1
|
Genetic substrates of bipolar disorder risk in Latino families. Mol Psychiatry 2023; 28:154-167. [PMID: 35948660 DOI: 10.1038/s41380-022-01705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
Genetic studies of bipolar disorder (BP) have been conducted in the Latin American population, to date, in several countries, including Mexico, the United States, Costa Rica, Colombia, and, to a lesser extent, Brazil. These studies focused primarily on linkage-based designs utilizing families with multiplex cases of BP. Significant BP loci were identified on Chromosomes 18, 5 and 8, and fine mapping suggested several genes of interest underlying these linkage peaks. More recently, studies in these same pedigrees yielded significant linkage loci for BP endophenotypes, including measures of activity, sleep cycles, and personality traits. Building from findings in other populations, candidate gene association analyses in Latinos from Mexican and Central American ancestry confirmed the role of several genes (including CACNA1C and ANK3) in conferring BP risk. Although GWAS, methylation, and deep sequencing studies have only begun in these populations, there is evidence that CNVs and rare SNPs both play a role in BP risk of these populations. Large segments of the Latino populations in the Americas remain largely unstudied regarding BP genetics, but evidence to date has shown that this type of research can be successfully conducted in these populations and that the genetic underpinnings of BP in these cohorts share at least some characteristics with risk genes identified in European and other populations.
Collapse
|
2
|
Fears SC, Service SK, Kremeyer B, Araya C, Araya X, Bejarano J, Ramirez M, Castrillón G, Gomez-Franco J, Lopez MC, Montoya G, Montoya P, Aldana I, Teshiba TM, Abaryan Z, Al-Sharif NB, Ericson M, Jalbrzikowski M, Luykx JJ, Navarro L, Tishler TA, Altshuler L, Bartzokis G, Escobar J, Glahn DC, Ospina-Duque J, Risch N, Ruiz-Linares A, Thompson PM, Cantor RM, Lopez-Jaramillo C, Macaya G, Molina J, Reus VI, Sabatti C, Freimer NB, Bearden CE. Multisystem component phenotypes of bipolar disorder for genetic investigations of extended pedigrees. JAMA Psychiatry 2014; 71:375-87. [PMID: 24522887 PMCID: PMC4045237 DOI: 10.1001/jamapsychiatry.2013.4100] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), but its pathogenesis remains poorly understood. A focus on measuring multisystem quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that affect BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomical phenotypes that appear heritable and associated with severe BP (bipolar I disorder [BP-I]) and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN, SETTING, AND PARTICIPANTS Multigenerational pedigree study in 2 closely related, genetically isolated populations: the Central Valley of Costa Rica and Antioquia, Colombia. A total of 738 individuals, all from Central Valley of Costa Rica and Antioquia pedigrees, participated; among them, 181 have BP-I. MAIN OUTCOMES AND MEASURES Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging, and diffusion tensor imaging phenotypes. RESULTS Of 169 phenotypes investigated, 126 (75%) were significantly heritable and 53 (31%) were associated with BP-I. About one-quarter of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions as well as volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND RELEVANCE To our knowledge, this is the most extensive investigation of BP-relevant component phenotypes to date. Our results identify brain and behavioral quantitative traits that appear to be genetically influenced and show a pattern of BP-I association within families that is consistent with expectations from case-control studies. Together, these phenotypes provide a basis for identifying loci contributing to BP-I risk and for genetic dissection of the disorder.
Collapse
Affiliation(s)
- Scott C Fears
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Susan K Service
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | | | - Carmen Araya
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Xinia Araya
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Julio Bejarano
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Margarita Ramirez
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | | | - Juliana Gomez-Franco
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria C Lopez
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Gabriel Montoya
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Patricia Montoya
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Ileana Aldana
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Terri M Teshiba
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Zvart Abaryan
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Noor B Al-Sharif
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Marissa Ericson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Maria Jalbrzikowski
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Jurjen J Luykx
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles6Department of Psychiatry, ZNA Stuivenberg, Antwerp, Belgium
| | - Linda Navarro
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Todd A Tishler
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Lori Altshuler
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Javier Escobar
- Department of Psychiatry and Family Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, Connecticut9Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Jorge Ospina-Duque
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Neil Risch
- Institute for Human Genetics, University of California, San Francisco
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution, and Environment, University College London, London, England
| | - Paul M Thompson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Rita M Cantor
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Carlos Lopez-Jaramillo
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia12Mood Disorders Program, Hospital San Vicente Fundacion, Medellín, Colombia
| | - Gabriel Macaya
- Cell and Molecular Biology Research, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Julio Molina
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles13BioCiencias Lab, Guatemala, Guatemala
| | - Victor I Reus
- Department of Psychiatry, University of California, San Francisco
| | - Chiara Sabatti
- Department of Health Research and Policy, Stanford University, Stanford, California
| | - Nelson B Freimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| |
Collapse
|
3
|
Abstract
Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing.
