of 555 patients with migraine participated in the study. Symptoms such as nausea, vomiting, photophobia, phonophobia, osmophobia, visual symptoms, vestibular symptoms (dizziness, vertigo), and auditory symptoms (tinnitus, hearing loss, aural fullness) were assessed. Latent class analysis was performed to identify subgroups of migraines. Covariates such as gender, age of migraine onset, frequency of migraine attacks per month, and family history were also considered. RESULTS The analysis revealed four latent classes: the Prominent Vestibular; Prominent Nausea; Presenting Symptoms but not prominent or dominant; and Sensory Hypersensitivity groups. Various covariates, such as gender, age of migraine onset, and frequency of migraine attacks, demonstrated significant differences among the four groups. The Sensory Hypersensitivity group showed the presence of multiple sensory symptoms, earlier age of migraine onset, and higher proportion of females. The Prominent Vestibular group had the highest probability of dizziness or vertigo but lacked the presence of auditory symptoms. The Prominent Nausea group exhibited prominent nausea. The Presenting Symptoms but not prominent or dominant group comprised individuals with the highest migraine attacks per month and proportion of chronic migraine. CONCLUSION This study identifies four subgroups of migraines based on the patterns of symptoms. The findings suggest potential different but overlapped mechanisms behind the vestibular and auditory symptoms of migraine. Considering the different patterns of migraine-related symptoms may provide deeper insights for patients' prognosis and clinical decision-making.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University Department of Neurology, Chongqing, China
| | - Xiaonuo Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University Department of Neurology, Chongqing, China
| | - Rongjiang Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University Department of Neurology, Chongqing, China
| | - Ping Xiao Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University Department of Neurology, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University Department of Neurology, Chongqing, China
| | - Liang Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University Department of Neurology, Chongqing, China
| |
Collapse
|
2
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Lee W, Min IK, Yang KI, Kim D, Yun CH, Chu MK. Classifying migraine subtypes and their characteristics by latent class analysis using data of a nation-wide population-based study. Sci Rep 2021; 11:21595. [PMID: 34732803 PMCID: PMC8566532 DOI: 10.1038/s41598-021-01107-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Migraine neither presents with a definitive single symptom nor has a distinct biomarker; thus, its diagnosis is based on combinations of typical symptoms. We aimed to identify natural subgroups of migraine based on symptoms listed in the diagnostic criteria of the third edition of the International Classification of Headache Disorders. Latent class analysis (LCA) was applied to the data of the Korean Sleep-Headache Study, a nationwide population-based survey. We selected a three-class model based on Akaike and Bayesian information criteria and characterized the three identified classes as “mild and low frequency,” “photophobia and phonophobia,” and “severe and high frequency.” In total, 52.0% (65/125) of the participants were classified as “mild and low frequency,” showing the highest frequency of mild headache intensity but the lowest overall headache frequency. Meanwhile, “photophobia and phonophobia” involved 33.6% (42/125) of the participants, who showed the highest frequency of photophobia and phonophobia. Finally, “severe and high frequency” included 14.4% (18/125) of the participants, and they presented the highest frequency of severe headache intensity and highest headache frequency. In conclusion, LCA is useful for analyzing the heterogeneity of migraine symptoms and identifying migraine subtypes. This approach may improve our understanding of the clinical characterization of migraine.
Collapse
Affiliation(s)
- Wonwoo Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - In Kyung Min
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Ik Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan, Korea
| | - Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
| | - Chang-Ho Yun
- Department of Neurology, Bundang Clinical Neuroscience Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
4
|
Migraine, Human Genetics and a Passion for Science. Twin Res Hum Genet 2020; 23:105-106. [PMID: 32423498 DOI: 10.1017/thg.2020.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This note reflects on my collaborations with Nick Martin and the GenEpi group over the past 20 years. Over the past two decades, our work together has focused on gene mapping and understanding the genetic architecture of a wide range of traits with particular foci on migraine and common baldness. Our migraine research has included latent class and twin analyses cumulating in genome-wide association analyses which had identified 44 (34 new) risk variants for migraine. Leveraging these results through polygenic risk score analyses identified subgroups of patients likely to respond to triptans (an acute migraine drug), providing the first step toward precision medicine in migraine [Kogelman et al. (2019) Neurology Genetics, 5, e364].
