1
|
Mills JA, Long JD, Vaidya JG, Gantman EC, Sathe S, Tabrizi SJ, Sampaio C. Time to Functional Loss as an Endpoint in Huntington's Disease Trials: Enrichment and Sample Size. Mov Disord 2024; 39:1809-1816. [PMID: 39101272 DOI: 10.1002/mds.29963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Clinical trial scenarios can be modeled using data from observational studies, providing critical information for design of real-world trials. The Huntington's Disease Integrated Staging System (HD-ISS) characterizes disease progression over an individual's lifespan and allows for flexibility in the design of trials with the goal of delaying progression. Enrichment methods can be applied to the HD-ISS to identify subgroups requiring smaller estimated sample sizes. OBJECTIVE Investigate time to the event of functional decline (HD-ISS Stage 3) as an endpoint for trials in HD and present sample size estimates after enrichment. METHODS We classified individuals from observational studies according to the HD-ISS. We assessed the ability of the prognostic index normed (PIN) and its components to predict time to HD-ISS Stage 3. For enrichment, we formed groups from deciles of the baseline PIN distribution for HD-ISS Stage 2 participants. We selected enrichment subgroups closer to Stage 3 transition and estimated sample sizes, using delay in the transition time as the effect size. RESULTS In predicting time to HD-ISS Stage 3, PIN outperforms its components. Survival curves for each PIN decile show that groups with PIN from 1.48 to 2.74 have median time to Stage 3 of approximately 2 years and these are combined to create enrichment subgroups. Sample size estimates are presented by enrichment subgroup. CONCLUSIONS PIN is predictive of functional decline. A delay of 9 months or more in the transition to Stage 3 for an enriched sample yields feasible sample size estimates, demonstrating that this approach can aid in planning future trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- James A Mills
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Jatin G Vaidya
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | | | | | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, Department of Neurodegenerative Diseases, University College London, London, UK
| | | |
Collapse
|
2
|
Fitzgerald ES, Manousakis JE, Glikmann-Johnston Y, Rankin M, Anderson C, Stout JC, Jackson ML. Sleep fragmentation despite intact rest-activity patterns in premanifest Huntington's disease: An actigraphy study. Sleep Med 2024; 124:16-29. [PMID: 39250876 DOI: 10.1016/j.sleep.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE Sleep research in Huntington's disease (HD) has primarily focused on manifest HD, with significantly less attention given to premanifest HD (Pre-HD). Therefore, we investigated sleep and rest-activity patterns in people with Pre-HD versus healthy controls (HC). METHODS We conducted a cross-sectional study including 36 Pre-HD and 48 HC participants. Pre-HD participants were stratified into three groups according to their proximity to estimated diagnosis, using a cytosine-adenine-guanine (CAG) and current age-based predictive model: NEAR (<9 years to diagnosis), MID (9-15 years to diagnosis) and FAR (>15 years to diagnosis). Sleep and rest-activity patterns were assessed using wrist-worn actigraphy, a sleep diary, and sleep questionnaires. RESULTS NEAR and MID groups experienced higher fragmentation index than HC and FAR groups. NEAR and MID groups also exhibited greater WASO than the FAR group. NEAR and MID groups showed lower intra-daily variability (IV) than HC and FAR groups, with the NEAR group also being more active in the most active 10 h (M10). Groups did not differ on subjective sleep measures, inter-daily stability (IS), sleep regularity index, relative amplitude, or amount of activity in the least active 5 h (L5). Considering all Pre-HD participants, fewer years to diagnosis, higher CAG-age-product (CAP) scores (a measure of cumulative exposure to the HD-causing gene mutation) and larger CAG repeat lengths correlated with higher WASO, fragmentation index, L5, IS, and lower sleep efficiency and IV. Higher CAP score correlated with higher M10. CONCLUSIONS Despite intact rest-activity patterns and similar subjective sleep quality to HC, greater sleep fragmentation is a prominent and early feature in Pre-HD. Therefore, reducing sleep fragmentation may be a potential target for sleep intervention in HD. Longitudinal studies using larger samples are needed to assess sleep across the disease spectrum and its impact on clinical outcomes, like cognition.
Collapse
Affiliation(s)
- Emily S Fitzgerald
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Jessica E Manousakis
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Yifat Glikmann-Johnston
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Meg Rankin
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Clare Anderson
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia; Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, UK
| | - Julie C Stout
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia.
| | - Melinda L Jackson
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
van Prooije TH, Kapteijns KCJ, van Asten JJA, IntHout J, Verbeek MM, Scheenen TWJ, van de Warrenburg BP. Multimodal, Longitudinal Profiling of SCA1 Identifies Predictors of Disease Severity and Progression. Ann Neurol 2024. [PMID: 39096063 DOI: 10.1002/ana.27032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Spinocerebellar ataxia type 1 (SCA1) is a rare autosomal dominant neurodegenerative disease. Objective surrogate markers sensitive to detect changes in disease severity are needed to reduce sample sizes in interventional trials and identification of predictors of faster disease progression would facilitate patient selection, enrichment, or stratification in such trials. METHODS We performed a prospective 1-year longitudinal, multimodal study in 34 ataxic SCA1 individuals and 21 healthy controls. We collected clinical, patient-reported outcomes, biochemical and magnetic resonance (MR) biomarkers at baseline and after 1 year. We determined 1-year progression and evaluated the potential predictive value of several baseline markers on 1-year disease progression. RESULTS At baseline, multiple structural and spectroscopic MR markers in pons and cerebellum differentiated SCA1 from healthy controls and correlated with disease severity. Plasma and cerebrospinal fluid (CSF) neurofilament light (NfL) chain and CSF glial fibrillary acidic protein (GFAP) were elevated in SCA1. In longitudinal analysis, total brainstem and pontine volume change, inventory of non-ataxia signs (INAS) count, and SCA functional index (SCAFI) showed larger responsiveness compared to the Scale for Assessment and Rating of Ataxia (SARA). Longer disease duration, longer non-expanded CAG repeat length, and higher disease burden were associated with faster SARA increase after 1-year in the SCA1 group. Similarly, lower baseline brainstem, pontine, and cerebellar volumes, as well as lower levels of N-acetylaspartate and glutamate in the cerebellar white matter, were also associated with faster SARA increase. INTERPRETATION Our results guide the selection of the most sensitive measures of disease progression in SCA1 and have identified features associated with accelerated progression that could inform the design of clinical trials. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Teije H van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kirsten C J Kapteijns
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack J A van Asten
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
4
|
Parkin GM, Thomas EA, Corey-Bloom J. Mapping neurodegeneration across the Huntington's disease spectrum: a five-year longitudinal analysis of plasma neurofilament light. EBioMedicine 2024; 104:105173. [PMID: 38815362 PMCID: PMC11167241 DOI: 10.1016/j.ebiom.2024.105173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Neurofilament light (NfL) has previously been highlighted as a potential biomarker for Huntington's Disease (HD) using cross-sectional analyses. Our study aim was to investigate how longitudinal trajectories of plasma NfL relate to HD disease stage. METHODS 108 participants [78 individuals with the HD mutation, and 30 healthy controls (HC)] were included in this study. Individuals with the HD mutation were categorised separately by both HD-Integrated Staging System (HD-ISS) (Study 1) and PIN score-Approximated Staging System (PASS) (Study 2) criteria. Plasma NfL trajectories were examined using Mixed Linear Modeling (MLM); associations with symptom presentation were assessed using Spearman's rho correlations. FINDINGS The MLM coefficients for disease stage (HD-ISS β = 32.73, p < 0.0001; PASS β = 33.00, p < 0.0001) and disease stage∗time (HD-ISS β = 7.85, p = 0.004; PASS β = 6.58, p = 0.0047) suggest these are significant contributors to plasma NfL levels. In addition, the plasma NfL rate of change varied significantly across time (HD-ISS β = 3.14, p = 0.04; PASS β = 2.94, p = 0.050). The annualised rate of change was 8.32% for HC; 10.55%, 12.75% and 15.62% for HD-ISS Stage ≤1, Stage 2, and Stage 3, respectively; and 12.13%, 10.46%, 10.33%, 17.52%, for PASS Stage 0, Stage 1, Stage 2, and Stage 3, respectively. Plasma NfL levels correlated with the Symbol Digit Modalities Test (SDMT) in HD-ISS Stage ≤1, and both SDMT and Total Motor Score in Stage 3 (ps < 0.01). INTERPRETATION Our findings suggest that plasma NfL levels increase linearly across earlier disease stages, correlating with the cognitive SDMT measure. Thereafter, an increase or surge in plasma NfL levels, paired with correlations with both cognitive and motor measures, suggest a late acceleration in clinical and pathological progression. FUNDING NIH (NS111655); the UCSD HDSA CoE; the UCSD ADRC (NIH-NIA P30 AG062429).
Collapse
Affiliation(s)
- Georgia M Parkin
- Department of Neurosciences, University of California San Diego, San Diego, 92093, CA, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, 92697, CA, USA.
| | - Elizabeth A Thomas
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, 92697, CA, USA; Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, 92697, CA, USA
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, 92093, CA, USA
| |
Collapse
|
5
|
Raschka T, Li Z, Gaßner H, Kohl Z, Jukic J, Marxreiter F, Fröhlich H. Unraveling progression subtypes in people with Huntington's disease. EPMA J 2024; 15:275-287. [PMID: 38841617 PMCID: PMC11148000 DOI: 10.1007/s13167-024-00368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
Background Huntington's disease (HD) is a progressive neurodegenerative disease caused by a CAG trinucleotide expansion in the huntingtin gene. The length of the CAG repeat is inversely correlated with disease onset. HD is characterized by hyperkinetic movement disorder, psychiatric symptoms, and cognitive deficits, which greatly impact patient's quality of life. Despite this clear genetic course, high variability of HD patients' symptoms can be observed. Current clinical diagnosis of HD solely relies on the presence of motor signs, disregarding the other important aspects of the disease. By incorporating a broader approach that encompasses motor as well as non-motor aspects of HD, predictive, preventive, and personalized (3P) medicine can enhance diagnostic accuracy and improve patient care. Methods Multisymptom disease trajectories of HD patients collected from the Enroll-HD study were first aligned on a common disease timescale to account for heterogeneity in disease symptom onset and diagnosis. Following this, the aligned disease trajectories were clustered using the previously published Variational Deep Embedding with Recurrence (VaDER) algorithm and resulting progression subtypes were clinically characterized. Lastly, an AI/ML model was learned to predict the progression subtype from only first visit data or with data from additional follow-up visits. Results Results demonstrate two distinct subtypes, one large cluster (n = 7122) showing a relative stable disease progression and a second, smaller cluster (n = 411) showing a dramatically more progressive disease trajectory. Clinical characterization of the two subtypes correlates with CAG repeat length, as well as several neurobehavioral, psychiatric, and cognitive scores. In fact, cognitive impairment was found to be the major difference between the two subtypes. Additionally, a prognostic model shows the ability to predict HD subtypes from patients' first visit only. Conclusion In summary, this study aims towards the paradigm shift from reactive to preventive and personalized medicine by showing that non-motor symptoms are of vital importance for predicting and categorizing each patients' disease progression pattern, as cognitive decline is oftentimes more reflective of HD progression than its motor aspects. Considering these aspects while counseling and therapy definition will personalize each individuals' treatment. The ability to provide patients with an objective assessment of their disease progression and thus a perspective for their life with HD is the key to improving their quality of life. By conducting additional analysis on biological data from both subtypes, it is possible to gain a deeper understanding of these subtypes and uncover the underlying biological factors of the disease. This greatly aligns with the goal of shifting towards 3P medicine. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00368-2.
Collapse
Affiliation(s)
- Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
| | - Zexin Li
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, University of Bonn, Friedrich-Hirzebruch-Allee 6, 53115 Bonn, Germany
| | - Heiko Gaßner
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33, 91058 Erlangen, Germany
| | - Zacharias Kohl
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Jelena Jukic
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Franz Marxreiter
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Movement Disorders, Passauer Wolf, 93333 Bad Gögging, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, University of Bonn, Friedrich-Hirzebruch-Allee 6, 53115 Bonn, Germany
| |
Collapse
|
6
|
En-Hua Wang J, Simon NG, Brownstein MJ, Maibach HT, Maibach J, Anderson KE. The utility of the irritability scale in Huntington's disease patients with evidence of irritability or aggression. Parkinsonism Relat Disord 2024; 123:106087. [PMID: 38640832 DOI: 10.1016/j.parkreldis.2024.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/23/2024] [Accepted: 03/03/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Irritability, a common neuropsychiatric symptom in Huntington's disease (HD), lacks a standardized measurement. The Irritability Scale (IS), tailored for HD, has patient and informant versions, but variable interrater agreement has been reported frequently in previous studies. To enhance the clinical utility of the IS, this study aimed to identify the most reliable components estimating the underlying construct and develop a shortened version for time-limited contexts. METHODS Participant and informant/observer concordance and the relationship of individual items to the complete IS scale were assessed. The short-form (SF) items were selected based on interrater agreement, exploratory factor analysis (EFA), and Item Response Theory (IRT) analysis results. Pair-wise correlation and covariance models were used to examine how SF predicted total IS score in 106 participants from the STAIR (Safety, Tolerability, and Activity of SRX246 in Irritable Subjects with Huntington's Disease) trial. Item Response Theory (IRT) analysis was used to evaluate the range and function of the selected items. RESULTS IS interrater agreement was statistically significant (r = 0.33, p = .001). In combination with EFA factors and IRT analyses, five items were identified that showed good reliability and performance in differentiating levels of irritability. CONCLUSION The proposed 5-item SF IS provided a reliable measure of the full scale and may be less burdensome for use in a clinical setting.
