1
|
Kim HJ, Kim SY, Kim GE, Jin HJ. Association between genetic polymorphisms of synaptophysin (SYP) gene and attention deficit hyperactivity disorder in Korean subjects. Genes Genomics 2023; 45:1097-1105. [PMID: 37133725 DOI: 10.1007/s13258-023-01393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a common childhood neurodevelopmental disorder, and the prevalence of ADHD among Korean children has attained about 8.5%. Various genetic factors can contribute to the etiology of the disease. Synaptophysin (SYP) regulates neurotransmitter release and synaptic plasticity. According to previous studies, several genetic polymorphisms on SYP were risk factors for ADHD. OBJECTIVE We investigated the effect of the SYP gene polymorphisms (rs2293945 and rs3817678) on ADHD in Korean children. METHODS In this study, we examined the case-control study in 150 ADHD cases and 322 controls. The genotyping of SYP gene polymorphisms was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS Significant associations in the genotype and genetic models of SYP rs2293945 polymorphism between girls with ADHD and control girls were found. The girls with ADHD having the C/T genotype were significantly associated with ADHD. In the dominant model of rs3817678, C/T + T/T genotypes were significantly associated with ADHD. The haplotype analyses showed significant associations from haplotypes of rs2293945 T-rs3817678 G and rs2293945 C-rs3817678 A. CONCLUSION Our results imply that the SYP rs2293945 C/T polymorphism in female participants may provide a possible effect on the genetic etiology of ADHD.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Seong Yong Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Ga Eun Kim
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea
| | - Han Jun Jin
- Department of Biological Science, College of Science & Technology, Dankook University, 31116, Cheonan, South Korea.
| |
Collapse
|
2
|
Ren Y, Fang X, Fang H, Pang G, Cai J, Wang S, Ke X. Predicting the Adult Clinical and Academic Outcomes in Boys With ADHD: A 7- to 10-Year Follow-Up Study in China. Front Pediatr 2021; 9:634633. [PMID: 34408992 PMCID: PMC8367416 DOI: 10.3389/fped.2021.634633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Attention-deficit/hyperactivity disorder (ADHD) often persists into adulthood and causes adverse effects on social functioning. The present study aimed to widely investigate the predictors, particularly childhood intelligence quotient (IQ) and family environment factors, on adult clinical and academic outcomes in boys with ADHD. Methods: A total of 101 boys with ADHD in a Chinese Han ADHD cohort were followed up 7-10 years later. Baseline ADHD symptoms were evaluated using the parent version of the ADHD Rating Scale-IV (ADHD-RS-IV) and the Chinese version of the Conners' Parent Rating Scale-Revised (CPRS-48). The intelligence of the child was tested by the China-Wechsler Intelligence Scale for Children (C-WISC), and family function was assessed by the Family Environment Scale-Chinese Edition (FES-CV). Adult ADHD persistence was defined using DSM-IV criteria for ADHD, and academic outcome fell into two categories: higher academic level group (studying in senior middle school or above) and lower academic level group (studying in vocational secondary schools or below). Results: Stepwise multiple logistic regression analysis revealed that the father's character, impulsive-hyperactive index as measured by the CPRS-48, and intellectual-cultural index as measured by the FES-CV independently predicted clinical outcomes in adults, with an AUC of 0.770 (p < 0.001, 95% CI = 0.678-0.863). The corresponding sensitivity and specificity were 0.743 and 0.727, respectively. The father's education level, family economic level, and verbal IQ (VIQ) on the C-WISC independently predicted adult academic outcomes, with an AUC of 0.870 (p < 0.001, 95% CI = 0.796-0.944). The corresponding sensitivity and specificity were 0.813 and 0.783, respectively. Conclusion: Initial ADHD symptom severity and IQ, father's character and education level, and family atmosphere and function affect adult clinical and academic outcomes. Addressing these areas early may help to improve the prognosis of ADHD into adulthood.