Collapse
|
5
|
Lipton RB, Fanning KM, Buse DC, Martin VT, Reed ML, Manack Adams A, Goadsby PJ. Identifying Natural Subgroups of Migraine Based on Comorbidity and Concomitant Condition Profiles: Results of the Chronic Migraine Epidemiology and Outcomes (CaMEO) Study. Headache 2018; 58:933-947. [DOI: 10.1111/head.13342] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Richard B. Lipton
- Montefiore Headache Center; Bronx NY USA
- Albert Einstein College of Medicine; Bronx NY USA
| | | | - Dawn C. Buse
- Albert Einstein College of Medicine; Bronx NY USA
| | - Vincent T. Martin
- University of Cincinnati Headache and Facial Pain Center, University of Cincinnati College of Medicine; Cincinnati OH USA
| | | | | | - Peter J. Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London; London UK
- Department of Neurology; University of California, San Francisco; San Francisco CA USA
| |
Collapse
|
6
|
Chasman DI, Schürks M, Kurth T. Population-based approaches to genetics of migraine. Cephalalgia 2016; 36:692-703. [PMID: 27013237 DOI: 10.1177/0333102416638519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/06/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND While the most accurate diagnosis of migraine typically requires a clinical interview guided by strict diagnostic criteria, an alternative approach that ascertains migraine by questionnaire in population-based settings has been instrumental in the discovery of common genetic variants influencing migraine risk. This result may be surprising. Population-based approaches are often criticized for limited ability to distinguish migraine from other forms of primary headache. It is thus useful to revisit prevailing ideas about population-based ascertainment of migraine to evaluate the extent to which this approach has potential for additional insights into migraine genetics and therefore pathophysiology. OVERVIEW We review recent findings suggesting that the success of the population-based approach is derived from the possibility of collecting much larger samples than in the clinic-based setting even at the risk of introducing phenotypic and genetic heterogeneity. The findings are also consistent with new appreciations for the genetic basis of many other common, complex clinical characteristics. However, clinic-based ascertainment and other settings will remain more effective than population-based approaches for investigating certain, often very specific aspects of migraine genetics. CONCLUSION We argue that the detailed genetic architecture of migraine, various aspects of methodology, and the ultimate sample size achieved by population-based ascertainment will be critical determinants of the future success of this approach to genetic analysis of migraine and its comorbidities.
Collapse
Affiliation(s)
- Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, USA Harvard Medical School, USA
| | - Markus Schürks
- Department of Neurology, University Hospital Essen, Germany
| | - Tobias Kurth
- Division of Preventive Medicine, Brigham and Women's Hospital, USA Institut of Public Health, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
7
|
Bøttger P, Glerup S, Gesslein B, Illarionova NB, Isaksen TJ, Heuck A, Clausen BH, Füchtbauer EM, Gramsbergen JB, Gunnarson E, Aperia A, Lauritzen M, Lambertsen KL, Nissen P, Lykke-Hartmann K. Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model. Sci Rep 2016; 6:22047. [PMID: 26911348 PMCID: PMC4766516 DOI: 10.1038/srep22047] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/05/2016] [Indexed: 01/12/2023] Open
Abstract
Migraine is a complex brain disorder, and understanding the complexity of this prevalent disease could improve quality of life for millions of people. Familial Hemiplegic Migraine type 2 (FHM2) is a subtype of migraine with aura and co-morbidities like epilepsy/seizures, cognitive impairments and psychiatric manifestations, such as obsessive-compulsive disorder (OCD). FHM2 disease-mutations locate to the ATP1A2 gene encoding the astrocyte-located α2-isoform of the sodium-potassium pump (α2Na+/K+-ATPase). We show that knock-in mice heterozygous for the FHM2-associated G301R-mutation (α2+/G301R) phenocopy several FHM2-relevant disease traits e.g., by mimicking mood depression and OCD. In vitro studies showed impaired glutamate uptake in hippocampal mixed astrocyte-neuron cultures from α2G301R/G301R E17 embryonic mice, and moreover, induction of cortical spreading depression (CSD) resulted in reduced recovery in α2+/G301R male mice. Moreover, NMDA-type glutamate receptor antagonists or progestin-only treatment reverted specific α2+/G301R behavioral phenotypes. Our findings demonstrate that studies of an in vivo relevant FHM2 disease knock-in mouse model provide a link between the female sex hormone cycle and the glutamate system and a link to co-morbid psychiatric manifestations of FHM2.