Collapse
Affiliation(s)
| | - Neal G Simon
- Azevan Pharmaceuticals, Inc., Bethlehem, PA, USA; Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | | | | | - Jacob Maibach
- Indigo RDD, LLC, Potomac, MD, USA; Department of Mathematics, University of Arizona, Tucson, AZ, USA
| | - Karen E Anderson
- Department of Psychiatry and Department of Neurology, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
7
|
Martinez‐Horta S, Perez‐Perez J, Perez‐Gonzalez R, Sampedro F, Horta‐Barba A, Campolongo A, Rivas‐Asensio E, Puig‐Davi A, Pagonabarraga J, Kulisevsky J. Cognitive phenotype and neurodegeneration associated with Tau in Huntington's disease. Ann Clin Transl Neurol 2024; 11:1160-1171. [PMID: 38544341 PMCID: PMC11093246 DOI: 10.1002/acn3.52031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE The clinical phenotype of Huntington's disease (HD) can be very heterogeneous between patients, even when they share equivalent CAG repeat length, age, or disease burden. This heterogeneity is especially evident in terms of the cognitive profile and related brain changes. To shed light on the mechanisms participating in this heterogeneity, the present study delves into the association between Tau pathology and more severe cognitive phenotypes and brain damage in HD. METHODS We used a comprehensive neuropsychological examination to characterize the cognitive phenotype of a sample of 30 participants with early-to-middle HD for which we also obtained 3 T structural magnetic resonance image (MRI) and cerebrospinal fluid (CSF). We quantified CSF levels of neurofilament light chain (NfL), total Tau (tTau), and phosphorylated Tau-231 (pTau-231). Thanks to the cognitive characterization carried out, we subsequently explored the relationship between different levels of biomarkers, the cognitive phenotype, and brain integrity. RESULTS The results confirmed that more severe forms of cognitive deterioration in HD extend beyond executive dysfunction and affect processes with clear posterior-cortical dependence. This phenotype was in turn associated with higher CSF levels of tTau and pTau-231 and to a more pronounced pattern of posterior-cortical atrophy in specific brain regions closely linked to the cognitive processes affected by Tau. INTERPRETATION Our findings reinforce the association between Tau pathology, cognition, and neurodegeneration in HD, emphasizing the need to explore the role of Tau in the cognitive heterogeneity of the disease.
Collapse
Affiliation(s)
- Saul Martinez‐Horta
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Jesús Perez‐Perez
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Rocío Perez‐Gonzalez
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) and Instituto de Neurociencias UMH‐CSICAlicanteSpain
| | - Frederic Sampedro
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Neuroradiology unit, Radiology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
| | - Andrea Horta‐Barba
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- European Huntington's Disease Network (EHDN)
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
| | - Elisa Rivas‐Asensio
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Arnau Puig‐Davi
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology DepartmentHospital de la Santa Creu i Sant PauBarcelonaSpain
- Biomedical Research Institute Sant Pau (IIB‐Sant Pau)BarcelonaSpain
- Centro de Investigación Biomédica en Red‐Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of MedicineAutonomous University of BarcelonaBarcelonaSpain
- European Huntington's Disease Network (EHDN)
| |
Collapse
|
8
|
Yao J, Morrison MA, Jakary A, Avadiappan S, Rowley P, Glueck J, Driscoll T, Geschwind MD, Nelson AB, Possin KL, Xu D, Hess CP, Lupo JM. Altered Iron and Microstructure in Huntington's Disease Subcortical Nuclei: Insight From 7T MRI. J Magn Reson Imaging 2024:10.1002/jmri.29195. [PMID: 38206986 PMCID: PMC11521114 DOI: 10.1002/jmri.29195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Pathophysiological changes of Huntington's disease (HD) can precede symptom onset by decades. Robust imaging biomarkers are needed to monitor HD progression, especially before the clinical onset. PURPOSE To investigate iron dysregulation and microstructure alterations in subcortical regions as HD imaging biomarkers, and to associate such alterations with motor and cognitive impairments. STUDY TYPE Prospective. POPULATION Fourteen individuals with premanifest HD (38.0 ± 11.0 years, 9 females; far-from-onset N = 6, near-onset N = 8), 21 manifest HD patients (49.1 ± 12.1 years, 11 females), and 33 age-matched healthy controls (43.9 ± 12.2 years, 17 females). FIELD STRENGTH/SEQUENCE 7 T, T1 -weighted imaging, quantitative susceptibility mapping, and diffusion tensor imaging. ASSESSMENT Volume, susceptibility, fractional anisotropy (FA), and mean diffusivity (MD) within subcortical brain structures were compared across groups, used to establish HD classification models, and correlated to clinical measures and cognitive assessments. STATISTICAL TESTS Generalized linear model, multivariate logistic regression, receiver operating characteristics with the area under the curve (AUC), and likelihood ratio test comparing a volumetric model to one that also includes susceptibility and diffusion metrics, Wilcoxon paired signed-rank test, and Pearson's correlation. A P-value <0.05 after Benjamini-Hochberg correction was considered statistically significant. RESULTS Significantly higher striatal susceptibility and FA were found in premanifest and manifest HD preceding atrophy, even in far-from-onset premanifest HD compared to controls (putamen susceptibility: 0.027 ± 0.022 vs. 0.018 ± 0.013 ppm; FA: 0.358 ± 0.048 vs. 0.313 ± 0.039). The model with additional susceptibility, FA, and MD features showed higher AUC compared to volume features alone when differentiating premanifest HD from HC (0.83 vs. 0.66), and manifest from premanifest HD (0.94 vs. 0.83). Higher striatal susceptibility significantly correlated with cognitive deterioration in HD (executive function: r = -0.600; socioemotional function: r = -0.486). DATA CONCLUSION 7 T MRI revealed iron dysregulation and microstructure alterations with HD progression, which could precede volume loss, provide added value to HD differentiation, and might be associated with cognitive changes. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jingwen Yao
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- Department of Radiological Sciences, UCLA, Los Angeles, California, USA
- Department of Bioengineering, UCLA, Los Angeles, California, USA
| | - Melanie A Morrison
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Sivakami Avadiappan
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Paul Rowley
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Julia Glueck
- Department of Neurology, UCSF, San Francisco, California, USA
| | | | | | | | | | - Duan Xu
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- Department of Neurology, UCSF, San Francisco, California, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
- UCSF/UC Berkeley Graduate Program in Bioengineering, San Francisco and Berkeley, California, USA
| |
Collapse
|
9
|
Zheng C, Tong L, Zhang Y. Multivariate longitudinal analysis for the association between brain atrophy and cognitive impairment in prodromal Huntington's disease subjects. J R Stat Soc Ser C Appl Stat 2024; 73:104-122. [PMID: 39280900 PMCID: PMC11393497 DOI: 10.1093/jrsssc/qlad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cognitive impairment has been widely accepted as a disease progression measure prior to the onset of Huntington's disease. We propose a sophisticated measurement error correction method that can handle potentially correlated measurement errors in longitudinally collected exposures and multiple outcomes. The asymptotic theory for the proposed method is developed. A simulation study is conducted to demonstrate the satisfactory performance of the proposed two-stage fitting method and shows that the independent working correlation structure outperforms other alternatives. We conduct a comprehensive longitudinal analysis to assess how brain striatal atrophy affects impairment in various cognitive domains for Huntington's disease.
Collapse
Affiliation(s)
- Cheng Zheng
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Lili Tong
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Ying Zhang
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| |
Collapse
|
10
|
Hinkle JT, Wildermuth E, Tong XJ, Ross CA, Bang J. Structural MRI Correlates of Anosognosia in Huntington's Disease. J Huntingtons Dis 2024; 13:315-320. [PMID: 39269851 DOI: 10.3233/jhd-240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background Anosognosia, or unawareness of symptoms, is common in Huntington's disease (HD), but the neuroanatomical basis of this is unknown. Objective To identify neuroanatomical correlates of HD anosognosia using structural MRI data. Methods We leveraged a pre-processed dataset of 570 HD participants across the well-characterized PREDICT-HD and TRACK-HD cohort studies. Anosognosia index was operationalized as the score discrepancies between HD participants and their caregivers on the Frontal Systems Behavior Scale (FrSBe). Results Univariate correlation analyses identified volumes of globus pallidus, putamen, caudate, basal forebrain, substantia nigra, angular gyrus, and cingulate cortex as significant correlates of anosognosia after correction for multiple comparisons. A multivariable model constructed with stepwise regression that included volumetric data showed globus pallidus volume alone explained more variance in anosognosia severity than motor impairment or CAP score alone. Conclusions Anosognosia appears to be related to degeneration affecting both cortical and subcortical areas. Globus pallidus neurodegeneration in particular appears to be a key process of importance.
Collapse
Affiliation(s)
| | - Erin Wildermuth
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiao J Tong
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology JHUSOM, Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology JHUSOM, Baltimore, MD, USA
| | - Jee Bang
- Departments of Neurology and Division of Neurobiology, Department of Psychiatry JHUSOM, Baltimore, MD, USA
| |
Collapse
|
11
|
DiFiglia M, Leavitt BR, Macdonald D, Thompson LM. Towards Standardizing Nomenclature in Huntington's Disease Research. J Huntingtons Dis 2024; 13:119-131. [PMID: 38968054 PMCID: PMC11307060 DOI: 10.3233/jhd-240044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
The field of Huntington's disease research covers many different scientific disciplines, from molecular biology all the way through to clinical practice, and as our understanding of the disease has progressed over the decades, a great deal of different terminology has accrued. The field is also renowned for its collaborative spirit and use of standardized reagents, assays, datasets, models, and clinical measures, so the use of standardized terms is especially important. We have set out to determine, through a consensus exercise involving basic and clinical scientists working in the field, the most appropriate language to use across disciplines. Nominally, this article will serve as the style guide for the Journal of Huntington's Disease (JHD), the only journal devoted exclusively to HD, and we lay out the preferred and standardized terminology and nomenclature for use in JHD publications. However, we hope that this article will also serve as a useful resource to the HD research community at large and that these recommended naming conventions will be adopted widely.
Collapse
Affiliation(s)
- Marian DiFiglia
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, MA, USA
| | - Blair R. Leavitt
- Center for Molecular Medicine and Therapeutics and Departments of Medical Genetics and Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Douglas Macdonald
- CHDI Management, Inc., The Company that Manages the Scientific Activities of CHDI Foundation, Inc, Los Angeles, CA, USA
| | - Leslie M. Thompson
- Departments of Psychiatry and Human Behavior and Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
12
|
Sierra LA, Wynn A, Lanzaro E, Dzekon K, Russell A, Halko M, Claassen DO, Frank S, Considine CM, Laganiere S. Deciphering Cognitive Impairments in Huntington's Disease: A Comparative Study of Stroop Test Variations. J Huntingtons Dis 2024; 13:249-257. [PMID: 38759020 DOI: 10.3233/jhd-231528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disorder marked by cognitive impairment, movement abnormalities, and behavioral disturbances. The Stroop Color Word Test (SCWT) is a widely used tool to detect cognitive decline in HD. Variations in SCWT formats-horizontal (original) and vertical (Golden)-may influence performance, given HD's impact on cognitive and oculomotor abilities. Objective This study aimed to compare the effectiveness of the horizontal and Golden vertical SCWT formats in detecting cognitive decline in HD, and to determine how performance may have been influenced by eye movement abnormalities. Methods Forty-five participants with genetically confirmed HD were recruited. Both SCWT formats were administered to each participant in a counterbalanced fashion. Individual performance of all three sections on each format was standardized across 2 different norms. Raw and normed scores on each variation were compared and correlated with eye movement ratings on the Unified Huntington's Disease Rating Scale. Results The Golden variation elicited significantly slower responses, particularly in the Word Reading section, across two benchmark norms. Statistical analysis revealed significant performance differences between the two formats. Correlations between vertical eye movement ratings and performance on the Golden SCWT were highly significant, highlighting the impact of oculomotor coordination on cognitive assessments in HD. Conclusion This study underscores the importance of considering test format in cognitive assessments for HD. The Golden vertical SCWT demonstrates increased sensitivity in detecting deficits in HD, possibly linked to vertical saccade abnormalities. These insights are important for improving the sensitivity of cognitive assessments and monitoring disease progression in HD research and clinical practice.