Collapse
|
4
|
Pamphlett R, Morahan JM, Yu B. Using case-parent trios to look for rare de novo genetic variants in adult-onset neurodegenerative diseases. J Neurosci Methods 2011; 197:297-301. [PMID: 21392527 DOI: 10.1016/j.jneumeth.2011.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 12/11/2022]
Abstract
Rare de novo genetic variants have been detected in a number of diseases using case-parent trios. So far, trio studies have largely been confined to early-onset diseases where parent DNA samples are readily available. To test the feasibility of finding rare de novo variants in a typical late-onset neurodegenerative disease, we compared genome-wide copy number variants (CNVs) between patients with sporadic amyotrophic lateral sclerosis (SALS) and their unaffected parents. DNA from 12 SALS patients and their 24 parents was analysed for CNVs using AffyMetrix SNP 6.0 microarrays and Partek software. De novo CNVs (present in patients but not their parents) considered likely candidates for SALS were those that overlapped with CNS-related genes, were rare, or were found in multiple patients. All SALS patients had de novo CNVs. In 11 patients, 37 de novo CNVs fulfilled one or more criteria for a candidate region. Eleven de novo CNVs overlapped with genes, some of which are in pathways suspected in the pathogenesis of SALS. In conclusion, this pilot study shows that trios can be used to look for rare de novo genetic variants in patients with late adult-onset neurodegenerative disease. The results suggest that further studies of this nature with larger numbers of trios are warranted, but it is unusual to find surviving parents of offspring who have a late-onset neurodegenerative disease. An international collaborative effort will therefore be needed to collect sufficient numbers of such trios to reliably detect de novo mutations underlying these diseases.
Collapse
Affiliation(s)
- Roger Pamphlett
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Australia.
| | | | | |
Collapse
|
5
|
Kremeyer B, García J, Müller H, Burley MW, Herzberg I, Parra MV, Duque C, Vega J, Montoya P, López MC, Bedoya G, Reus V, Palacio C, López C, Ospina-Duque J, Freimer NB, Ruiz-Linares A. Genome-wide linkage scan of bipolar disorder in a Colombian population isolate replicates Loci on chromosomes 7p21-22, 1p31, 16p12 and 21q21-22 and identifies a novel locus on chromosome 12q. Hum Hered 2010; 70:255-68. [PMID: 21071953 PMCID: PMC3068751 DOI: 10.1159/000320914] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Bipolar disorder (BP) is a severe psychiatric illness, characterised by alternating episodes of depression and mania, which ranks among the top ten causes of morbidity and life-long disability world-wide. We have previously performed a whole-genome linkage scan on 6 pedigrees segregating severe BP from the well-characterised population isolate of Antioquia, Colombia. We recently collected genotypes for the same set of 382 autosomal microsatellite markers in 9 additional Antioquian BP pedigrees. Here, we report the analysis of the combined pedigree set. METHODS Linkage analysis using both parametric and nonparametric approaches was conducted for 3 different diagnostic models: severe BP only (BPI); mood disorders (BPI, BPII and major depression); and psychosis (operationally defined by the occurrence of at least 1 episode of hallucinations and/or delusions). RESULTS AND CONCLUSION For BPI only, the most interesting result was obtained for chromosome 7p21.1-p22.2 under a recessive model of inheritance (heterogeneity LOD score = 2.80), a region that had previously been linked to BP in a study on Portuguese Island families. For both BPI and mood disorders, nonparametric analyses identified a locus on chromosome 12ct-q14 (nonparametric linkage = 2.55 and 2.35, respectively). This locus has not previously been reported as a candidate region for BP. Additional candidate regions were found on chromosomes 1p22-31 (mood disorders) and 21q21-22 (BPI), 2 loci that have repeatedly been implicated in BP susceptibility. Linkage analysis of psychosis as a phenotype identified candidate regions on chromosomes 2q24-31 and 16p12-q12. The finding on chromosome 16p is noteworthy because the same locus has been implicated by genome-wide association analyses of BP.
Collapse
Affiliation(s)
- B Kremeyer
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|