Collapse
Affiliation(s)
- Pernille Bøttger
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Simon Glerup
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,The Lundbeck Foundation Research Centre MIND, Aarhus University, Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Bodil Gesslein
- University of Copenhagen, Department of Neuroscience and Pharmacology and Center for Healthy Aging, DK-2200 Copenhagen N, Denmark
| | - Nina B Illarionova
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Toke J Isaksen
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Anders Heuck
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark
| | - Bettina H Clausen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | | | - Jan B Gramsbergen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Eli Gunnarson
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Anita Aperia
- Karolinska Institutet, Department of Women's and Children's Health, SE-171 76 Stockholm, Sweden
| | - Martin Lauritzen
- University of Copenhagen, Department of Neuroscience and Pharmacology and Center for Healthy Aging, DK-2200 Copenhagen N, Denmark.,Glostrup Hospital, Department of Clinical Neurophysiology, DK-2600 Glostrup, Denmark
| | - Kate L Lambertsen
- University of Southern Denmark, Institute of Molecular Medicine, Department of Neurobiology Research, DK-5000 Odense, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus, Denmark.,Danish Research Institute for Translational Neuroscience-DANDRITE, Nordic-EMBL Partnership of Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics and Department of Biomedicine, DK-8000 Aarhus C, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, DK-8000 Aarhus, Denmark.,Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus University, Department of Molecular Biology and Genetics, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Migraine genetics: current findings and future lines of research. Neurogenetics 2014; 16:77-95. [PMID: 25501253 DOI: 10.1007/s10048-014-0433-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 11/25/2014] [Indexed: 01/03/2023]
Abstract
In the last two decades, migraine research has greatly advanced our current knowledge of the genetic contributions and the pathophysiology of this common and debilitating disorder. Nonetheless, this knowledge still needs to grow further and to translate into more effective treatments. To date, several genes involved in syndromic and monogenic forms of migraine have been identified, allowing the generation of animal models which have significantly contributed to current knowledge of the mechanisms underlying these rare forms of migraine. Common forms of migraine are instead posing a greater challenge, as they may most often stem from complex interactions between multiple common genetic variants, with environmental triggers. This paper reviews our current understanding of migraine genetics, moving from syndromic and monogenic forms to oligogenic/polygenic migraines most recently addressed with some success through genome-wide association studies. Methodological issues in study design and future perspectives opened by biomarker research will also be briefly addressed.
Collapse
|
9
|
Lipton RB, Serrano D, Pavlovic JM, Manack AN, Reed ML, Turkel CC, Buse DC. Improving the Classification of Migraine Subtypes: An Empirical Approach Based on Factor Mixture Models in the American Migraine Prevalence and Prevention (AMPP) Study. Headache 2014; 54:830-49. [DOI: 10.1111/head.12332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Richard B. Lipton
- Albert Einstein College of Medicine; Bronx NY USA
- Montefiore Medical Center; Bronx NY USA
| | - Daniel Serrano
- Albert Einstein College of Medicine; Bronx NY USA
- Vedanta Research; Chapel Hill NC USA
| | - Jelena M. Pavlovic
- Albert Einstein College of Medicine; Bronx NY USA
- Montefiore Medical Center; Bronx NY USA
| | | | | | | | - Dawn C. Buse
- Albert Einstein College of Medicine; Bronx NY USA
- Montefiore Medical Center; Bronx NY USA
| |
Collapse
|
10
|
Nijmeijer JS, Arias-Vásquez A, Rommelse NNJ, Altink ME, Buschgens CJM, Fliers EA, Franke B, Minderaa RB, Sergeant JA, Buitelaar JK, Hoekstra PJ, Hartman CA. Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder: Significant Locus on Chromosome 7q11. J Autism Dev Disord 2014; 44:1671-80. [DOI: 10.1007/s10803-014-2039-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Addis L, Chiang T, Clarke T, Hardison H, Kugler S, Mandelbaum DE, Novotny E, Wolf S, Strug LJ, Pal DK. Evidence for linkage of migraine in Rolandic epilepsy to known 1q23 FHM2 and novel 17q22 genetic loci. GENES BRAIN AND BEHAVIOR 2013; 13:333-40. [PMID: 24286483 DOI: 10.1111/gbb.12110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/08/2013] [Accepted: 11/25/2013] [Indexed: 12/20/2022]
Abstract