Collapse
Affiliation(s)
- Luis A Sierra
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amy Wynn
- Neurology Department Vanderbilt University Medical Center-Village at Vanderbilt, Nashville, TN, USA
| | - Ella Lanzaro
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Katya Dzekon
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aine Russell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mark Halko
- Department of Psychiatry, Harvard Medical School/McLean Hospital, Belmont, MA, USA
| | - Daniel O Claassen
- Neurology Department Vanderbilt University Medical Center-Village at Vanderbilt, Nashville, TN, USA
| | - Samuel Frank
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ciaran M Considine
- Neurology Department Vanderbilt University Medical Center-Village at Vanderbilt, Nashville, TN, USA
| | - Simon Laganiere
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Yin JH, Liu YO, Li HL, Burgunder JM, Huang Y. White Matter Microstructure Changes Revealed by Diffusion Kurtosis and Diffusion Tensor Imaging in Mutant Huntingtin Gene Carriers. J Huntingtons Dis 2024; 13:301-313. [PMID: 38905054 PMCID: PMC11494636 DOI: 10.3233/jhd-240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Background Diffusion magnetic resonance imaging (dMRI) has revealed microstructural changes in white matter (WM) in Huntington's disease (HD). Objective To compare the validities of different dMRI, i.e., diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in HD. Methods 22 mutant huntingtin (mHTT) carriers and 14 controls were enrolled. Clinical assessments and dMRI were conducted. Based on CAG-Age Product (CAP) score, mHTT carriers were categorized into high CAP (hCAP) and medium and low CAP (m& lCAP) groups. Spearman analyses were used to explore correlations between imaging parameters in brain regions and clinical assessments. Receiver operating characteristic (ROC) was used to distinguish mHTT carriers from control, and define the HD patients at advanced stage. Results Compared to controls, mHTT carriers exhibited WM changes in DKI and DTI. There were 22 more regions showing significant differences in HD detected by MK than FA. Only MK in five brain regions showed significantly difference between any two group, and negatively correlated with the disease burden (r = -0.80 to -0.71). ROC analysis revealed that MK was more sensitive and FA was more specific, while Youden index showed that the integration of FA and MK gave rise to higher authenticities, in distinguishing m& lCAP from controls (Youden Index = 0.786), and discerning different phase of HD (Youden Index = 0.804). Conclusions Microstructural changes in WM occur at early stage of HD and deteriorate over the disease progression. Integrating DKI and DTI would provide the best accuracies for differentiating early HD from control and identifying advanced HD.
Collapse
Affiliation(s)
- Jin-Hui Yin
- Human Brain & Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-Ou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hong-Liang Li
- Department of Neurology, Aviation General Hospital, Beijing, China
| | - Jean Marc Burgunder
- Department of Neurology, Swiss Huntington’s Disease Centre, Siloah, and Department of Neurology, University Hospital, Gümligen (Muri bei Bern), Switzerland
| | - Yue Huang
- Human Brain & Tissue Bank, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Pharmacology Department, School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| |
Collapse
|
14
|
Ashner MC, Garcia TP. Understanding the implications of a complete case analysis for regression models with a right-censored covariate. AM STAT 2023; 78:335-344. [PMID: 39070115 PMCID: PMC11281394 DOI: 10.1080/00031305.2023.2282629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 10/28/2023] [Indexed: 07/30/2024]
Abstract
Despite its drawbacks, the complete case analysis is commonly used in regression models with incomplete covariates. Understanding when the complete case analysis will lead to consistent parameter estimation is vital before use. Our aim here is to demonstrate when a complete case analysis is consistent for randomly right-censored covariates and to discuss the implications of its use even when consistent. Across the censored covariate literature, different assumptions are made to ensure a complete case analysis produces a consistent estimator, which leads to confusion in practice. We make several contributions to dispel this confusion. First, we summarize the language surrounding the assumptions that lead to a consistent complete case estimator. Then, we show a unidirectional hierarchical relationship between these assumptions, which leads us to one sufficient assumption to consider before using a complete case analysis. Lastly, we conduct a simulation study to illustrate the performance of a complete case analysis with a right-censored covariate under different censoring mechanism assumptions, and we demonstrate its use with a Huntington disease data example.
Collapse
Affiliation(s)
| | - Tanya P. Garcia
- Department of Biostatistics, University of North Carolina at Chapel Hill
| |
Collapse
|
15
|
Hamilton J, Farag M, Tabrizi SJ. Complementary insights into corticostriatal synapse loss and cognition in Huntington's disease. Cell Rep Med 2023; 4:101314. [PMID: 38118416 PMCID: PMC10772369 DOI: 10.1016/j.xcrm.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023]
Abstract
In a recent study, Wilton and colleagues link activation of the classical complement pathway with corticostriatal synapse loss and cognitive decline in Huntington's disease.1.
Collapse
Affiliation(s)
- Joseph Hamilton
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mena Farag
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK.
| |
Collapse
|
16
|
Achenbach J, Stodt B, Saft C. Factors Influencing the Total Functional Capacity Score as a Critical Endpoint in Huntington's Disease Research. Biomedicines 2023; 11:3336. [PMID: 38137557 PMCID: PMC10741795 DOI: 10.3390/biomedicines11123336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Background: The Total Functional Capacity (TFC) score is commonly used in Huntington's disease (HD) research. The classification separates each disease stage (1-5), e.g., as an inclusion criterion or endpoint in clinical trials accepted by the Food and Drug Administration (FDA). In addition to the quantification of age- and CAG-repeat-dependent effects as well as interacting effects of both on the TFC, we aimed to investigate factors influencing the TFC, such as neuropsychiatric, educational, and cognitive disease burden using data from the largest HD observational study to date. In addition, we analyzed data from pre-manifest stages to investigate the influence of the above-mentioned factors on the TFC in that stage. Methods: A moderated regression analysis was conducted to analyze the interaction effects of age and CAG-repeat length on the TFC in HD patients. A simple slope analysis was calculated to illustrate the effects. Depending on TFC results, motor-manifest patients were grouped into five stages. Data from pre-manifest participants were analyzed with regard to years to onset and CAP scores. Results: We identified N = 10,314 participants as manifest HD. A significant part of variance on the TFC was explained by age (R2 = 0.029, F (1;10,281) = 308.02, p < 0.001), CAG-repeat length (∆R2 = 0.132, ∆F (1;10,280) = 1611.22, p < 0.001), and their interaction (∆R2 = 0.049, ∆F (1;10,279) = 634.12, p < 0.001). The model explained altogether 20.9% of the TFC score's variance (F = 907.60, p < 0.001). Variance of psychiatric and cognitive symptoms significantly differed between stages. Exploratory analysis of median data in pre-manifest participants revealed the highest scores for neuropsychiatric changes between 5 to <20 years from the disease onset. Conclusions: TFC is mainly explained by the neurobiological factors, CAG-repeat length, and age, with subjects having more CAG-repeats showing a faster decline in function. Our study confirms TFC as a robust measure of progression in manifest HD.
Collapse
Affiliation(s)
- Jannis Achenbach
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany;
| | - Benjamin Stodt
- Leibniz Research Center for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Ardeystraße 67, 44139 Dortmund, Germany;
| | - Carsten Saft
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany;
| |
Collapse
|
17
|
Bonassi G, Semprini M, Mandich P, Trevisan L, Marchese R, Lagravinese G, Barban F, Pelosin E, Chiappalone M, Mantini D, Avanzino L. Neural oscillations modulation during working memory in pre-manifest and early Huntington's disease. Brain Res 2023; 1820:148540. [PMID: 37598900 DOI: 10.1016/j.brainres.2023.148540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION We recently demonstrated specific spectral signatures associated with updating of memory information, working memory (WM) maintenance and readout, with relatively high spatial resolution by means of high-density electroencephalography (hdEEG). WM is impaired already in early symptomatic HD (early-HD) and in pre-manifest HD (pre-HD). The aim of this study was to test whether hdEEG coupled to source localization allows for the identification of neuronal oscillations in specific frequency bands in 16 pre-HD and early-HD during different phases of a WM task. METHODS We examined modulation of neural oscillations by event-related synchronization and desynchronization (ERS/ERD) of θ, β, gamma low, γLOW and γHIGH EEG bands in a-priori selected large fronto-parietal network, including the insula and the cerebellum. RESULTS We found: (i) Reduced θ oscillations in HD with respect to controls in almost all the areas of the WM network during the update and readout phases; (ii) Modulation of β oscillations, which increased during the maintenance phase of the WM task in both groups; (iii) correlation of γHIGH oscillations during WM task with disease burden score in HD patients. CONCLUSIONS Our data show reduced phase-specific modulation of oscillations in pre-HD and early-HD, even in the presence of preserved dynamic of modulation. Particularly, reduced synchronization in the θ band in the areas of the WM network, consistent with abnormal long-range coordination of neuronal activity within this network, was found in update and readout phases in HD groups.
Collapse
Affiliation(s)
- Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Marianna Semprini
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lucia Trevisan
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Barban
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Dept. of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Dept. of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132 Genoa, Italy.
| |
Collapse
|
18
|
Tramutola A, Bakels HS, Perrone F, Di Nottia M, Mazza T, Abruzzese MP, Zoccola M, Pagnotta S, Carrozzo R, de Bot ST, Perluigi M, van Roon-Mom WMC, Squitieri F. GLUT-1 changes in paediatric Huntington disease brain cortex and fibroblasts: an observational case-control study. EBioMedicine 2023; 97:104849. [PMID: 37898095 PMCID: PMC10630613 DOI: 10.1016/j.ebiom.2023.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Paediatric Huntington disease with highly expanded mutations (HE-PHD; >80 CAG repeats) presents atypically, compared to adult-onset Huntington disease (AOHD), with neurodevelopmental delay, epilepsy, abnormal brain glucose metabolism, early striatal damage, and reduced lifespan. Since genetic GLUT-1 deficiency syndrome shows a symptom spectrum similar to HE-PHD, we investigated the potential role of the two main glucose transporters, GLUT-1 and GLUT-3, in HE-PHD. METHODS We compared GLUT-1 and GLUT-3 protein expression in HE-PHD, juvenile-onset (JOHD), and AOHD brains (n = 2; n = 3; n = 6) and periphery (n = 3; n = 2; n = 2) versus healthy adult controls (n = 6; n = 6). We also investigated mitochondrial complexes and hexokinase-II protein expression. FINDINGS GLUT-1 and GLUT-3 expression were significantly lower in HE-PHD frontal cortex (p = 0.009, 95% [CI 13.4, 14.7]; p = 0.017, 95% [CI 14.2, 14.5]) versus controls. In fibroblasts, GLUT-1 and GLUT-3 expression were lower compared to controls (p < 0.0001, 95% [CI 0.91, 1.09]; p = 0.046, 95% [CI 0.93, 1.07]). In the frontal cortex, this occurred without evidence of extensive neuronal degeneration. Patients with HE-PHD had deregulated mitochondrial complex expression, particularly complexes II-III, levels of which were lower in frontal cortex versus controls (p = 0.027, 95% [CI 17.1, 17.6]; p = 0.002, 95% CI [16.6, 16.9]) and patients with AOHD (p = 0.052, 95% [CI 17.0, 17.6]; p = 0.002, 95% [CI 16.6, 16.7]). Hexokinase-II expression was also lower in HE-PHD frontal cortex and striatum versus controls (p = 0.010, 95% [CI 17.8, 18.2]; p = 0.045, 95% [CI 18.6, 18.7]) and in frontal cortex versus patients with AOHD (p = 0.013, 95% [CI 17.7, 18.1]). Expression JOHD levels were consistently different to those of HE-PHD but similar to those of AOHD. INTERPRETATION Our data suggest a dysfunctional hypometabolic state occurring specifically in paediatric Huntington disease brains. FUNDING '5 × 1000' Personal Income Tax donation to LIRH Foundation; Italian Ministry of HealthRC2301MH04 and RF-2016-02364123 to CSS.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Hannah S Bakels
- Department of Neurology, Leiden University Medical Centre, ZA Leiden 2311, the Netherlands
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Michela Di Nottia
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Maria Pia Abruzzese
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Martina Zoccola
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Rosalba Carrozzo
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Centre, ZA Leiden 2311, the Netherlands
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | | | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy; Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Viale di Villa Massimo 4, Rome 00161, Italy.
| |
Collapse
|
19
|
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, Faull RLM, Jayadev S, Yednock T, Yang XW, Stevens B. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington's disease. Nat Med 2023; 29:2866-2884. [PMID: 37814059 PMCID: PMC10667107 DOI: 10.1038/s41591-023-02566-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Huntington's disease (HD) is a devastating monogenic neurodegenerative disease characterized by early, selective pathology in the basal ganglia despite the ubiquitous expression of mutant huntingtin. The molecular mechanisms underlying this region-specific neuronal degeneration and how these relate to the development of early cognitive phenotypes are poorly understood. Here we show that there is selective loss of synaptic connections between the cortex and striatum in postmortem tissue from patients with HD that is associated with the increased activation and localization of complement proteins, innate immune molecules, to these synaptic elements. We also found that levels of these secreted innate immune molecules are elevated in the cerebrospinal fluid of premanifest HD patients and correlate with established measures of disease burden.In preclinical genetic models of HD, we show that complement proteins mediate the selective elimination of corticostriatal synapses at an early stage in disease pathogenesis, marking them for removal by microglia, the brain's resident macrophage population. This process requires mutant huntingtin to be expressed in both cortical and striatal neurons. Inhibition of this complement-dependent elimination mechanism through administration of a therapeutically relevant C1q function-blocking antibody or genetic ablation of a complement receptor on microglia prevented synapse loss, increased excitatory input to the striatum and rescued the early development of visual discrimination learning and cognitive flexibility deficits in these models. Together, our findings implicate microglia and the complement cascade in the selective, early degeneration of corticostriatal synapses and the development of cognitive deficits in presymptomatic HD; they also provide new preclinical data to support complement as a therapeutic target for early intervention.