Collapse
Affiliation(s)
- Yanling Ren
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xinyu Fang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Fang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Gaofeng Pang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jing Cai
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Suhong Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaoyan Ke
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Zhang X, Li Y, Ma L, Zhang G, Liu M, Wang C, Zheng Y, Li R. A new sex-specific underlying mechanism for female schizophrenia: accelerated skewed X chromosome inactivation. Biol Sex Differ 2020; 11:39. [PMID: 32680558 PMCID: PMC7368719 DOI: 10.1186/s13293-020-00315-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND X chromosome inactivation (XCI) is the mechanism by which the X-linked gene dosage is adjusted between the sexes. Evidence shows that many sex-specific diseases have their basis in X chromosome biology. While female schizophrenia patients often have a delayed age of disease onset and clinical phenotypes that are different from those of males, it is unknown whether the sex differences in schizophrenia are associated with X-linked gene dosage and the choice of X chromosome silencing in female cells. Previous studies demonstrated that sex chromosome aneuploidies may be related to the pathogeneses of some psychiatric diseases. Here, we examined the changes in skewed XCI in patients with schizophrenia. METHODS A total of 109 female schizophrenia (SCZ) patients and 80 age- and sex-matched healthy controls (CNTLs) were included in this study. We evaluated clinical features including disease onset age, disease duration, clinical symptoms by the Positive and Negative Syndrome Scale (PANSS) and antipsychotic treatment dosages. The XCI skewing patterns were analyzed by the methylation profile of the HUMARA gene found in DNA isolated from SCZ patient and CNTL leukocytes in the three age groups. RESULTS First, we found that the frequency of skewed XCI in SCZ patients was 4 times more than that in the age- and sex-matched CNTLs (p < 0.01). Second, we found an earlier onset of severe XCI skewing in the SCZ patients than in CNTLs. Third, we demonstrated a close relationship between the severity of skewed XCI and schizophrenic symptoms (PANSS score ≥ 90) as well as the age of disease onset. Fourth, we demonstrated that the skewed XCI in SCZ patients was not transmitted from the patients' mothers. LIMITATIONS The XCI skewing pattern might differ depending on tissues or organs. Although this is the first study to explore skewed XCI in SCZ, in the future, samples from different tissues or cells in SCZ patients might be important for understanding the impact of skewed XCI in this disease. CONCLUSION Our study, for the first time, investigated skewed XCI in female SCZ patients and presented a potential mechanism for the sex differences in SCZ. Our data also suggested that XCI might be a potential target for the development of female-specific interventions for SCZ.
Collapse
Affiliation(s)
- Xinzhu Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuhong Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Lei Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Guofu Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rena Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China. .,The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Pinares-Garcia P, Stratikopoulos M, Zagato A, Loke H, Lee J. Sex: A Significant Risk Factor for Neurodevelopmental and Neurodegenerative Disorders. Brain Sci 2018; 8:E154. [PMID: 30104506 PMCID: PMC6120011 DOI: 10.3390/brainsci8080154] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Males and females sometimes significantly differ in their propensity to develop neurological disorders. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD) and autism. Despite this, biological sex is rarely considered when making treatment decisions in neurological disorders. A better understanding of the molecular mechanism(s) underlying sex differences in the healthy and diseased brain will help to devise diagnostic and therapeutic strategies optimal for each sex. Thus, the aim of this review is to discuss the available evidence on sex differences in neuropsychiatric and neurodegenerative disorders regarding prevalence, progression, symptoms and response to therapy. We also discuss the sex-related factors such as gonadal sex hormones and sex chromosome genes and how these might help to explain some of the clinically observed sex differences in these disorders. In particular, we highlight the emerging role of the Y-chromosome gene, SRY, in the male brain and its potential role as a male-specific risk factor for disorders such as PD, autism, and ADHD in many individuals.
Collapse
Affiliation(s)
- Paulo Pinares-Garcia
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Marielle Stratikopoulos
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Alice Zagato
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Hannah Loke
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | - Joohyung Lee
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
5
|
Zhang X, Yang J, Li Y, Ma X, Li R. Sex chromosome abnormalities and psychiatric diseases. Oncotarget 2018; 8:3969-3979. [PMID: 27992373 PMCID: PMC5354807 DOI: 10.18632/oncotarget.13962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/07/2016] [Indexed: 12/02/2022] Open
Abstract
Excesses of sex chromosome abnormalities in patients with psychiatric diseases have recently been observed. It remains unclear whether sex chromosome abnormalities are related to sex differences in some psychiatric diseases. While studies showed evidence of susceptibility loci over many sex chromosomal regions related to various mental diseases, others demonstrated that the sex chromosome aneuploidies may be the key to exploring the pathogenesis of psychiatric disease. In this review, we will outline the current evidence on the interaction of sex chromosome abnormalities with schizophrenia, autism, ADHD and mood disorders.
Collapse
Affiliation(s)
- Xinzhu Zhang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, China
| | - Xin Ma
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, China
| | - Rena Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing, China.,Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, USA
| |
Collapse
|