Migraine headaches are a common comorbidity in Rolandic epilepsy (RE) and familial aggregation of migraine in RE families suggests a genetic basis not mediated by seizures. We performed a genome-wide linkage analysis of the migraine phenotype in 38 families with RE to localize potential genetic contribution, with a follow-up in an additional 21 families at linked loci. We used two-point and multipoint LOD (logarithm of the odds) score methods for linkage, maximized over genetic models. We found evidence of linkage to migraine at chromosome 17q12-22 [multipoint HLOD (heterogeneity LOD) 4.40, recessive, 99% penetrance], replicated in the second dataset (HLOD 2.61), and suggestive evidence at 1q23.1-23.2, centering over the FHM2 locus (two-point LOD 3.00 and MP HLOD 2.52). Sanger sequencing in 14 migraine-affected individuals found no coding mutations in the FHM2 gene ATP1A2. There was no evidence of pleiotropy for migraine and either reading or speech disorder, or the electroencephalographic endophenotype of RE when the affected definition was redefined as those with migraine or the comorbid phenotype, and pedigrees were reanalyzed for linkage. In summary, we report a novel migraine susceptibility locus at 17q12-22, and a second locus that may contribute to migraine in the general population at 1q23.1-23.2. Comorbid migraine in RE appears genetically influenced, but we did not obtain evidence that the identified susceptibility loci are consistent with pleiotropic effects on other comorbidities in RE. Loci identified here should be fine-mapped in individuals from RE families with migraine, and prioritized for analysis in other types of epilepsy-associated migraine.
Collapse
Affiliation(s)
- L Addis
- Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Swanson SA, Lindenberg K, Bauer S, Crosby RD. A Monte Carlo investigation of factors influencing latent class analysis: an application to eating disorder research. Int J Eat Disord 2012; 45:677-84. [PMID: 21882219 DOI: 10.1002/eat.20958] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Latent class analysis (LCA) has frequently been used to identify qualitatively distinct phenotypes of disordered eating. However, little consideration has been given to methodological factors that may influence the accuracy of these results. METHOD Monte Carlo simulations were used to evaluate methodological factors that may influence the accuracy of LCA under scenarios similar to those seen in previous eating disorder research. RESULTS Under these scenarios, the aBIC provided the best overall performance as an information criterion, requiring sample sizes of 300 in both balanced and unbalanced structures to achieve accuracy proportions of at least 80%. The BIC and cAIC required larger samples to achieve comparable performance, while the AIC performed poorly universally in comparison. Accuracy generally was lower with unbalanced classes, fewer indicators, greater or nonrandom missing data, conditional independence assumption violations, and lower base rates of indicator endorsement. DISCUSSION These results provide critical information for interpreting previous LCA research and designing future classification studies.
Collapse
Affiliation(s)
- Sonja A Swanson
- Harvard School of Public Health, Department of Epidemiology, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
13
|
A genome-wide analysis of 'Bounty' descendants implicates several novel variants in migraine susceptibility. Neurogenetics 2012; 13:261-6. [PMID: 22678113 DOI: 10.1007/s10048-012-0325-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
Migraine is a common neurological disease with a complex genetic aetiology. The disease affects ~12% of the Caucasian population and females are three times more likely than males to be diagnosed. In an effort to identify loci involved in migraine susceptibility, we performed a pedigree-based genome-wide association study of the isolated population of Norfolk Island, which has a high prevalence of migraine. This unique population originates from a small number of British and Polynesian founders who are descendents of the Bounty mutiny and forms a very large multigenerational pedigree (Bellis et al.; Human Genetics, 124(5):543-5542, 2008). These population genetic features may facilitate disease gene mapping strategies (Peltonen et al.; Nat Rev Genet, 1(3):182-90, 2000. In this study, we identified a high heritability of migraine in the Norfolk Island population (h (2) = 0.53, P = 0.016). We performed a pedigree-based GWAS and utilised a statistical and pathological prioritisation approach to implicate a number of variants in migraine. An SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347) showed evidence of statistical association in our Norfolk Island pedigree (P = 9.6 × 10(-6)) as well as replication in a large independent and unrelated cohort with >500 migraineurs. In addition, we utilised a biological prioritisation to implicate four SNPs, in within the ADARB2 gene, two SNPs within the GRM7 gene and a single SNP in close proximity to a HTR7 gene. Association of SNPs within these neurotransmitter-related genes suggests a disrupted serotoninergic system that is perhaps specific to the Norfolk Island pedigree, but that might provide clues to understanding migraine more generally.