Collapse
Affiliation(s)
- Daniel K Wilton
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
| | - Kevin Mastro
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Molly D Heller
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Frederick W Gergits
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Carly Rose Willing
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Jaclyn B Fahey
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Arnaud Frouin
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Anthony Daggett
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yejin A Kim
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US
| | - Richard L M Faull
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ted Yednock
- Annexon Biosciences, South San Francisco, CA, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Beth Stevens
- F. M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, US.
- Stanley Center, Broad Institute, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Hett K, Eisma JJ, Hernandez AB, McKnight CD, Song A, Elenberger J, Considine C, Donahue MJ, Claassen DO. Cerebrospinal Fluid Flow in Patients with Huntington's Disease. Ann Neurol 2023; 94:885-894. [PMID: 37493342 PMCID: PMC10615133 DOI: 10.1002/ana.26749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVE Investigations of cerebrospinal fluid (CSF) flow aberrations in Huntington's disease (HD) are of growing interest, as impaired CSF flow may contribute to mutant Huntington retention and observed heterogeneous responsiveness to intrathecally administered therapies. METHOD We assessed net cerebral aqueduct CSF flow and velocity in 29 HD participants (17 premanifest and 12 manifest) and 51 age- and sex matched non-HD control participants using 3-Tesla magnetic resonance imaging methods. Regression models were applied to test hypotheses regarding: (i) net CSF flow and cohort, (ii) net CSF flow and disease severity (CAP-score), and (iii) CSF volume after correcting for age and sex. RESULTS Group-wise analyses support a decrease in net CSF flow in HD (mean 0.14 ± 0.27 mL/min) relative to control (mean 0.32 ± 0.20 mL/min) participants (p = 0.02), with lowest flow in the manifest HD cohort (mean 0.04 ± 0.25 mL/min). This finding was explained by hyperdynamic CSF movement, manifesting as higher caudal systolic CSF flow velocity and higher diastolic cranial CSF flow velocity across the cardiac cycle, in HD (caudal flow: 0.17 ± 0.07 mL/s, cranial flow: 0.14 ± 0.08 mL/s) compared to control (caudal flow: 0.13 ± 0.06 mL/s, cranial flow: 0.11 ± 0.04 mL/s) participants. A positive correlation between cranial diastolic flow and disease severity was observed (p = 0.02). INTERPRETATIONS Findings support aqueductal CSF flow dynamics changing with disease severity in HD. These accelerated changes are consistent with changes observed over the typical adult lifespan, and may have relevance to mutant Huntington retention and intrathecally administered therapeutics responsiveness. ANN NEUROL 2023;94:885-894.
Collapse
Affiliation(s)
- Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrod J. Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Colin D. McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason Elenberger
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciaran Considine
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J. Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O. Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Liu CF, Younes L, Tong XJ, Hinkle JT, Wang M, Phatak S, Xu X, Bu X, Looi V, Bang J, Tabrizi SJ, Scahill RI, Paulsen JS, Georgiou-Karistianis N, Faria AV, Miller MI, Ratnanather JT, Ross CA. Longitudinal imaging highlights preferential basal ganglia circuit atrophy in Huntington's disease. Brain Commun 2023; 5:fcad214. [PMID: 37744022 PMCID: PMC10516592 DOI: 10.1093/braincomms/fcad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
Huntington's disease is caused by a CAG repeat expansion in the Huntingtin gene (HTT), coding for polyglutamine in the Huntingtin protein, with longer CAG repeats causing earlier age of onset. The variable 'Age' × ('CAG'-L), where 'Age' is the current age of the individual, 'CAG' is the repeat length and L is a constant (reflecting an approximation of the threshold), termed the 'CAG Age Product' (CAP) enables the consideration of many individuals with different CAG repeat expansions at the same time for analysis of any variable and graphing using the CAG Age Product score as the X axis. Structural MRI studies have showed that progressive striatal atrophy begins many years prior to the onset of diagnosable motor Huntington's disease, confirmed by longitudinal multicentre studies on three continents, including PREDICT-HD, TRACK-HD and IMAGE-HD. However, previous studies have not clarified the relationship between striatal atrophy, atrophy of other basal ganglia structures, and atrophy of other brain regions. The present study has analysed all three longitudinal datasets together using a single image segmentation algorithm and combining data from a large number of subjects across a range of CAG Age Product score. In addition, we have used a strategy of normalizing regional atrophy to atrophy of the whole brain, in order to determine which regions may undergo preferential degeneration. This made possible the detailed characterization of regional brain atrophy in relation to CAG Age Product score. There is dramatic selective atrophy of regions involved in the basal ganglia circuit-caudate, putamen, nucleus accumbens, globus pallidus and substantia nigra. Most other regions of the brain appear to have slower but steady degeneration. These results support (but certainly do not prove) the hypothesis of circuit-based spread of pathology in Huntington's disease, possibly due to spread of mutant Htt protein, though other connection-based mechanisms are possible. Therapeutic targets related to prion-like spread of pathology or other mechanisms may be suggested. In addition, they have implications for current neurosurgical therapeutic approaches, since delivery of therapeutic agents solely to the caudate and putamen may miss other structures affected early, such as nucleus accumbens and output nuclei of the striatum, the substantia nigra and the globus pallidus.
Collapse
Affiliation(s)
- Chin-Fu Liu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Laurent Younes
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xiao J Tong
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
| | - Jared T Hinkle
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maggie Wang
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sanika Phatak
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xin Xu
- Division of Magnetic Resonance, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xuan Bu
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Vivian Looi
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jee Bang
- Division of Neurobiology, Department of Psychiatry, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah J Tabrizi
- HD Research Centre, University College London Queen Square Institute of Neurology, UCL, London, UK
| | - Rachael I Scahill
- HD Research Centre, University College London Queen Square Institute of Neurology, UCL, London, UK
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI 53705, USA
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and The Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia
| | - Andreia V Faria
- Division of Magnetic Resonance, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Division of Neurobiology, Department of Psychiatry, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
22
|
Hu B, Younes L, Bu X, Liu CF, Ratnanather JT, Paulsen J, Georgiou-Karistianis N, Miller MI, Ross C, Faria AV. Mixed longitudinal and cross-sectional analyses of deep gray matter and white matter using diffusion weighted images in premanifest and manifest Huntington's disease. Neuroimage Clin 2023; 39:103493. [PMID: 37582307 PMCID: PMC10448214 DOI: 10.1016/j.nicl.2023.103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/29/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Changes in the brain of patients with Huntington's disease (HD) begin years before clinical onset, so it remains critical to identify biomarkers to track these early changes. Metrics derived from tensor modeling of diffusion-weighted MRIs (DTI), that indicate the microscopic brain structure, can add important information to regional volumetric measurements. This study uses two large-scale longitudinal, multicenter datasets, PREDICT-HD and IMAGE-HD, to trace changes in DTI of HD participants with a broad range of CAP scores (a product of CAG repeat expansion and age), including those with pre-manifest disease (i.e., prior to clinical onset). Utilizing a fully automated data-driven approach to study the whole brain divided in regions of interest, we traced changes in DTI metrics (diffusivity and fractional anisotropy) versus CAP scores, using sigmoidal and linear regression models. We identified points of inflection in the sigmoidal regression using change-point analysis. The deep gray matter showed more evident and earlier changes in DTI metrics over CAP scores, compared to the deep white matter. In the deep white matter, these changes were more evident and occurred earlier in superior and posterior areas, compared to anterior and inferior areas. The curves of mean diffusivity vs. age of HD participants within a fixed CAP score were different from those of controls, indicating that the disease has an additional effect to age on the microscopic brain structure. These results show the regional and temporal vulnerability of the white matter and deep gray matter in HD, with potential implications for experimental therapeutics.
Collapse
Affiliation(s)
- Beini Hu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laurent Younes
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Xuan Bu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chin-Fu Liu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jane Paulsen
- Department of Psychiatry, Neurology, Psychological Brain Sciences, University of Iowa, USA; Department Neurology, University of Wisconsin-Madison, USA
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute of Brain and Mental Health, Monash University, Australia
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher Ross
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andreia V Faria
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
23
|
Sierra LA, Hughes SB, Ullman CJ, Hall A, Pandeya SR, Schubert R, Frank SA, Halko MA, Corey-Bloom J, Laganiere S. LASSI-L detects early cognitive changes in pre-motor manifest Huntington's disease: a replication and validation study. Front Neurol 2023; 14:1191718. [PMID: 37533473 PMCID: PMC10393264 DOI: 10.3389/fneur.2023.1191718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
Background and objectives Cognitive decline is an important early sign in pre-motor manifest Huntington's disease (preHD) and is characterized by deficits across multiple domains including executive function, psychomotor processing speed, and memory retrieval. Prior work suggested that the Loewenstein-Acevedo Scale for Semantic Interference and Learning (LASSI-L)-a verbal learning task that simultaneously targets these domains - could capture early cognitive changes in preHD. The current study aimed to replicate, validate and further analyze the LASSI-L in preHD using larger datasets. Methods LASSI-L was administered to 50 participants (25 preHD and 25 Healthy Controls) matched for age, education, and sex in a longitudinal study of disease progression and compared to performance on MMSE, Trail A & B, SCWT, SDMT, Semantic Fluency (Animals), and CVLT-II. Performance was then compared to a separate age-education matched-cohort of 25 preHD participants. Receiver operating curve (ROC) and practice effects (12 month interval) were investigated. Group comparisons were repeated using a preHD subgroup restricted to participants predicted to be far from diagnosis (Far subgroup), based on CAG-Age-Product scaled (CAPs) score. Construct validity was assessed through correlations with previously established measures of subcortical atrophy. Results PreHD performance on all sections of the LASSI-L was significantly different from controls. The proactive semantic interference section (PSI) was sensitive (p = 0.0001, d = 1.548), similar across preHD datasets (p = 1.0), reliable on test-retest over 12 months (spearman rho = 0.88; p = <0.00001) and associated with an excellent area under ROC (AUROC) of 0.855. In the preHD Far subgroup comparison, PSI was the only cognitive assessment to survive FDR < 0.05 (p = 0.03). The number of intrusions on PSI was negatively correlated with caudate volume. Discussion The LASSI-L is a sensitive, reliable, efficient tool for detecting cognitive decline in preHD. By using a unique verbal learning test paradigm that simultaneously targets executive function, processing speed and memory retrieval, the LASSI-L outperforms many other established tests and captures early signs of cognitive impairment. With further longitudinal validation, the LASSI-L could prove to be a useful biomarker for clinical research in preHD.
Collapse
Affiliation(s)
- Luis A. Sierra
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Shelby B. Hughes
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, United States
- San Diego State University/UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Clementina J. Ullman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Andrew Hall
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, United States
| | - Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Samuel A. Frank
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Mark A. Halko
- Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, McLean Hospital, Belmont, MA, United States
| | - Jody Corey-Bloom
- Department of Neurosciences, School of Medicine, University of California, San Diego, CA, United States
| | - Simon Laganiere
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Sierra LA, Ullman CJ, Baselga-Garriga C, Pandeya SR, Frank SA, Laganiere S. Prevalence of neurocognitive disorder in Huntington's disease using the Enroll-HD dataset. Front Neurol 2023; 14:1198145. [PMID: 37521291 PMCID: PMC10375015 DOI: 10.3389/fneur.2023.1198145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 08/01/2023] Open
Abstract
Background Cognitive decline in Huntington's disease (HD) begins early in the disease course, however the reported prevalence and severity of cognitive impairment varies based on diagnostic approach. A Movement Disorders Society Task Force recently endorsed the use of standardized DSM-5-based criteria to diagnose neurocognitive disorder (NCD) in Huntington's disease. Objectives To determine the prevalence and severity of cognitive impairment across different stages of HD by applying NCD criteria (mild and major) to participant data from the Enroll-HD database. Methods Enroll-HD participants were triaged into either premanifest (preHD), manifest or control groups. PreHD was further dichotomized into preHD near or preHD far based on predicted time to diagnosis using the scaled CAG-age product score (CAPs). Embedded cognitive performance and functional independence measures were used to determine prevalence of NCD (mild and major) for all groups. Results Prevalence of NCD-mild was 25.2%-38.4% for manifest HD, 22.8%-47.3% for preHD near, 11.5%-25.1% for preHD far, and 8.8%-19.1% for controls. Prevalence of NCD-major was 21.1%-57.7% for manifest HD, 0.5%-16.3% for preHD near, 0.0%-4.5% for preHD far, and 0.0%-3.0% for controls. Conclusion The prevalence of NCD in HD is elevated in preHD and demonstrates a sharp rise prior to diagnosis. In manifest HD, the vast majority of participants meet criteria for NCD. These findings are important for optimizing clinical care and/or anticipating the need for supportive services.
Collapse
Affiliation(s)
- Luis A. Sierra
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Clementina J. Ullman
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | | - Sarbesh R. Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Samuel A. Frank
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Simon Laganiere
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Ogilvie AC, Schultz JL. Memantine Use and Cognitive Decline in Huntington's Disease: An Enroll-HD Study. Mov Disord Clin Pract 2023; 10:1120-1125. [PMID: 37476323 PMCID: PMC10354618 DOI: 10.1002/mdc3.13763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 07/22/2023] Open
Abstract
Background Memantine is an N-methyl-d-aspartate (NMDA) receptor antagonist that is used to treat moderate to severe Alzheimer's Dementia (AD) and has been speculated to provide clinical benefits in Huntington's disease (HD). Objective To assess the effectiveness of memantine on the trajectory of cognitive decline in individuals with manifest HD. Methods Using participants from the Enroll-HD study, the primary analysis compared trajectories in cognition over a 5-year period using linear mixed effect models of prevalent and incident memantine users who were propensity-score-matched with non-users on measures of disease progression and demographics. Results In the primary analysis there were no significant differences in the trajectories between memantine users and non-users on any primary outcomes of interest. Conclusions Memantine use was not associated with any clinical benefit for individuals with manifest HD. Further studies are warranted to assess the impact of memantine on clinical outcomes in HD.
Collapse
Affiliation(s)
- Amy C. Ogilvie
- Department of EpidemiologyThe College of Public Health at the University of IowaIowa CityIAUSA
- Department of PsychiatryThe Carver College of Medicine at the University of IowaIowa CityIAUSA
| | - Jordan L. Schultz
- Department of PsychiatryThe Carver College of Medicine at the University of IowaIowa CityIAUSA
- Department of NeurologyThe Carver College of Medicine at the University of IowaIowa CityIAUSA
- Division of Pharmacy Practice and SciencesThe College of Pharmacy at the University of IowaIowa CityIAUSA
| |
Collapse
|
26
|
Sokol LL, Nance M, Kluger BM, Yeh C, Paulsen JS, Smith AK, Bega D. Factors Associated With the Place of Death in Huntington Disease: Analysis of Enroll-HD. J Palliat Med 2023; 26:915-921. [PMID: 36706436 PMCID: PMC10316529 DOI: 10.1089/jpm.2022.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/28/2023] Open
Abstract
Background: Most people prefer to die at home. Hospice is the standard in end-of-life care for people with Huntington disease (HD), a neurodegenerative genetic disorder that affects people in middle adulthood. Yet, we have little knowledge regarding the place of death for people with HD. Therefore, the current state of knowledge limits HD clinicians' ability to conduct high-quality goals of care conversations. Objectives: We sought to determine the factors associated with the place of death in people with HD. Design: We obtained cross-sectional data from Enroll-HD and included participants with a positive HD mutation of 36 or more CAG repeats. Results: Out of 16,120 participants in the Enroll-HD study, 536 were reported as deceased. The mean age at death was 60. The leading place of death was home (29%), followed by the hospital (23%). The adjusted odds ratio (aOR) of dying at a skilled nursing facility was significantly lower for those partnered (aOR: 0.48, confidence interval [95% CI]: 0.26-0.86). The aOR for dying on hospice compared to home was increased in a person with some college and above (aOR: 2.40, 95% CI: 1.21-4.75). Conclusions: Our data further suggest that models that predict the place of death for serious illnesses do not appear to generalize to HD. The distribution in the places of death within HD was not uniform. Our findings may assist HD clinicians in communication during goals of care conversations.
Collapse
Affiliation(s)
- Leonard L. Sokol
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- McGaw Bioethics Scholars Program, Center for Bioethics and Humanities, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Palliative Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Martha Nance
- Struthers Parkinson's Center, Golden Valley, Minnesota, USA
- Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Benzi M. Kluger
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Chen Yeh
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jane S. Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander K. Smith
- Division of Geriatrics, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Danny Bega
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Movement Disorders, The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Long JD, Gantman EC, Mills JA, Vaidya JG, Mansbach A, Tabrizi SJ, Sampaio C. Applying the Huntington's Disease Integrated Staging System (HD-ISS) to Observational Studies. J Huntingtons Dis 2023; 12:57-69. [PMID: 37092230 DOI: 10.3233/jhd-220555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND The Huntington's Disease Integrated Staging System (HD-ISS) has four stages that characterize disease progression. Classification is based on CAG length as a marker of Huntington's disease (Stage 0), striatum atrophy as a biomarker of pathogenesis (Stage 1), motor or cognitive deficits as HD signs and symptoms (Stage 2), and functional decline (Stage 3). One issue for implementation is the possibility that not all variables are measured in every study, and another issue is that the stages are broad and may benefit from progression subgrouping. OBJECTIVE Impute stages of the HD-ISS for observational studies in which missing data precludes direct stage classification, and then define progression subgroups within stages. METHODS A machine learning algorithm was used to impute stages. Agreement of the imputed stages with the observed stages was evaluated using graphical methods and propensity score matching. Subgroups were defined based on descriptive statistics and optimal cut-point analysis. RESULTS There was good overall agreement between the observed stages and the imputed stages, but the algorithm tended to over-assign Stage 0 and under-assign Stage 1 for individuals who were early in progression. CONCLUSION There is evidence that the imputed stages can be treated similarly to the observed stages for large-scale analyses. When imaging data are not available, imputation can be avoided by collapsing the first two stages using the categories of Stage≤1, Stage 2, and Stage 3. Progression subgroups defined within a stage can help to identify groups of more homogeneous individuals.
Collapse
Affiliation(s)
- Jeffrey D Long
- Department of Psychiatry, University of Iowa, IowaCity, IA, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | | | - James A Mills
- Department of Psychiatry, University of Iowa, IowaCity, IA, USA
| | - Jatin G Vaidya
- Department of Psychiatry, University of Iowa, IowaCity, IA, USA
| | | | - Sarah J Tabrizi
- Department of Neurodegenerative Diseases, UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, UK Dementia Research Institute, University College London, UK
| | | |
Collapse
|
28
|
Wasser CI, Mercieca EC, Kong G, Hannan AJ, Allford B, McKeown SJ, Stout JC, Glikmann-Johnston Y. A Randomized Controlled Trial of Probiotics Targeting Gut Dysbiosis in Huntington’s Disease. J Huntingtons Dis 2023; 12:43-55. [PMID: 37005888 DOI: 10.3233/jhd-220556] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background: Gastrointestinal symptoms are clinical features of Huntington’s disease (HD), which adversely affect people’s quality of life. We recently reported the first evidence of gut dysbiosis in HD gene expansion carriers (HDGECs). Here, we report on a randomized controlled clinical trial of a 6-week probiotic intervention in HDGECs. Objective: The primary objective was to determine whether probiotics improved gut microbiome composition in terms of richness, evenness, structure, and diversity of functional pathways and enzymes. Exploratory objectives were to determine whether probiotic supplementation improved cognition, mood, and gastrointestinal symptoms. Methods: Forty-one HDGECs, including 19 early manifest and 22 premanifest HDGECs were compared with 36 matched-healthy controls (HCs). Participants were randomly assigned probiotics or placebo and provided fecal samples at baseline and 6-week follow-up, which were sequenced using 16S-V3-V4 rRNA to characterize the gut microbiome. Participants completed a battery of cognitive tests and self-report questionnaires measuring mood and gastrointestinal symptoms. Results: HDGECs had altered gut microbiome diversity when compared to HCs, indicating gut dysbiosis. Probiotic intervention did not ameliorate gut dysbiosis or have any effect on cognition, mood, or gastrointestinal symptoms. Gut microbiome differences between HDGECs and HCs were unchanged across time points, suggesting consistency of gut microbiome differences within groups. Conclusion: Despite the lack of probiotic effects in this trial, the potential utility of the gut as a therapeutic target in HD should continue to be explored given the clinical symptomology, gut dysbiosis, and positive results from probiotics and other gut interventions in similar neurodegenerative diseases.
Collapse
Affiliation(s)
- Cory I Wasser
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Emily-Clare Mercieca
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne Brain Centre, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Brianna Allford
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Sonja J McKeown
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Julie C Stout
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Yifat Glikmann-Johnston
- Turner Institute for Brain and Mental Health, Ageing and Neurodegeneration Program, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
29
|
Lin TW, Chang JK, Wu YR, Sun TH, Cheng YY, Ren CT, Pan MH, Wu JL, Chang KH, Yang HI, Chen CM, Wu CY, Chen YR. Ganglioside-focused Glycan Array Reveals Abnormal Anti-GD1b Auto-antibody in Plasma of Preclinical Huntington's Disease. Mol Neurobiol 2023; 60:3873-3882. [PMID: 36976478 DOI: 10.1007/s12035-023-03307-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD. Here, by using a novel and sensitive ganglioside-focused glycan array, we examined the potential of anti-glycan auto-antibodies for HD. In this study, we collected plasma from 97 participants including 42 control (NC), 16 pre-manifest HD (pre-HD), and 39 HD cases and measured the anti-glycan auto-antibodies by a novel ganglioside-focused glycan array. The association between plasma anti-glycan auto-antibodies and disease progression was analyzed using univariate and multivariate logistic regression. The disease-predictive capacity of anti-glycan auto-antibodies was further investigated by receiver operating characteristic (ROC) analysis. We found that anti-glycan auto-antibodies were generally higher in the pre-HD group when compared to the NC and HD groups. Specifically, anti-GD1b auto-antibody demonstrated the potential for distinguishing between pre-HD and control groups. Moreover, in combination with age and the number of CAG repeat, the level of anti-GD1b antibody showed excellent predictability with an area under the ROC curve (AUC) of 0.95 to discriminate between pre-HD carriers and HD patients. With glycan array technology, this study demonstrated abnormal auto-antibody responses that showed temporal changes from pre-HD to HD.
Collapse
Affiliation(s)
- Tien-Wei Lin
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jung-Kai Chang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Hsien Sun
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jin-Lin Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
30
|
Stoebner ZA, Hett K, Lyu I, Johnson H, Paulsen JS, Long JD, Oguz I. Comprehensive shape analysis of the cortex in Huntington's disease. Hum Brain Mapp 2023; 44:1417-1431. [PMID: 36409662 PMCID: PMC9921229 DOI: 10.1002/hbm.26125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
The striatum has traditionally been the focus of Huntington's disease research due to the primary insult to this region and its central role in motor symptoms. Beyond the striatum, evidence of cortical alterations caused by Huntington's disease has surfaced. However, findings are not coherent between studies which have used cortical thickness for Huntington's disease since it is the well-established cortical metric of interest in other diseases. In this study, we propose a more comprehensive approach to cortical morphology in Huntington's disease using cortical thickness, sulcal depth, and local gyrification index. Our results show consistency with prior findings in cortical thickness, including its limitations. Our comparison between cortical thickness and local gyrification index underscores the complementary nature of these two measures-cortical thickness detects changes in the sensorimotor and posterior areas while local gyrification index identifies insular differences. Since local gyrification index and cortical thickness measures detect changes in different regions, the two used in tandem could provide a clinically relevant measure of disease progression. Our findings suggest that differences in insular regions may correspond to earlier neurodegeneration and may provide a complementary cortical measure for detection of subtle early cortical changes due to Huntington's disease.