Collapse
|
14
|
Cox HC, Lea RA, Bellis C, Nyholt DR, Dyer TD, Haupt LM, Charlesworth J, Matovinovic E, Blangero J, Griffiths LR. Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island. Gene 2011; 494:119-23. [PMID: 22197687 DOI: 10.1016/j.gene.2011.11.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h(2)=0.53, P=0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P=0.003) and chromosome 9q22.32 (P=0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P≤0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1.
Collapse
Affiliation(s)
- Hannah C Cox
- Genomics Research Centre, Griffith Health Institute, Gold Coast Campus, Griffith University, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ligthart L, de Vries B, Smith AV, Ikram MA, Amin N, Hottenga JJ, Koelewijn SC, Kattenberg VM, de Moor MHM, Janssens ACJW, Aulchenko YS, Oostra BA, de Geus EJC, Smit JH, Zitman FG, Uitterlinden AG, Hofman A, Willemsen G, Nyholt DR, Montgomery GW, Terwindt GM, Gudnason V, Penninx BWJH, Breteler M, Ferrari MD, Launer LJ, van Duijn CM, van den Maagdenberg AMJM, Boomsma DI. Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet 2011; 19:901-7. [PMID: 21448238 PMCID: PMC3172930 DOI: 10.1038/ejhg.2011.48] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Migraine is a common neurological disorder with a genetically complex background. This paper describes a meta-analysis of genome-wide association (GWA) studies on migraine, performed by the Dutch–Icelandic migraine genetics (DICE) consortium, which brings together six population-based European migraine cohorts with a total sample size of 10 980 individuals (2446 cases and 8534 controls). A total of 32 SNPs showed marginal evidence for association at a P-value<10−5. The best result was obtained for SNP rs9908234, which had a P-value of 8.00 × 10−8. This top SNP is located in the nerve growth factor receptor (NGFR) gene. However, this SNP did not replicate in three cohorts from the Netherlands and Australia. Of the other 31 SNPs, 18 SNPs were tested in two replication cohorts, but none replicated. In addition, we explored previously identified candidate genes in the meta-analysis data set. This revealed a modest gene-based significant association between migraine and the metadherin (MTDH) gene, previously identified in the first clinic-based GWA study (GWAS) for migraine (Bonferroni-corrected gene-based P-value=0.026). This finding is consistent with the involvement of the glutamate pathway in migraine. Additional research is necessary to further confirm the involvement of glutamate.