Collapse
Affiliation(s)
- Zachary A Stoebner
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA.,University of Texas at Austin, Austin, Texas, USA
| | - Kilian Hett
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Ilwoo Lyu
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Computer Science and Engineering, UNIST, Ulsan, South Korea
| | - Hans Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, Iowa, USA.,Department of Biostatistics, University of Iowa, Iowa City, Iowa, USA
| | - Ipek Oguz
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Bakels HS, van Duinen SG, de Bresser J, van Roon-Mom WMC, van der Weerd L, de Bot ST. Post-mortem 7T MR imaging and neuropathology in middle stage juvenile-onset Huntington disease: A case report. Neuropathol Appl Neurobiol 2023; 49:e12858. [PMID: 36334065 PMCID: PMC10100344 DOI: 10.1111/nan.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Hannah S Bakels
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
32
|
Denis HL, Alpaugh M, Alvarez CP, Fenyi A, Barker RA, Chouinard S, Arrowsmith CH, Melki R, Labib R, Harding RJ, Cicchetti F. Detection of antibodies against the huntingtin protein in human plasma. Cell Mol Life Sci 2023; 80:45. [PMID: 36651994 PMCID: PMC9849309 DOI: 10.1007/s00018-023-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder resulting from a CAG expansion in the huntingtin (HTT) gene, which leads to the production and accumulation of mutant huntingtin (mHTT). While primarily considered a disorder of the central nervous system, multiple changes have been described to occur throughout the body, including activation of the immune system. In other neurodegenerative disorders, activation of the immune system has been shown to include the production of antibodies against disease-associated pathological proteins. However, the existence of mHTT-targeted antibodies has never been reported. In this study, we assessed the presence and titer of antibodies recognizing HTT/mHTT in patients with HD (n = 66) and age- and gender-matched healthy controls (n = 66) using a combination of Western blotting and ELISA. Together, these analyses revealed that antibodies capable of recognizing HTT/mHTT were detectable in the plasma samples of all participants, including healthy controls. When antibody levels were monitored at different disease stages, it was observed that antibodies against full-length mHTT were highest in patients with severe disease while antibodies against HTTExon1 were elevated in patients with mild disease. Combined, these results suggest that antibodies detecting different forms of mHTT peak at different disease stages.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Claudia P Alvarez
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada
| | - Alexis Fenyi
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-Aux-Roses, France
| | - Roger A Barker
- John van Geest Center for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sylvain Chouinard
- Centre Hospitalier Universitaire de Montréal-Hôtel Dieu, Movement Disorders Unit, CHUM, Montréal, QC, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto and Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Ronald Melki
- Laboratory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-Aux-Roses, France
| | - Richard Labib
- Department of Mathematical and Industrial Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Rachel J Harding
- Structural Genomics Consortium, University of Toronto, MaRS Building Suite 700, 101 College Street, Toronto, ON, M5G1L7, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC, G1V 4G2, Canada.
- Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
33
|
Zhou J, Zhang Y, Tu W. clusterMLD: An Efficient Hierarchical Clustering Method for Multivariate Longitudinal Data. J Comput Graph Stat 2023; 32:1131-1144. [PMID: 37859643 PMCID: PMC10584088 DOI: 10.1080/10618600.2022.2149540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
Longitudinal data clustering is challenging because the grouping has to account for the similarity of individual trajectories in the presence of sparse and irregular times of observation. This paper puts forward a hierarchical agglomerative clustering method based on a dissimilarity metric that quantifies the cost of merging two distinct groups of curves, which are depicted by B-splines for the repeatedly measured data. Extensive simulations show that the proposed method has superior performance in determining the number of clusters, classifying individuals into the correct clusters, and in computational efficiency. Importantly, the method is not only suitable for clustering multivariate longitudinal data with sparse and irregular measurements but also for intensely measured functional data. Towards this end, we provide an R package for the implementation of such analyses. To illustrate the use of the proposed clustering method, two large clinical data sets from real-world clinical studies are analyzed.
Collapse
Affiliation(s)
- Junyi Zhou
- Department of Biostatistics and Health Data Science, Indiana University
| | - Ying Zhang
- Department of Biostatistics, University of Nebraska Medical Center
| | - Wanzhu Tu
- Department of Biostatistics and Health Data Science, Indiana University
| |
Collapse
|
34
|
Schultz JL, Epping EA, van der Plas E, Magnotta VA, Nopoulos PC. Striatal Development in Early-Onset Huntington's Disease. Mov Disord 2022; 37:2459-2460. [PMID: 36177602 PMCID: PMC9878993 DOI: 10.1002/mds.29227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 08/29/2022] [Indexed: 01/29/2023] Open
Affiliation(s)
- Jordan L. Schultz
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
| | - Eric A. Epping
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Ellen van der Plas
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
| | - Vincent A. Magnotta
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Radiology, 200 Hawkins Drive, Iowa City, IA
| | - Peggy C. Nopoulos
- Carver College of Medicine at the University of Iowa, Department of Psychiatry, 200 Hawkins Drive, Iowa City, IA
- Carver College of Medicine at the University of Iowa, Department of Neurology, 200 Hawkins Drive, Iowa City, IA
- Stead Family Children’s Hospital at the University of Iowa, 200 Hawkins Drive, Iowa City, IA
| |
Collapse
|
35
|
Koval I, Dighiero-Brecht T, Tobin AJ, Tabrizi SJ, Scahill RI, Tezenas du Montcel S, Durrleman S, Durr A. Forecasting individual progression trajectories in Huntington disease enables more powered clinical trials. Sci Rep 2022; 12:18928. [PMID: 36344508 PMCID: PMC9640581 DOI: 10.1038/s41598-022-18848-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Variability in neurodegenerative disease progression poses great challenges for the evaluation of potential treatments. Identifying the persons who will experience significant progression in the short term is key for the implementation of trials with smaller sample sizes. We apply here disease course mapping to forecast biomarker progression for individual carriers of the pathological CAG repeat expansions responsible for Huntington disease. We used data from two longitudinal studies (TRACK-HD and TRACK-ON) to synchronize temporal progression of 15 clinical and imaging biomarkers from 290 participants with Huntington disease. We used then the resulting HD COURSE MAP to forecast clinical endpoints from the baseline data of 11,510 participants from ENROLL-HD, an external validation cohort. We used such forecasts to select participants at risk for progression and compute the power of trials for such an enriched population. HD COURSE MAP forecasts biomarkers 5 years after the baseline measures with a maximum mean absolute error of 10 points for the total motor score and 2.15 for the total functional capacity. This allowed reducing sample sizes in trial up to 50% including participants with a higher risk for progression ensuring a more homogeneous group of participants.
Collapse
Affiliation(s)
- Igor Koval
- Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Thomas Dighiero-Brecht
- Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Allan J Tobin
- Biological Adaptation and Ageing, Sorbonne Université, Paris, France
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Sarah J Tabrizi
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Rachael I Scahill
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - Sophie Tezenas du Montcel
- Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013, Paris, France
| | - Stanley Durrleman
- Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, 75013, Paris, France.
| | - Alexandra Durr
- Department of Neurology, DMU Neurosciences, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France.
| |
Collapse
|
36
|
Lumbar puncture safety and tolerability in premanifest and manifest Huntington's disease: a multi-analysis cross-sectional study. Sci Rep 2022; 12:18377. [PMID: 36319718 PMCID: PMC9626630 DOI: 10.1038/s41598-022-21934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Lumbar puncture (LP) has become increasingly common for people with Huntington's disease (HD) both to administer intrathecal investigational medicinal products and to collect cerebrospinal fluid to develop biological markers to track disease stage and progression. We aimed to investigate the safety profile of LP in people with HD, building on a recently published work by increasing the sample size and more specifically, increasing the representation of the premanifest population and healthy controls. We conducted a multi-study cross-sectional analysis including eligible participants from the HDClarity (304 Huntington's disease gene expansion carriers and 91 controls) and HD-YAS studies (54 premanifest and 48 controls), enrolled between February 2016 and September 2019. We investigated the odds of any adverse events, headaches, and back pain independently. Intergroup comparisons and adjusted event odds were derived using hierarchical logistic regressions. A total of 669 LP procedures involving 497 participants were included in this analysis. There were 184 (27.5%) LP procedures associated with one or more adverse events. The two most common adverse events were: post LP headache and back pain. Younger age and female gender were found to be associated with a higher risk of developing adverse events. There was no difference in the rate of adverse events between the disease subgroups after adjusting for covariates such as age and gender. Our results suggest that the LP is safe and tolerable in premanifest and manifest HD subjects, providing useful reassurance about the procedure to the HD community.
Collapse
|
37
|
Feigin A, Evans EE, Fisher TL, Leonard JE, Smith ES, Reader A, Mishra V, Manber R, Walters KA, Kowarski L, Oakes D, Siemers E, Kieburtz KD, Zauderer M. Pepinemab antibody blockade of SEMA4D in early Huntington's disease: a randomized, placebo-controlled, phase 2 trial. Nat Med 2022; 28:2183-2193. [PMID: 35941373 PMCID: PMC9361919 DOI: 10.1038/s41591-022-01919-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
SIGNAL is a multicenter, randomized, double-blind, placebo-controlled phase 2 study (no. NCT02481674) established to evaluate pepinemab, a semaphorin 4D (SEMA4D)-blocking antibody, for treatment of Huntington's disease (HD). The trial enrolled a total of 265 HD gene expansion carriers with either early manifest (EM, n = 179) or late prodromal (LP, n = 86) HD, randomized (1:1) to receive 18 monthly infusions of pepinemab (n = 91 EM, 41 LP) or placebo (n = 88 EM, 45 LP). Pepinemab was generally well tolerated, with a relatively low frequency of serious treatment-emergent adverse events of 5% with pepinemab compared to 9% with placebo, including both EM and LP participants. Coprimary efficacy outcome measures consisted of assessments within the EM cohort of (1) a two-item HD cognitive assessment family comprising one-touch stockings of Cambridge (OTS) and paced tapping (PTAP) and (2) clinical global impression of change (CGIC). The differences between pepinemab and placebo in mean change (95% confidence interval) from baseline at month 17 for OTS were -1.98 (-4.00, 0.05) (one-sided P = 0.028), and for PTAP 1.43 (-0.37, 3.23) (one-sided P = 0.06). Similarly, because a significant treatment effect was not observed for CGIC, the coprimary endpoint, the study did not meet its prespecified primary outcomes. Nevertheless, a number of other positive outcomes and post hoc subgroup analyses-including additional cognitive measures and volumetric magnetic resonance imaging and fluorodeoxyglucose-positron-emission tomography imaging assessments-provide rationale and direction for the design of a phase 3 study and encourage the continued development of pepinemab in patients diagnosed with EM HD.
Collapse
Affiliation(s)
- Andrew Feigin
- New York University Langone Health and The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York, NY, USA
| | | | | | | | | | | | | | | | | | - Lisa Kowarski
- WCG Statistics Collaborative, Inc., Washington, DC, USA
| | - David Oakes
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
38
|
The Vasopressin 1a Receptor Antagonist SRX246 Reduces Aggressive Behavior in Huntington’s Disease. J Pers Med 2022; 12:jpm12101561. [PMID: 36294700 PMCID: PMC9605366 DOI: 10.3390/jpm12101561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
SRX246, an orally available CNS penetrant vasopressin (VP) V1a receptor antagonist, was studied in Huntington’s disease (HD) patients with irritability and aggressive behavior in the exploratory phase 2 trial, Safety, Tolerability, and Activity of SRX246 in Irritable HD patients (STAIR). This was a dose-escalation study; subjects received final doses of 120 mg BID, 160 mg BID, or placebo. The compound was safe and well tolerated. In this paper, we summarize the results of exploratory analyses of measures of problematic behaviors, including the Cohen–Mansfield Agitation Inventory (CMAI), Aberrant Behavior Checklist (ABC), Problem Behaviors Assessment-short form (PBA-s), Irritability Scale (IS), Clinical Global Impression (CGI), HD Quality of Life (QoL), and Caregiver Burden questionnaires. In addition to these, we asked subjects and caregivers to record answers to short questions about mood, irritability, and aggressive conduct in an eDiary. STAIR was the first rigorously designed study of behavioral endpoints like these in HD. The exploratory analyses showed that SRX246 reduced aggressive acts. Readily observed behaviors should be used as trial endpoints.