Collapse
Affiliation(s)
- Lannie Ligthart
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ligthart L, Nyholt DR, Penninx BW, Boomsma DI. The Shared Genetics of Migraine and Anxious Depression. Headache 2010; 50:1549-60. [DOI: 10.1111/j.1526-4610.2010.01705.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Oedegaard KJ, Greenwood TA, Johansson S, Jacobsen KK, Halmoy A, Fasmer OB, Akiskal HS, Haavik J, Kelsoe JR. A genome-wide association study of bipolar disorder and comorbid migraine. GENES BRAIN AND BEHAVIOR 2010; 9:673-80. [PMID: 20528957 DOI: 10.1111/j.1601-183x.2010.00601.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both migraine and bipolar affective disorder (BPAD) are complex phenotypes with significant genetic and nongenetic components. Epidemiological and clinical studies have showed a high degree of comorbidity between migraine and BPAD, and overlapping regions of linkage have been shown in numerous genome-wide linkage studies. To identify susceptibility factors for the BPAD/migraine phenotype, we conducted a genome-wide association study (GWAS) in 1001 cases with bipolar disorder collected through the NIMH Genetics Initiative for Bipolar Disorder and genotyped at 1 m single-nucleotide polymorphisms (SNPs) as part of the Genetic Association Information Network (GAIN). We compared BPAD patients without any headache (n = 699) with BPAD patients with doctor diagnosed migraine (n = 56). The strongest evidence for association was found for several SNPs in a 317-kb region encompassing the uncharacterized geneKIAA0564 {e.g. rs9566845 [OR = 4.98 (95% CI: 2.6-9.48), P = 7.7 × 10(-8)] and rs9566867 (P = 8.2 × 10(-8))}. Although the level of significance was significantly reduced when using the Fisher's exact test (as a result of the low count of cases with migraine), rs9566845 P = 1.4 × 10(-5) and rs9566867 P = 1.5 × 10(-5), this region remained the most prominent finding. Furthermore, marker rs9566845 was genotyped and found associated with migraine in an independent Norwegian sample of adult attention deficit hyperactivity disorder (ADHD) patients with and without comorbid migraine (n = 131 and n = 324, respectively), OR = 2.42 (1.18-4.97), P = 0.013. This is the first GWAS examining patients with bipolar disorder and comorbid migraine. These data suggest that genetic variants in the KIAA0564 gene region may predispose to migraine headaches in subgroups of patients with both BPAD and ADHD.
Collapse
Affiliation(s)
- K J Oedegaard
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tikka-Kleemola P, Artto V, Vepsäläinen S, Sobel EM, Räty S, Kaunisto MA, Anttila V, Hämäläinen E, Sumelahti ML, Ilmavirta M, Färkkilä M, Kallela M, Palotie A, Wessman M. A visual migraine aura locus maps to 9q21-q22. Neurology 2010; 74:1171-7. [PMID: 20385888 PMCID: PMC2865729 DOI: 10.1212/wnl.0b013e3181d8ffcb] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify susceptibility loci for visual migraine aura in migraine families primarily affected with scintillating scotoma type of aura. METHODS We included Finnish migraine families with at least 2 affected family members with scintillating scotoma as defined by the International Criteria for Headache Disorders-II. A total of 36 multigenerational families containing 351 individuals were included, 185 of whom have visual aura and 159 have scintillating scotoma. Parametric and nonparametric linkage analyses were performed with 378 microsatellite markers. The most promising linkage loci found were fine-mapped with additional microsatellite markers. RESULTS A novel locus on chromosome 9q22-q31 for migraine aura was identified (HLOD = 4.7 at 104 cM). Fine-mapping identified a shared haplotype segment of 12 cM (9.8 Mb) on 9q21-q22 among the aura affected. Four other loci showed linkage to aura: a locus on 12p13 showed significant evidence of linkage, and suggestive evidence of linkage was detected to loci on chromosomes 5q13, 6q25, and 13q14. CONCLUSIONS A novel visual migraine aura locus has been mapped to chromosome 9q21-q22. Interestingly, this region has previously been linked to occipitotemporal lobe epilepsy with prominent visual symptoms. Our finding further supports a shared genetic background in migraine and epilepsy and suggests that susceptibility variant(s) to visual aura for both of these traits are located in the 9q21-q22 locus.