Collapse
|
39
|
Achenbach J, Saft C, Faissner S, Ellrichmann G. Positive effect of immunomodulatory therapies on disease progression in Huntington's disease? Data from a real-world cohort. Ther Adv Neurol Disord 2022; 15:17562864221109750. [PMID: 35899100 PMCID: PMC9310279 DOI: 10.1177/17562864221109750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The role of neuroinflammation and autoimmune processes in neurodegenerative diseases is not fully understood. Activation of microglia with expression of proinflammatory cytokines supports the hypothesis that immune processes may play an important role in the pathophysiology of Huntington’s disease (HD) and thus, immunomodulating therapies might have potential neuroprotective properties. Until now, no disease-modifying therapy (DMT) is available for HD. Objective: The aim of this research was to characterize a cohort of patients suffering from both HD and autoimmune demyelinating diseases of the central nervous system (classified as G35-37 in ICD-10; ADD-CNS) in comparison to HD cases without ADD-CNS. In particular, we were interested to investigate potential modulating effects on disease manifestation and progression of HD over time of prescribed immunomodulating medications (DMT). Methods: We analyzed the course of HD regarding motoric, functional, and cognitive aspects, using longitudinal data of up to 2 years from the worldwide registry study ENROLL-HD. Additional cross-sectional data in the largest cohort worldwide of HD patients was analyzed using demographic and molecular genetic parameters. Data were analyzed using analysis of variance (ANOVA) for cross-sectional and repeated-measures ANOVA for longitudinal parameters in IBM SPSS Statistics V.27. Results: Within the ENROLL-HD database, we investigated N = 21,116 participants and identified n = 60 participants suffering from ADD-CNS. Molecular, genetic, and demographic data did not differ between groups. The subgroup of n = 32 participants with motor-manifest HD revealed better cognitive performance in five out of eight cognitive tests at baseline with less progression over time in two tests (all p < 0.05). Differentiation between DMT-treated and untreated patients revealed better cognitive and motor performance in the DMT group; those patients, however, tended to be younger. Pre-manifest HD patients simultaneously diagnosed with ADD-CNS (n = 12) showed lower functional scores and more decline over time when compared with other pre-manifest HD (p < 0.05). Conclusion: Patients suffering from motor-manifest HD and simultaneously from ADD-CNS have better cognitive capacities compared with other motor-manifest HD patients. Moreover, DMTs might have beneficial effects on progression of neurodegeneration including the motor phenotype. However, this effect might have been biased by younger age in DMT-treated patients. Pre-manifest HD patients showed more functional impairment as expected due to their additional ADD-CNS disease.
Collapse
Affiliation(s)
- Jannis Achenbach
- Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr-University Bochum, St. Josef-Hospital Bochum, Gudrunstraße 56, Bochum 44791, Germany
| | - Carsten Saft
- Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr-University Bochum, St. Josef-Hospital Bochum, Bochum, Germany
| | - Simon Faissner
- Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr-University Bochum, St. Josef-Hospital Bochum, Bochum, Germany
| | | |
Collapse
|
40
|
Warner JH, Long JD, Mills JA, Langbehn DR, Ware J, Mohan A, Sampaio C. Standardizing the CAP Score in Huntington's Disease by Predicting Age-at-Onset. J Huntingtons Dis 2022; 11:153-171. [PMID: 35466943 DOI: 10.3233/jhd-210475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant, neurological disease caused by an expanded CAG repeat near the N-terminus of the huntingtin (HTT) gene. A leading theory concerning the etiology of HD is that both onset and progression are driven by cumulative exposure to the effects of mutant (or CAG expanded) huntingtin (mHTT). The CAG-Age-Product (CAP) score (i.e., the product of excess CAG length and age) is a commonly used measure of this cumulative exposure. CAP score has been widely used as a predictor of a variety of disease state variables in HD. The utility of the CAP score has been somewhat diminished, however, by a lack of agreement on its precise definition. The most commonly used forms of the CAP score are highly correlated so that, for purposes of prediction, it makes little difference which is used. However, reported values of CAP scores, based on commonly used definitions, differ substantially in magnitude when applied to the same data. This complicates the process of inter-study comparison. OBJECTIVE In this paper, we propose a standardized definition for the CAP score which will resolve this difficulty. Our standardization is chosen so that CAP = 100 at the expected age of diagnosis. METHODS Statistical methods include novel survival analysis methodology applied to the 13 disease landmarks taken from the Enroll-HD database (PDS 5) and comparisons with the existing, gold standard, onset model. RESULTS Useful by-products of our work include up-to-date, age-at-onset (AO) results and a refined AO model suitable for use in other contexts, a discussion of several useful properties of the CAP score that have not previously been noted in the literature and the introduction of the concept of a toxicity onset model. CONCLUSION We suggest that taking L = 30 and K = 6.49 provides a useful standardization of the CAP score, suitable for use in the routine modeling of clinical data in HD.
Collapse
Affiliation(s)
| | - Jeffrey D Long
- Departments of Psychiatry, Biostatistics, University of Iowa, Iowa City, IA, USA
| | - James A Mills
- Departments of Psychiatry, Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Douglas R Langbehn
- Departments of Psychiatry, Biostatistics, University of Iowa, Iowa City, IA, USA
| | | | - Amrita Mohan
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | |
Collapse
|
41
|
Achenbach J, Matusch A, Elmenhorst D, Bauer A, Saft C. Divergent Effects of the Nonselective Adenosine Receptor Antagonist Caffeine in Pre-Manifest and Motor-Manifest Huntington's Disease. Biomedicines 2022; 10:biomedicines10061258. [PMID: 35740281 PMCID: PMC9219784 DOI: 10.3390/biomedicines10061258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
There is a controversy about potentially positive or negative effects of caffeine consumption on onset and disease progression of neurodegenerative diseases such as Huntington’s Disease (HD). On the molecular level, the psychoactive drug caffeine targets in particular adenosine receptors (AR) as a nonselective antagonist. The aim of this study was to evaluate clinical effects of caffeine consumption in patients suffering from premanifest and motor-manifest HD. Data of the global observational study ENROLL-HD were used, in order to analyze the course of HD regarding symptoms onset, motor, functional, cognitive and psychiatric parameters, using cross-sectional and longitudinal data of up to three years. We split premanifest and manifest participants into two subgroups: consumers of >3 cups of caffeine (coffee, cola or black tea) per day (>375 mL) vs. subjects without caffeine consumption. Data were analyzed using ANCOVA-analyses for cross-sectional and repeated measures analysis of variance for longitudinal parameters in IBM SPSS Statistics V.28. Within n = 21,045 participants, we identified n = 1901 premanifest and n = 4072 manifest HD patients consuming >3 cups of caffeine/day vs. n = 841 premanifest and n = 2243 manifest subjects without consumption. Manifest HD patients consuming >3 cups exhibited a significantly better performance in a series of neuropsychological tests. They also showed at the median a later onset of symptoms (all p < 0.001), and, during follow-up, less motor, functional and cognitive impairments in the majority of tests (all p < 0.050). In contrast, there were no beneficial caffeine-related effects on neuropsychological performance in premanifest HD mutation carriers. They showed even worse cognitive performances in stroop color naming (SCNT) and stroop color reading (SWRT) tests (all p < 0.050) and revealed more anxiety, depression and irritability subscores in comparison to premanifest participants without caffeine consumption. Similarly, higher self-reported anxiety and irritability were observed in genotype negative/control group high dose caffeine drinkers, associated with a slightly better performance in some cognitive tasks (all p < 0.050). The analysis of the impact of caffeine consumption in the largest real-world cohort of HD mutation carriers revealed beneficial effects on neuropsychological performance as well as manifestation and course of disease in manifest HD patients while premanifest HD mutation carrier showed no neuropsychological improvements, but worse cognitive performances in some tasks and exhibited more severe signs of psychiatric impairment. Our data point to state-related psychomotor-stimulant effects of caffeine in HD that might be related to regulatory effects at cerebral adenosine receptors. Further studies are required to validate findings, exclude potential other unknown biasing factors such as physical activity, pharmacological interventions, gender differences or chronic habitual influences and test for dosage related effects.
Collapse
Affiliation(s)
- Jannis Achenbach
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany;
- Correspondence:
| | - Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
| | - Carsten Saft
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany;
| |
Collapse
|
42
|
Hickman RA, Faust PL, Marder K, Yamamoto A, Vonsattel JP. The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol Commun 2022; 10:55. [PMID: 35440014 PMCID: PMC9020040 DOI: 10.1186/s40478-022-01364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Huntington disease is characterized by progressive neurodegeneration, especially of the striatum, and the presence of polyglutamine huntingtin (HTT) inclusions. Although HTT inclusions are most abundant in the neocortex, their neocortical distribution and density in relation to the extent of CAG repeat expansion in the HTT gene and striatal pathologic grade have yet to be formally established. We immunohistochemically studied 65 brains with a pathologic diagnosis of Huntington disease to investigate the cortical distributions and densities of HTT inclusions within the calcarine (BA17), precuneus (BA7), motor (BA4) and prefrontal (BA9) cortices; in 39 of these brains, a p62 immunostain was used for comparison. HTT inclusions predominate in the infragranular cortical layers (layers V-VI) and layer III, however, the densities of HTT inclusions across the human cerebral cortex are not uniform but are instead regionally contingent. The density of HTT and p62 inclusions (intranuclear and extranuclear) in layers V-VI increases caudally to rostrally (BA17 < BA7 < BA4 < BA9) with the median burden of HTT inclusions being 38-fold greater in the prefrontal cortex (BA9) than in the calcarine cortex (BA17). Conversely, intranuclear HTT inclusions prevail in the calcarine cortex irrespective of HTT CAG length. Neocortical HTT inclusion density correlates with CAG repeat expansion, but not with the neuropathologic grade of striatal degeneration (Vonsattel grade) or with the duration of clinical disease since motor onset. Extrapolation of these findings suggest that HTT inclusions are at a regionally-contingent, CAG-dependent, density during the advanced stages of HD. The distribution and density of HTT inclusions in HD therefore does not provide a measure of pathologic disease stage but rather infers the degree of pathogenic HTT expansion.
Collapse
Affiliation(s)
- Richard A. Hickman
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Phyllis L. Faust
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA
| | - Karen Marder
- grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ai Yamamoto
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Jean-Paul Vonsattel
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
43
|
Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset. Nat Neurosci 2022; 25:446-457. [PMID: 35379994 PMCID: PMC8986535 DOI: 10.1038/s41593-022-01033-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.
Collapse
|
44
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Lemercier P, Cleret de Langavant L, Hamet Bagnou J, Youssov K, Lemoine L, Audureau E, Massart R, Bachoud-Lévi AC. Self-Reported Social Relationship Capacities Predict Motor, Functional and Cognitive Decline in Huntington’s Disease. J Pers Med 2022; 12:jpm12020174. [PMID: 35207662 PMCID: PMC8879028 DOI: 10.3390/jpm12020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
Huntington’s Disease (HD) is an inherited neurodegenerative disease characterized by a combination of motor, cognitive, and behavioral disorders. The social and behavioral symptoms observed in HD patients impact their quality of life and probably explain their relational difficulties, conflicts, and social withdrawal. In this study, we described the development of the Social Relationship Self-Questionnaire (SRSQ), a self-reporting questionnaire that assesses how HD patients perceived their social relationships. The scale was proposed for 66 HD patients at an early stage of the disease, 32 PreHD patients (individuals carrying the mutant gene without motor symptoms), and 66 controls. The HD patients were included in a prospective longitudinal follow-up for an average of 1.07 years with motor, functional, cognitive, and behavioral assessments. Based on the HD patients’ answers at baseline, we identified two domains in the SRSQ. The first domain was related to social motivation and correlated with cognitive performance. The second domain was related to emotional insight and correlated with behavioral symptoms such as apathy, anxiety, and irritability. We discovered that both SRSQ domain scores at baseline predicted future motor, functional, and cognitive decline in HD.
Collapse
Affiliation(s)
- Pablo Lemercier
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (P.L.); (L.C.d.L.); (J.H.B.); (K.Y.); (L.L.); (R.M.)
- Equipe NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, INSERM U955, University Paris Est Créteil, 94000 Créteil, France
- Centre National de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, AP-HP, 94000 Créteil, France
- NeurATRIS, 94000 Créteil, France
| | - Laurent Cleret de Langavant
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (P.L.); (L.C.d.L.); (J.H.B.); (K.Y.); (L.L.); (R.M.)
- Equipe NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, INSERM U955, University Paris Est Créteil, 94000 Créteil, France
- Centre National de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, AP-HP, 94000 Créteil, France
- NeurATRIS, 94000 Créteil, France
| | - Jennifer Hamet Bagnou
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (P.L.); (L.C.d.L.); (J.H.B.); (K.Y.); (L.L.); (R.M.)
- Equipe NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, INSERM U955, University Paris Est Créteil, 94000 Créteil, France
- Centre National de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, AP-HP, 94000 Créteil, France
- NeurATRIS, 94000 Créteil, France
| | - Katia Youssov
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (P.L.); (L.C.d.L.); (J.H.B.); (K.Y.); (L.L.); (R.M.)