Collapse
Affiliation(s)
- P Tikka-Kleemola
- Folkhälsan Research Center, Biomedicum Helsinki, PO Box 63, 00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Oedegaard KJ, Greenwood TA, Lunde A, Fasmer OB, Akiskal HS, Kelsoe JR. A genome-wide linkage study of bipolar disorder and co-morbid migraine: replication of migraine linkage on chromosome 4q24, and suggestion of an overlapping susceptibility region for both disorders on chromosome 20p11. J Affect Disord 2010; 122:14-26. [PMID: 19819557 PMCID: PMC5660919 DOI: 10.1016/j.jad.2009.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 12/29/2022]
Abstract
Migraine and Bipolar Disorder (BPAD) are clinically heterogeneous disorders of the brain with a significant, but complex, genetic component. Epidemiological and clinical studies have demonstrated a high degree of co-morbidity between migraine and BPAD. Several genome-wide linkage studies in BPAD and migraine have shown overlapping regions of linkage on chromosomes, and two functionally similar voltage-dependent calcium channels CACNA1A and CACNA1C have been identified in familial hemiplegic migraine and recently implicated in two whole genome BPAD association studies, respectively. We hypothesized that using migraine co-morbidity to look at subsets of BPAD families in a genetic linkage analysis would prove useful in identifying genetic susceptibility regions in both of these disorders. We used BPAD with co-morbid migraine as an alternative phenotype definition in a re-analysis of the NIMH Bipolar Genetics Initiative wave 4 data set. In this analysis we selected only those families in which at least two members were diagnosed with migraine by a doctor according to patients' reports. Nonparametric linkage analysis performed on 31 families segregating both BPAD and migraine identified a linkage signal on chromosome 4q24 for migraine (but not BPAD) with a peak LOD of 2.26. This region has previously been implicated in two independent migraine linkage studies. In addition we identified a locus on chromosome 20p11 with overlapping elevated LOD scores for both migraine (LOD=1.95) and BPAD (LOD=1.67) phenotypes. This region has previously been implicated in two BPAD linkage studies, and, interestingly, it harbors a known potassium dependant sodium/calcium exchanger gene, SLC24A3, that plays a critical role in neuronal calcium homeostasis. Our findings replicate a previously identified migraine linkage locus on chromosome 4 (not co-segregating with BPAD) in a sample of BPAD families with co-morbid migraine, and suggest a susceptibility locus on chromosome 20, harboring a gene for the migraine/BPAD phenotype. Together these data suggest that some genes may predispose to both bipolar disorder and migraine.
Collapse
Affiliation(s)
- K J Oedegaard
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Since the first draft of the human genome was published 10 years ago, scientists have tried to develop new treatment strategies for various types of diseases based on individual genomes. It is called personalized (or individualized) medicine and is expected to increase efficacy and reduce adverse reactions of drugs. Much progress has been made with newly developed technologies, though individualized pain medicine is still far from realization. Efforts on the integrative genomic analyses along with understandings of interactions between other related factors such as environment will eventually translate complex genomic information into individualized pain medicine.
Collapse
|
21
|
de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AMJM. Molecular genetics of migraine. Hum Genet 2009; 126:115-32. [PMID: 19455354 DOI: 10.1007/s00439-009-0684-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/07/2009] [Indexed: 12/11/2022]
Abstract
Migraine is an episodic neurovascular disorder that is clinically divided into two main subtypes that are based on the absence or presence of an aura: migraine without aura (MO) and migraine with aura (MA). Current molecular genetic insight into the pathophysiology of migraine predominantly comes from studies of a rare monogenic subtype of migraine with aura called familial hemiplegic migraine (FHM). Three FHM genes have been identified, which all encode ion transporters, suggesting that disturbances in ion and neurotransmitter balances in the brain are responsible for this migraine type, and possibly the common forms of migraine. Cellular and animal models expressing FHM mutations hint toward neuronal hyperexcitability as the likely underlying disease mechanism. Additional molecular insight into the pathophysiology of migraine may come from other monogenic syndromes (for instance cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by NOTCH3 mutations), in which migraine is prominent. Investigating patients with common forms of migraine has had limited successes. Except for 5',10'-methylenetetrahydrolate reductase, an enzyme in folate metabolism, the large majority of reported genetic associations with candidate migraine genes have not been convincingly replicated. Genetic linkage studies using migraine subtypes as an end diagnosis did not yield gene variants thus far. Clinical heterogeneity in migraine diagnosis may have hampered the identification of such variants. Therefore, the recent introduction of more refined methods of phenotyping, such as latent-class analysis and trait component analysis, may be certainly helpful. Combining the new phenotyping methods with genome-wide association studies may be a successful strategy toward identification of migraine susceptibility genes. Likely the identification of reliable biomarkers for migraine diagnosing will make these efforts even more successful.
Collapse
Affiliation(s)
- Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
22
|
Bayesian latent trait modeling of migraine symptom data. Hum Genet 2009; 126:277-88. [DOI: 10.1007/s00439-009-0671-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 04/12/2009] [Indexed: 12/28/2022]
|
23
|
Linkage and heritability analysis of migraine symptom groupings: a comparison of three different clustering methods on twin data. Hum Genet 2009; 125:591-604. [DOI: 10.1007/s00439-009-0652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 03/06/2009] [Indexed: 01/20/2023]
|