- Centre National de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, AP-HP, 94000 Créteil, France
- NeurATRIS, 94000 Créteil, France
| | - Laurie Lemoine
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (P.L.); (L.C.d.L.); (J.H.B.); (K.Y.); (L.L.); (R.M.)
- Equipe NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, INSERM U955, University Paris Est Créteil, 94000 Créteil, France
- Centre National de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, AP-HP, 94000 Créteil, France
- NeurATRIS, 94000 Créteil, France
| | - Etienne Audureau
- Clinical Epidemiology and Ageing, Service de Santé Publique, Henri Mondor Hospital, AP-HP, 94000 Créteil, France;
| | - Renaud Massart
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (P.L.); (L.C.d.L.); (J.H.B.); (K.Y.); (L.L.); (R.M.)
- Equipe NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, INSERM U955, University Paris Est Créteil, 94000 Créteil, France
- Centre National de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, AP-HP, 94000 Créteil, France
- NeurATRIS, 94000 Créteil, France
| | - Anne-Catherine Bachoud-Lévi
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL University, 75005 Paris, France; (P.L.); (L.C.d.L.); (J.H.B.); (K.Y.); (L.L.); (R.M.)
- Equipe NeuroPsychologie Interventionnelle, Institut Mondor de Recherche Biomédicale, INSERM U955, University Paris Est Créteil, 94000 Créteil, France
- Centre National de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, AP-HP, 94000 Créteil, France
- NeurATRIS, 94000 Créteil, France
- Correspondence:
| |
Collapse
|
46
|
Turner M, Reyes A, Rankin T, Bartlett D, Trajano G, Pulverenti T, Cruickshank T. Torque variability of the plantar flexors in people with Huntington's disease. Am J Transl Res 2021; 13:13862-13869. [PMID: 35035726 PMCID: PMC8748091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Torque steadiness can be impaired in people with Huntington's disease (HD) and worsen with disease advancement. However, existing studies have several methodological oversights. Studies have used absolute torque targets, which do not account for differences in maximal torque capacity between people. Furthermore, despite its known influence on torque steadiness, previous studies in HD have not controlled for visual feedback. This study evaluated torque variability at relative intensities with and without visual feedback between people with prodromal HD and healthy controls. METHODS Twenty-four people with prodromal HD and twenty-seven age- and sex-matched healthy controls were recruited for this study. Torque variability was evaluated, with and without visual feedback, in the right plantar flexors at 10% and 30% of each participant's maximum voluntary isometric contraction (MVIC). Measures of disease burden included the CAG age product, diagnostic confidence level and Unified Huntington's Disease Rating Scale - Total Motor Score. RESULTS Significant differences in torque variability were observed, though not in overall MVIC, between people with prodromal HD and healthy controls. Significantly higher torque fluctuations were observed for both groups when visual feedback was removed. No associations were observed between torque variability and disease burden in people with prodromal HD. Torque variability measurements showed higher reliability in healthy controls. CONCLUSIONS People with prodromal HD exhibited greater torque variability than healthy controls. Torque variability worsened for both groups when visual feedback was removed. These findings support further investigation into the utilisation of torque variability measurements as markers of disease progression in people with prodromal HD.
Collapse
Affiliation(s)
- Mitchell Turner
- School of Medical and Health Sciences, Edith Cowan UniversityPerth, Australia
| | - Alvaro Reyes
- Facultad de Ciencias de la Rehabilitacion, Universidad Andres BelloVina del Mar, Chile
| | - Tim Rankin
- School of Medical and Health Sciences, Edith Cowan UniversityPerth, Australia
- Centre for Sleep Science, School of Human Sciences, Faculty of Science, University of Western AustraliaCrawley, Perth, Australia
| | - Danielle Bartlett
- School of Medical and Health Sciences, Edith Cowan UniversityPerth, Australia
- Centre for Precision Health, Edith Cowan UniversityPerth, Australia
| | - Gabriel Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT)Brisbane, Australia
| | - Tim Pulverenti
- School of Medical and Health Sciences, Edith Cowan UniversityPerth, Australia
- Department of Physical Therapy, College of Staten Island, The City University of New YorkStaten Island, NY, USA
| | - Travis Cruickshank
- School of Medical and Health Sciences, Edith Cowan UniversityPerth, Australia
- Centre for Precision Health, Edith Cowan UniversityPerth, Australia
- Perron Institute for Neurological and Translational SciencesPerth, Western Australia
| |
Collapse
|
47
|
You H, Wu T, Du G, Huang Y, Zeng Y, Lin L, Chen D, Wu C, Li X, Burgunder JM, Pei Z. Evaluation of Blood Glial Fibrillary Acidic Protein as a Potential Marker in Huntington's Disease. Front Neurol 2021; 12:779890. [PMID: 34867769 PMCID: PMC8639701 DOI: 10.3389/fneur.2021.779890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. Neurofilament light protein (NfL) is correlated with clinical severity of HD but relative data are the lack in the Chinese population. Reactive astrocytes are related to HD pathology, which predicts their potential to be a biomarker in HD progression. Our aim was to discuss the role of blood glial fibrillary acidic protein (GFAP) to evaluate clinical severity in patients with HD. Methods: Fifty-seven HD mutation carriers (15 premanifest HD, preHD, and 42 manifest HD) and 26 healthy controls were recruited. Demographic data and clinical severity assessed with the internationally Unified Huntington's Disease Rating Scale (UHDRS) were retrospectively analyzed. Plasma NfL and GFAP were quantified with an ultra-sensitive single-molecule (Simoa, Norcross, GA, USA) technology. We explored their consistency and their correlation with clinical severity. Results: Compared with healthy controls, plasma NfL (p < 0.0001) and GFAP (p < 0.001) were increased in Chinese HD mutation carriers, and they were linearly correlated with each other (r = 0.612, p < 0.001). They were also significantly correlated with disease burden, Total Motor Score (TMS) and Total Functional Capacity (TFC). The scores of Stroop word reading, symbol digit modalities tests, and short version of the Problem Behaviors Assessments (PBAs) for HD were correlated with plasma NfL but not GFAP. Compared with healthy controls, plasma NfL has been increased since stage 1 but plasma GFAP began to increase statistically in stage 2. Conclusions: Plasma GFAP was correlated with plasma NfL, disease burden, TMS, and TFC in HD mutation carriers. Plasma GFAP may have potential to be a sensitive biomarker for evaluating HD progression.
Collapse
Affiliation(s)
- Huajing You
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Tengteng Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Du
- China National Clinical Research Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Centre for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Zeng
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Health Center Shenzhen Second People's Hospital, Shenzhen, China
| | - Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Dingbang Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xunhua Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Jean-marc Burgunder
- Swiss HD Centre, NeuroZentrumSiloah and Department of Neurology, University of Bern, Bern, Switzerland
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
- *Correspondence: Zhong Pei
| |
Collapse
|
48
|
Watson KH, Ciriegio AE, Pfalzer AC, Hale L, Jones MT, Brown B, Grice V, Moroz S, McDonell KE, Claassen DO, Compas BE. Neurobiological and Psychosocial Correlates of Communication Between Huntington's Disease Patients and Their Offspring. J Neuropsychiatry Clin Neurosci 2021; 33:321-327. [PMID: 34280320 DOI: 10.1176/appi.neuropsych.20120309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that presents significant challenges to family communication. The investigators examined observations of communication between parents with HD and their offspring talking about the challenges of HD and explored potential correlates of their communication. METHODS The sample included parents with HD and their adolescent and young-adult offspring (N=64). Parent communication and chorea were independently coded from video recordings. Parents and offspring completed working memory assessments and self-reports of neuropsychiatric symptoms, stress, and coping. RESULTS Evidence was found for the association of observed parent-offspring communication with disease markers, psychosocial characteristics, and neurocognitive function. For parents, disease markers and working memory were correlates of communication, whereas offspring's psychiatric symptoms, stress, and coping were associated with their communication. CONCLUSIONS These findings have potential implications for clinical interventions to enhance communication and quality of life for HD families.
Collapse
Affiliation(s)
- Kelly H Watson
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Abagail E Ciriegio
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Anna C Pfalzer
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Lisa Hale
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Maile T Jones
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Brittany Brown
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Victoria Grice
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Sarah Moroz
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Katherine E McDonell
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Daniel O Claassen
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| | - Bruce E Compas
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tenn. (Watson, Ciriegio, Jones, Grice, Compas); and Department of Neurology, Vanderbilt University Medical Center, Nashville, Tenn. (Pfalzer, Hale, Brown, Moroz, McDonell, Claassen)
| |
Collapse
|
49
|
Puig-Davi A, Martinez-Horta S, Sampedro F, Horta-Barba A, Perez-Perez J, Campolongo A, Izquierdo-Barrionuevo C, Pagonabarraga J, Gomez-Anson B, Kulisevsky J. Cognitive and Affective Empathy in Huntington's Disease. J Huntingtons Dis 2021; 10:323-334. [PMID: 34486985 DOI: 10.3233/jhd-210469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Empathy is a multidimensional construct and a key component of social cognition. In Huntington's disease (HD), little is known regarding the phenomenology and the neural correlates of cognitive and affective empathy, and regarding how empathic deficits interact with other behavioral and cognitive manifestations. OBJECTIVE To explore the cognitive and affective empathy disturbances and related behavioral and neural correlates in HD. METHODS Clinical and sociodemographic data were obtained from 36 healthy controls (HC) and 54 gene-mutation carriers (17 premanifest and 37 early-manifest HD). The Test of Cognitive and Affective Empathy (TECA) was used to characterize cognitive (CE) and affective empathy (AE), and to explore their associations with grey matter volume (GMV) and cortical thickness (Cth). RESULTS Compared to HC, premanifest participants performed significantly worse in perspective taking (CE) and empathic distress (AE). In symptomatic participants, scores were significantly lower in almost all the TECA subscales. Several empathy subscales were associated with the severity of apathy, irritability, and cognitive deficits. CE was associated with GMV in thalamic, temporal, and occipital regions, and with Cth in parietal and temporal areas. AE was associated with GMV in the basal ganglia, limbic, occipital, and medial orbitofrontal regions, and with Cth in parieto-occipital areas. CONCLUSION Cognitive and affective empathy deficits are detectable early, are more severe in symptomatic participants, and involve the disruption of several fronto-temporal, parieto-occipital, basal ganglia, and limbic regions. These deficits are associated with disease severity and contribute to several behavioral symptoms, facilitating the presentation of maladaptive patterns of social interaction.
Collapse
Affiliation(s)
- Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Jesus Perez-Perez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Cristina Izquierdo-Barrionuevo
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Beatriz Gomez-Anson
- Neuroradiology, Radiology Department, Hospital de la Santa Creu i Sant Pau, AutonomousUniversity of Barcelona, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de InvestigaciónBiomédica en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.,Autonomous University of Barcelona, Barcelona, Spain.,European Huntington's DiseaseNetwork (EHDN)
| |
Collapse
|
50
|
Sathe S, Ware J, Levey J, Neacy E, Blumenstein R, Noble S, Mühlbäck A, Rosser A, Landwehrmeyer GB, Sampaio C. Enroll-HD: An Integrated Clinical Research Platform and Worldwide Observational Study for Huntington's Disease. Front Neurol 2021; 12:667420. [PMID: 34484094 PMCID: PMC8416308 DOI: 10.3389/fneur.2021.667420] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Established in July 2012, Enroll-HD is both an integrated clinical research platform and a worldwide observational study designed to meet the clinical research requirements necessary to develop therapeutics for Huntington's disease (HD). The platform offers participants a low-burden entry into HD research, providing a large, well-characterized, research-engaged cohort with associated clinical data and biosamples that facilitates recruitment into interventional trials and other research studies. Additional studies that use Enroll-HD data and/or biosamples are built into the platform to further research on biomarkers and outcome measures. Enroll-HD is now operating worldwide in 21 countries at 159 clinical sites across four continents—Europe, North America, Latin America, and Australasia—and has recruited almost 25,000 participants, generating a large, rich clinical database with associated biosamples to expedite HD research; any researcher at a verifiable research organization can access the clinical datasets and biosamples from Enroll-HD and nested studies. Important operational features of Enroll-HD include a strong emphasis on standardization, data quality, and protecting participant identity, a single worldwide study protocol, a flexible EDC system capable of integrating multiple studies, a comprehensive monitoring infrastructure, an online portal to train and certify site personnel, and standardized study documents including informed consent forms and contractual agreements.
Collapse
Affiliation(s)
- Swati Sathe
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Jen Ware
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Jamie Levey
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | - Eileen Neacy
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | | | - Simon Noble
- CHDI Management/CHDI Foundation, Princeton, NJ, United States
| | | | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Brain Research and Intracranial Neurotherapeutics Unit, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|